Words and Groups

Aner Shalev Hebrew University Jerusalem Erdős Centennial Conference Budapest 2013

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …のへで

• A classical result: every positive integer is a sum of 4 squares (Lagrange, 1770).

- A classical result: every positive integer is a sum of 4 squares (Lagrange, 1770).
- Waring problem: Is it true that every natural number is a sum of g (k) k-th powers, where g is a suitable function?

- A classical result: every positive integer is a sum of 4 squares (Lagrange, 1770).
- Waring problem: Is it true that every natural number is a sum of g (k) k-th powers, where g is a suitable function?
- Solutions for small k: g(2) = 4, g(3) = 9, g(4) = 19.

- A classical result: every positive integer is a sum of 4 squares (Lagrange, 1770).
- Waring problem: Is it true that every natural number is a sum of g (k) k-th powers, where g is a suitable function?
- Solutions for small k: g(2) = 4, g(3) = 9, g(4) = 19.
- In 1909 Hilbert solved the problem affirmatively.

- A classical result: every positive integer is a sum of 4 squares (Lagrange, 1770).
- Waring problem: Is it true that every natural number is a sum of g (k) k-th powers, where g is a suitable function?
- Solutions for small k: g(2) = 4, g(3) = 9, g(4) = 19.
- In 1909 Hilbert solved the problem affirmatively.
- Non-commutative analogues:
 Present group elements as short products of special elements: powers, or commutators, or values of a general word w, or elements of a given conjugacy class in the group.

Let w = w(x₁,...,x_d) be a non-trivial word, namely a non-identity element of the free group F_d on x₁,...,x_d.

- Let w = w(x₁,...,x_d) be a non-trivial word, namely a non-identity element of the free group F_d on x₁,...,x_d.
- Let G be a group. The word map w : G^d → G is defined by substituting group elements g₁,..., g_d in x₁,..., x_d respectively.

- Let w = w(x₁,...,x_d) be a non-trivial word, namely a non-identity element of the free group F_d on x₁,...,x_d.
- Let G be a group. The word map w : G^d → G is defined by substituting group elements g₁,..., g_d in x₁,..., x_d respectively.
- Let $w(G) \subseteq G$ denote the image of this map, and denote

$$w(G)^{k} = \{g_{1} \cdot g_{2} \cdot \ldots \cdot g_{k} \mid g_{i} \in w(G)\}.$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへの

3/1

Waring Type Problems in Finite Simple Groups

FSG = Finite (non-abelian) Simple Group. Assume CFSG (the Classification).

Theorem (Wilson, 1994)

Any element of a FSG is a product of c commutators, where c is some absolute constant. I.e., for $w = [x, y] = x^{-1}y^{-1}xy$, $w(G)^{c} = G$. (c unspecified)

Waring Type Problems in Finite Simple Groups

FSG = Finite (non-abelian) Simple Group. Assume CFSG (the Classification).

Theorem (Wilson, 1994)

Any element of a FSG is a product of c commutators, where c is some absolute constant. I.e., for $w = [x, y] = x^{-1}y^{-1}xy$, $w(G)^{c} = G$. (c unspecified)

Theorem (Martinez-Zelmanov, 1996, Saxl-Wilson, 1997)

Let $w = x^k$. There exist f(k) such that either w(G) = 1 or $w(G)^{f(k)} = G$ for any FSG G.

Waring Type Problems in Finite Simple Groups

FSG = Finite (non-abelian) Simple Group. Assume CFSG (the Classification).

Theorem (Wilson, 1994)

Any element of a FSG is a product of c commutators, where c is some absolute constant. I.e., for $w = [x, y] = x^{-1}y^{-1}xy$, $w(G)^{c} = G$. (c unspecified)

Theorem (Martinez-Zelmanov, 1996, Saxl-Wilson, 1997)

Let $w = x^k$. There exist f(k) such that either w(G) = 1 or $w(G)^{f(k)} = G$ for any FSG G.

Question

Are there extensions of these results to general words w?

Theorem (Liebeck-Shalev, 2001)

For any word w there exists a positive integer $c = c_w$ such that, for any FSG G, either w(G) = 1 or $w(G)^c = G$.

