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Classical Waring Type Problems

Additive Number Theory

A classical result: every positive integer is a sum of 4 squares
(Lagrange, 1770).

Waring problem: Is it true that every natural number is a sum
of g (k) k-th powers, where g is a suitable function?

Solutions for small k : g (2) = 4, g (3) = 9, g (4) = 19.

In 1909 Hilbert solved the problem affirmatively.

Non-commutative analogues:
Present group elements as short products of special elements:
powers, or commutators, or values of a general word w , or
elements of a given conjugacy class in the group.
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Notation

Let w = w(x1, . . . , xd ) be a non-trivial word, namely a
non-identity element of the free group Fd on x1, . . . , xd .
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Notation

Let w = w(x1, . . . , xd ) be a non-trivial word, namely a
non-identity element of the free group Fd on x1, . . . , xd .

Let G be a group. The word map w : G d → G is defined by
substituting group elements g1, . . . , gd in x1, . . . , xd

respectively.

Let w (G ) ⊆ G denote the image of this map, and denote

w (G )k = {g1 · g2 · . . . · gk | gi ∈ w (G )} .
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Waring Type Problems in Finite Simple Groups

FSG = Finite (non-abelian) Simple Group.
Assume CFSG (the Classification).

Theorem (Wilson, 1994)

Any element of a FSG is a product of c commutators, where c is
some absolute constant. I.e., for w = [x , y ] = x−1y−1xy,
w (G )c = G . (c unspecified)

4 / 1



Waring Type Problems in Finite Simple Groups

FSG = Finite (non-abelian) Simple Group.
Assume CFSG (the Classification).

Theorem (Wilson, 1994)

Any element of a FSG is a product of c commutators, where c is
some absolute constant. I.e., for w = [x , y ] = x−1y−1xy,
w (G )c = G . (c unspecified)

Theorem (Martinez-Zelmanov, 1996, Saxl-Wilson, 1997)

Let w = xk . There exist f (k) such that either w (G ) = 1 or
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Theorem (Martinez-Zelmanov, 1996, Saxl-Wilson, 1997)

Let w = xk . There exist f (k) such that either w (G ) = 1 or

w (G )f (k) = G for any FSG G.

Question

Are there extensions of these results to general words w?
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Theorem (Liebeck-Shalev, 2001)

For any word w there exists a positive integer c = cw such that, for
any FSG G, either w (G ) = 1 or w (G )c = G.

Kassabov-Nikolov, Lubotzky, 2012: cw genuinely depends on w .
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Theorem (Liebeck-Shalev, 2001)

For any word w there exists a positive integer c = cw such that, for
any FSG G, either w (G ) = 1 or w (G )c = G.

Kassabov-Nikolov, Lubotzky, 2012: cw genuinely depends on w .
Surprise: For large G , cw doesn’t depend on w , and is very small:

Theorem (Shalev, 2009)

For any w 6= 1, there exists a positive integer N = Nw such that

w (G )3 = G

for every FSG G with |G | ≥ N.

Proof uses probabilistic methods following Erdős
New proof by Nikolov-Pyber in 2011 using Gowers’ trick.
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Sharper results for some cases

Theorem (Liebeck-O’Brien-Shalev-Tiep, 2010: Ore Conjecture
1951)

For w = [x , y ] and G any FSG,

w (G ) = G .
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Sharper results for some cases

Theorem (Liebeck-O’Brien-Shalev-Tiep, 2010: Ore Conjecture
1951)

For w = [x , y ] and G any FSG,

w (G ) = G .

Theorem (Liebeck-O’Brien-Shalev-Tiep, 2012)

For w = x2y2 and G any FSG,

w (G ) = G .

Non-commutative analogue of Lagrange Theorem.
However, various words w are not surjective on all FSG, or even on
almost all of them. E.g. xn in not surjective whenever (n, |G |) 6= 1,
so x2 is never surjective on a FSG.
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Hence, if w (G )2 = G for every word w 6= 1 and all large FSG, this
would be the best possible solution.
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Given w 6= 1, there exists a constant N = Nw such that
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for all FSG G of order at least N.

Proof involves Algebraic Geometry, Representation Theory and
Probability
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Hence, if w (G )2 = G for every word w 6= 1 and all large FSG, this
would be the best possible solution.

Theorem (Larsen-Shalev-Tiep, 2011)

Given w 6= 1, there exists a constant N = Nw such that

w (G )2 = G

for all FSG G of order at least N.

Proof involves Algebraic Geometry, Representation Theory and
Probability

Corollary

Given k ≥ 1 there exists Nk such that, if G is a FSG satisfying
|G | ≥ Nk , then every element of G is a product of two k-th powers.