Kassabov-Nikolov, Lubotzky, 2012: c_w genuinely depends on w.

Theorem (Liebeck-Shalev, 2001)

For any word w there exists a positive integer $c = c_w$ such that, for any FSG G, either w(G) = 1 or $w(G)^c = G$.

Kassabov-Nikolov, Lubotzky, 2012: c_w genuinely depends on w. Surprise: For large G, c_w doesn't depend on w, and is very small:

Theorem (Liebeck-Shalev, 2001)

For any word w there exists a positive integer $c = c_w$ such that, for any FSG G, either w(G) = 1 or $w(G)^c = G$.

Kassabov-Nikolov, Lubotzky, 2012: c_w genuinely depends on w. Surprise: For large G, c_w doesn't depend on w, and is very small:

Theorem (Shalev, 2009)

For any $w \neq 1$, there exists a positive integer $N = N_w$ such that

 $w(G)^3 = G$

for every FSG G with $|G| \ge N$.

Proof uses probabilistic methods following Erdős New proof by Nikolov-Pyber in 2011 using Gowers' trick.

Sharper results for some cases

Theorem (Liebeck-O'Brien-Shalev-Tiep, 2012)

For $w = x^2 y^2$ and G any FSG,

w(G) = G.

Non-commutative analogue of Lagrange Theorem.

For
$$w = [x, y]$$
 and G any FSG,

w(G) = G.

Theorem (Liebeck-O'Brien-Shalev-Tiep, 2012)

For $w = x^2 y^2$ and G any FSG,

w(G) = G.

Non-commutative analogue of Lagrange Theorem.

However, various words w are not surjective on all FSG, or even on almost all of them. E.g. x^n in not surjective whenever $(n, |G|) \neq 1$, so x^2 is never surjective on a FSG.

Hence, if $w(G)^2 = G$ for every word $w \neq 1$ and all large FSG, this would be the best possible solution.

Hence, if $w(G)^2 = G$ for every word $w \neq 1$ and all large FSG, this would be the best possible solution.

Theorem (Larsen-Shalev-Tiep, 2011)

Given $w \neq 1$, there exists a constant $N = N_w$ such that

 $w(G)^2 = G$

for all FSG G of order at least N.

Proof involves Algebraic Geometry, Representation Theory and Probability

Hence, if $w(G)^2 = G$ for every word $w \neq 1$ and all large FSG, this would be the best possible solution.

Theorem (Larsen-Shalev-Tiep, 2011)

Given $w \neq 1$, there exists a constant $N = N_w$ such that

 $w(G)^2 = G$

for all FSG G of order at least N.

Proof involves Algebraic Geometry, Representation Theory and Probability

Corollary

Given $k \ge 1$ there exists N_k such that, if G is a FSG satisfying $|G| \ge N_k$, then every element of G is a product of two k-th powers.

Better solution to Waring problem in the non-commutative world!

• A word w is called a power word if there exists some integer r > 1 and a word u such that $w = u^r$.

- A word w is called a power word if there exists some integer r > 1 and a word u such that $w = u^r$.
- If w is a power word, we cannot hope that w will be onto all large FSG.

- A word w is called a power word if there exists some integer r > 1 and a word u such that $w = u^r$.
- If w is a power word, we cannot hope that w will be onto all large FSG.

Question

Are power words the only case?

- A word w is called a power word if there exists some integer r > 1 and a word u such that $w = u^r$.
- If w is a power word, we cannot hope that w will be onto all large FSG.

Question

Are power words the only case?

NO!

Example (Jambor-Liebeck-O'Brien, 2013)

 $w = x^2 [x^{-2}, y^{-1}]^k$ is not surjective on $PSL_2(q)$ for infinitely many q.

• Engel words are words of the form
$$w_n = \underbrace{[\dots [[[x, y], y], y], \dots, y]}_{n \text{ times}}.$$

Theorem (Bandman-Garion-Grunewald, 2010)

Let w_n be the n-th Engel word. Then $w_n(G) = G$ for $G = \text{PSL}_2(q)$ when $q \ge q_0(n)$.

• Engel words are words of the form
$$w_n = \underbrace{[\dots [[[x, y], y], y], \dots, y]}_{n \text{ times}}.$$

Theorem (Bandman-Garion-Grunewald, 2010)

Let w_n be the n-th Engel word. Then $w_n(G) = G$ for $G = \text{PSL}_2(q)$ when $q \ge q_0(n)$.

This, and computer experiments on other groups suggest:

Conjecture

Let G be a FSG. Let w_n be the n-th Engel word. Then $w_n(G) = G$.

Conjugacy classes and Thompson Conjecture

Notation

For a conjugacy class C, we denote $C^k = \{c_1 \cdot c_2 \cdot \ldots \cdot c_k \mid c_i \in C\}.$

Notation

For a conjugacy class C, we denote $C^k = \{c_1 \cdot c_2 \cdot \ldots \cdot c_k \mid c_i \in C\}.$

Conjecture (Thompson)

Every FSG G has a conjugacy class C such that $C^2 = G$.

This implies that every element in G is a commutator (Ore Conjecture – LOST Theorem). Known for A_n .

Notation

For a conjugacy class C, we denote $C^k = \{c_1 \cdot c_2 \cdot \ldots \cdot c_k \mid c_i \in C\}.$

Conjecture (Thompson)

Every FSG G has a conjugacy class C such that $C^2 = G$.

This implies that every element in G is a commutator (Ore Conjecture – LOST Theorem). Known for A_n .

Theorem (Ellers-Gordeev, 1998)

Thompson conjecture holds for groups of Lie type over a finite field F_q , provided q > 8.

Probabilistic method:

Theorem (Shalev, 2008-2009)

For a random conjugacy class C of a FSG G we have $C^3 = G$, and $|C^2| = (1 - o(1))|G|$. Probabilistic method:

Theorem (Shalev, 2008-2009)

For a random conjugacy class C of a FSG G we have $C^3 = G$, and $|C^2| = (1 - o(1))|G|$.

Theorem (Larsen-Shalev-Tiep, 2011)

Every large FSG G has two conjugacy classes C_1, C_2 with $C_1C_2 \cup \{1\} = G$.

Probabilistic method:

Theorem (Shalev, 2008-2009)

For a random conjugacy class C of a FSG G we have $C^3 = G$, and $|C^2| = (1 - o(1))|G|$.

Theorem (Larsen-Shalev-Tiep, 2011)

Every large FSG G has two conjugacy classes C_1, C_2 with $C_1C_2 \cup \{1\} = G$.

Theorem (Guralnick-Malle, 2012)

Every FSG G has two conjugacy classes C_1, C_2 with $C_1C_2 \cup \{1\} = G$.

Till now we only asked which elements lie in w(G) and in $w(G)^k$. We can further ask about the distribution in which they occur. Denote by $U_{w(G)}$ the uniform distribution on w(G). Till now we only asked which elements lie in w(G) and in $w(G)^k$. We can further ask about the distribution in which they occur. Denote by $U_{w(G)}$ the uniform distribution on w(G). Denote by $U_{w(G)}^{*k}$ the distribution induced on $w(G)^k$ by a k-fold product:

$$U_{w(G)}^{*k}(g) = \operatorname{Prob}\left\{g_{1}g_{2}\ldots g_{k} = g \middle| \begin{array}{c}g_{1},\ldots,g_{k} \text{ distribute uniformly}\\ \text{ and independently in } w(G)\end{array}\right\}$$

This is the distribution induced on G by a k-step random walk on the (directed) Cayley graph of G with w(G) as a generating set.

Theorem (Larsen-Schul-Shalev, 2008-9)

For $w \neq 1$, $\left\| U_{w(G)}^{*2} - U_G \right\|_1 \to 0$ as $|G| \to \infty$ and G is FSG. Thus the mixing time of the random walk on G with respect to w(G) as a generating set is 2.

Larsen-Shalev (2008) - alternating groups Schul-Shalev (2009) - groups of Lie type.