Better solution to Waring problem in the non-commutative world!
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A word w is called a power word if there exists some integer
r > 1 and a word u such that w = ur .
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A word w is called a power word if there exists some integer
r > 1 and a word u such that w = ur .

If w is a power word, we cannot hope that w will be onto all
large FSG.

Question

Are power words the only case?

NO!

Example (Jambor-Liebeck-O’Brien, 2013)

w = x2
[
x−2, y−1

]k
is not surjective on PSL2 (q) for infinitely

many q.
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Engel words are words of the form
wn = [. . . [[[x , y ], y ], y ], . . . , y ]

︸ ︷︷ ︸

n times

.
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Engel words are words of the form
wn = [. . . [[[x , y ], y ], y ], . . . , y ]

︸ ︷︷ ︸

n times

.

Theorem (Bandman-Garion-Grunewald, 2010)

Let wn be the n-th Engel word. Then wn (G ) = G for
G = PSL2 (q) when q ≥ q0 (n).

This, and computer experiments on other groups suggest:

Conjecture

Let G be a FSG. Let wn be the n-th Engel word. Then wn (G ) = G.
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Conjugacy classes and Thompson Conjecture

Notation

For a conjugacy class C , we denote
C k = {c1 · c2 · . . . · ck | ci ∈ C}.
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Conjugacy classes and Thompson Conjecture

Notation

For a conjugacy class C , we denote
C k = {c1 · c2 · . . . · ck | ci ∈ C}.

Conjecture (Thompson)

Every FSG G has a conjugacy class C such that C 2 = G.

This implies that every element in G is a commutator (Ore
Conjecture – LOST Theorem). Known for An.

Theorem (Ellers-Gordeev, 1998)

Thompson conjecture holds for groups of Lie type over a finite field
Fq, provided q > 8.
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Probabilistic method:

Theorem (Shalev, 2008-2009)

For a random conjugacy class C of a FSG G we have C 3 = G,
and |C 2| = (1 − o(1))|G |.
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Probabilistic method:

Theorem (Shalev, 2008-2009)

For a random conjugacy class C of a FSG G we have C 3 = G,
and |C 2| = (1 − o(1))|G |.

Theorem (Larsen-Shalev-Tiep, 2011)

Every large FSG G has two conjugacy classes C1,C2 with
C1C2 ∪ {1} = G.

Theorem (Guralnick-Malle, 2012)

Every FSG G has two conjugacy classes C1,C2 with
C1C2 ∪ {1} = G.
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Words and Probability

Till now we only asked which elements lie in w (G ) and in w (G )k .
We can further ask about the distribution in which they occur.
Denote by Uw(G) the uniform distribution on w (G ).
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Words and Probability

Till now we only asked which elements lie in w (G ) and in w (G )k .
We can further ask about the distribution in which they occur.
Denote by Uw(G) the uniform distribution on w (G ).

Denote by U∗k
w(G) the distribution induced on w (G )k by a k-fold

product:

U∗k
w(G) (g) = Prob

{

g1g2 . . . gk = g

∣
∣
∣
∣

g1, . . . , gk distribute uniformly

and independently in w (G )

}

.

This is the distribution induced on G by a k-step random walk on
the (directed) Cayley graph of G with w (G ) as a generating set.
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Theorem (Larsen-Schul-Shalev, 2008-9)

For w 6= 1,
∥
∥
∥U∗2

w(G) − UG

∥
∥
∥

1

→ 0 as |G | → ∞ and G is FSG.

Thus the mixing time of the random walk on G with respect to
w (G ) as a generating set is 2.

Larsen-Shalev (2008) - alternating groups
Schul-Shalev (2009) - groups of Lie type.
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Theorem (Larsen-Schul-Shalev, 2008-9)

For w 6= 1,
∥
∥
∥U∗2

w(G) − UG

∥
∥
∥

1

→ 0 as |G | → ∞ and G is FSG.

Thus the mixing time of the random walk on G with respect to
w (G ) as a generating set is 2.

Larsen-Shalev (2008) - alternating groups
Schul-Shalev (2009) - groups of Lie type.

Corollary

If w 6= 1 then
|w(G)2|

|G | → 1 as |G | → ∞ (G FSG).
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Another natural distribution induced on G by a word map:

Pw ,G (g) = Prob

{

w (g1, . . . , gd ) = g

∣
∣
∣
∣

g1 . . . gd distribute uniformly

and independently in G

}

.

How small is Pw ,G (g)?
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For any word w 6= 1 there exists ǫ = ǫw > 0 such that for all large
FSG G and g ∈ G, we have Pw ,G (g) ≤ |G |−ǫ.