Theorem (Larsen-Schul-Shalev, 2008-9)

For $w \neq 1$, $\left\| U_{w(G)}^{*2} - U_G \right\|_1 \to 0$ as $|G| \to \infty$ and G is FSG. Thus the mixing time of the random walk on G with respect to w(G) as a generating set is 2.

Larsen-Shalev (2008) - alternating groups Schul-Shalev (2009) - groups of Lie type.

Corollary

If
$$w \neq 1$$
 then $\frac{|w(G)^2|}{|G|} \rightarrow 1$ as $|G| \rightarrow \infty$ (G FSG).

Another natural distribution induced on G by a word map:

$$P_{w,G}(g) = \operatorname{Prob} \left\{ w(g_1, \ldots, g_d) = g \middle| \begin{array}{c} g_1 \ldots g_d \text{ distribute uniformly} \\ \text{and independently in } G \end{array} \right\}.$$

How small is $P_{w,G}(g)$?

Another natural distribution induced on G by a word map:

$$P_{w,G}(g) = \operatorname{Prob} \left\{ w(g_1, \dots, g_d) = g \middle| \begin{array}{c} g_1 \dots g_d \text{ distribute uniformly} \\ \text{and independently in } G \end{array} \right\}$$

How small is $P_{w,G}(g)$?

Theorem (Larsen-Shalev, 2012)

For any word $w \neq 1$ there exists $\epsilon = \epsilon_w > 0$ such that for all large FSG G and $g \in G$, we have $P_{w,G}(g) \leq |G|^{-\epsilon}$.

Best possible bound. Applications to Subgroup Growth and to Representation Varieties.

Another natural distribution induced on G by a word map:

$$P_{w,G}(g) = \operatorname{Prob} \left\{ w(g_1, \dots, g_d) = g \middle| \begin{array}{c} g_1 \dots g_d \text{ distribute uniformly} \\ \text{and independently in } G \end{array} \right\}$$

How small is $P_{w,G}(g)$?

Theorem (Larsen-Shalev, 2012)

For any word $w \neq 1$ there exists $\epsilon = \epsilon_w > 0$ such that for all large FSG G and $g \in G$, we have $P_{w,G}(g) \leq |G|^{-\epsilon}$.

Best possible bound. Applications to Subgroup Growth and to Representation Varieties.

 $P_{w,G}$ is a class function on G, hence a linear combination of irreducible characters: $P_{w,G} = |G|^{-1} \sum_{\chi} a_{\chi} \chi$. (Fourier expansion) Hence character methods are highly relevant.

Theorem (Garion-Shalev, 2009)

For FSG G,
$$\left\|P_{[x,y],G} - U_G\right\|_1 \to 0$$
 as $|G| \to \infty$.

Sketch of proof: (i) $\|P_{[x,y],G} - U_G\|_1 \leq \sum_{\chi \neq 1} \chi(1)^{-2}$. (ii) $\sum_{\chi \neq 1} \chi(1)^{-2} \to 0$ as $|G| \to \infty$. Application to Product Replacement Algorithm. Similar result for x^2y^2 .

Theorem (Garion-Shalev, 2009)

For FSG G,
$$\left\| P_{[x,y],G} - U_G \right\|_1 \to 0$$
 as $|G| \to \infty$.

Sketch of proof: (i) $\|P_{[x,y],G} - U_G\|_1 \leq \sum_{\chi \neq 1} \chi(1)^{-2}$. (ii) $\sum_{\chi \neq 1} \chi(1)^{-2} \to 0$ as $|G| \to \infty$. Application to Product Replacement Algorithm. Similar result for x^2y^2 .

Theorem (Larsen-Shalev, 2013)

Fix
$$n, m \ge 1$$
. Then for FSG G, $\|P_{x^m y^n, G} - U_G\|_1 \to 0$ as $|G| \to \infty$.

Work in progress: Same for w_1w_2 , where $w_1, w_2 \neq 1$ are words in disjoint variables.

For w = x we have: $P_{x,G} \equiv \frac{1}{|G|}$ for every finite group G.