Best possible bound. Applications to Subgroup Growth and to
Representation Varieties.
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Pw ,G (g) = Prob

{

w (g1, . . . , gd ) = g

∣
∣
∣
∣

g1 . . . gd distribute uniformly

and independently in G

}

.

How small is Pw ,G (g)?

Theorem (Larsen-Shalev, 2012)

For any word w 6= 1 there exists ǫ = ǫw > 0 such that for all large
FSG G and g ∈ G, we have Pw ,G (g) ≤ |G |−ǫ.

Best possible bound. Applications to Subgroup Growth and to
Representation Varieties.
Pw ,G is a class function on G , hence a linear combination of
irreducible characters: Pw ,G = |G |−1

∑

χ
aχχ. (Fourier expansion)

Hence character methods are highly relevant.

14 / 1



Theorem (Garion-Shalev, 2009)

For FSG G,
∥
∥P[x ,y ],G − UG

∥
∥

1
→ 0 as |G | → ∞.

Sketch of proof:
(i)

∥
∥P[x ,y ],G − UG

∥
∥

1
≤

∑

χ 6=1
χ(1)−2.

(ii)
∑

χ 6=1
χ(1)−2 → 0 as |G | → ∞.

Application to Product Replacement Algorithm. Similar result for
x2y2.
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Theorem (Garion-Shalev, 2009)

For FSG G,
∥
∥P[x ,y ],G − UG

∥
∥

1
→ 0 as |G | → ∞.

Sketch of proof:
(i)

∥
∥P[x ,y ],G − UG

∥
∥

1
≤

∑

χ 6=1
χ(1)−2.

(ii)
∑

χ 6=1
χ(1)−2 → 0 as |G | → ∞.

Application to Product Replacement Algorithm. Similar result for
x2y2.

Theorem (Larsen-Shalev, 2013)

Fix n,m ≥ 1. Then for FSG G, ‖Pxmyn,G − UG‖1
→ 0 as

|G | → ∞.

Work in progress: Same for w1w2, where w1,w2 6= 1 are words in
disjoint variables.
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For w = x we have: Px ,G ≡ 1

|G | for every finite group G .

Theorem (Puder-Parzanchevski, 2011)

Pw ,G ≡ 1

|G | for every finite group G if and only if w is a primitive

word (there exists ϕ ∈ Aut (Fd ) with ϕ (w) = x).
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For w = x we have: Px ,G ≡ 1

|G | for every finite group G .

Theorem (Puder-Parzanchevski, 2011)

Pw ,G ≡ 1

|G | for every finite group G if and only if w is a primitive

word (there exists ϕ ∈ Aut (Fd ) with ϕ (w) = x).

For any w ∈ Fd and ϕ ∈ Aut (Fd ), Pw ,G ≡ Pϕ(w),G for every finite
group G .
(since ϕ (w) (h1, . . . , hd ) = w (g1, . . . , gd ), where hi = ϕ

−1 (xi ) (g1, . . . gd )).

Question

Given w ,w ′ ∈ Fd such that Pw ,G = Pw ′,G for every finite group G,
is there ϕ ∈ Aut (Fd ) with ϕ (w) = w ′?
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Extensions to Infinite Groups

G semisimple, simply connected, algebraic group over Q.
Consider the p-adic group G (Zp), and the arithmetic group G (Z).
Can we extend results from finite simple groups to infinite p-adic
and arithmetic groups?
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Can we extend results from finite simple groups to infinite p-adic
and arithmetic groups?

Theorem (Avni-Gelander-Kassabov-Shalev, 2013)

For any word w 6= 1 there exists a number Nw such that, if p ≥ Nw

is a prime, then w(G (Zp))
3 = G (Zp).

Condition on p necessary. Not true for w(G (Zp))
2.
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Extensions to Infinite Groups

G semisimple, simply connected, algebraic group over Q.
Consider the p-adic group G (Zp), and the arithmetic group G (Z).
Can we extend results from finite simple groups to infinite p-adic
and arithmetic groups?

Theorem (Avni-Gelander-Kassabov-Shalev, 2013)

For any word w 6= 1 there exists a number Nw such that, if p ≥ Nw

is a prime, then w(G (Zp))
3 = G (Zp).

Condition on p necessary. Not true for w(G (Zp))
2.

Theorem (Avni-Gelander-Kassabov-Shalev, 2013)

If n is a proper divisor of p − 1 then every element of PSLn(Zp) is
a commutator.
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Ore Conjecture for p-adic and arithmetic groups:

Question

Suppose n > 2. Is every element of SLn(Zp) a commutator?
Is every element of SLn(Z) a commutator?
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Ore Conjecture for p-adic and arithmetic groups:

Question

Suppose n > 2. Is every element of SLn(Zp) a commutator?
Is every element of SLn(Z) a commutator?

Thank you!
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