Theorem (Puder-Parzanchevski, 2011)

 $P_{w,G} \equiv \frac{1}{|G|}$ for every finite group G if and only if w is a primitive word (there exists $\varphi \in Aut(F_d)$ with $\varphi(w) = x$).

For w = x we have: $P_{x,G} \equiv \frac{1}{|G|}$ for every finite group G.

Theorem (Puder-Parzanchevski, 2011)

 $P_{w,G} \equiv \frac{1}{|G|}$ for every finite group G if and only if w is a primitive word (there exists $\varphi \in \operatorname{Aut}(F_d)$ with $\varphi(w) = x$).

For any $w \in F_d$ and $\varphi \in Aut(F_d)$, $P_{w,G} \equiv P_{\varphi(w),G}$ for every finite group G. (since $\varphi(w)(h_1, \ldots, h_d) = w(g_1, \ldots, g_d)$, where $h_i = \varphi^{-1}(x_i)(g_1, \ldots, g_d)$). For w = x we have: $P_{x,G} \equiv \frac{1}{|G|}$ for every finite group G.

Theorem (Puder-Parzanchevski, 2011)

 $P_{w,G} \equiv \frac{1}{|G|}$ for every finite group G if and only if w is a primitive word (there exists $\varphi \in \operatorname{Aut}(F_d)$ with $\varphi(w) = x$).

For any $w \in F_d$ and $\varphi \in Aut(F_d)$, $P_{w,G} \equiv P_{\varphi(w),G}$ for every finite group G. (since $\varphi(w)(h_1, \ldots, h_d) = w(g_1, \ldots, g_d)$, where $h_i = \varphi^{-1}(x_i)(g_1, \ldots, g_d)$).

Question

Given $w, w' \in F_d$ such that $P_{w,G} = P_{w',G}$ for every finite group G, is there $\varphi \in Aut(F_d)$ with $\varphi(w) = w'$?

G semisimple, simply connected, algebraic group over \mathbb{Q} . Consider the *p*-adic group $G(\mathbb{Z}_p)$, and the arithmetic group $G(\mathbb{Z})$. Can we extend results from finite simple groups to infinite *p*-adic and arithmetic groups? *G* semisimple, simply connected, algebraic group over \mathbb{Q} . Consider the *p*-adic group $G(\mathbb{Z}_p)$, and the arithmetic group $G(\mathbb{Z})$. Can we extend results from finite simple groups to infinite *p*-adic and arithmetic groups?

Theorem (Avni-Gelander-Kassabov-Shalev, 2013)

For any word $w \neq 1$ there exists a number N_w such that, if $p \ge N_w$ is a prime, then $w(G(\mathbb{Z}_p))^3 = G(\mathbb{Z}_p)$.

Condition on p necessary. Not true for $w(G(\mathbb{Z}_p))^2$.

G semisimple, simply connected, algebraic group over \mathbb{Q} . Consider the *p*-adic group $G(\mathbb{Z}_p)$, and the arithmetic group $G(\mathbb{Z})$. Can we extend results from finite simple groups to infinite *p*-adic and arithmetic groups?

Theorem (Avni-Gelander-Kassabov-Shalev, 2013)

For any word $w \neq 1$ there exists a number N_w such that, if $p \ge N_w$ is a prime, then $w(G(\mathbb{Z}_p))^3 = G(\mathbb{Z}_p)$.

Condition on p necessary. Not true for $w(G(\mathbb{Z}_p))^2$.

Theorem (Avni-Gelander-Kassabov-Shalev, 2013)

If n is a proper divisor of p-1 then every element of $PSL_n(\mathbb{Z}_p)$ is a commutator.

Ore Conjecture for *p*-adic and arithmetic groups:

Question

Suppose n > 2. Is every element of $SL_n(\mathbb{Z}_p)$ a commutator? Is every element of $SL_n(\mathbb{Z})$ a commutator?

Ore Conjecture for *p*-adic and arithmetic groups:

Question

Suppose n > 2. Is every element of $SL_n(\mathbb{Z}_p)$ a commutator? Is every element of $SL_n(\mathbb{Z})$ a commutator?

Thank you!