Words and Groups

Aner Shalev
Hebrew University Jerusalem
Erdős Centennial Conference
Budapest 2013

Classical Waring Type Problems

Additive Number Theory

- A classical result: every positive integer is a sum of 4 squares (Lagrange, 1770).

Classical Waring Type Problems

Additive Number Theory

- A classical result: every positive integer is a sum of 4 squares (Lagrange, 1770).
- Waring problem: Is it true that every natural number is a sum of $g(k) k$-th powers, where g is a suitable function?

Classical Waring Type Problems

Additive Number Theory

- A classical result: every positive integer is a sum of 4 squares (Lagrange, 1770).
- Waring problem: Is it true that every natural number is a sum of $g(k) k$-th powers, where g is a suitable function?
- Solutions for small $k: g(2)=4, g(3)=9, g(4)=19$.

Classical Waring Type Problems

Additive Number Theory

- A classical result: every positive integer is a sum of 4 squares (Lagrange, 1770).
- Waring problem: Is it true that every natural number is a sum of $g(k) k$-th powers, where g is a suitable function?
- Solutions for small $k: g(2)=4, g(3)=9, g(4)=19$.
- In 1909 Hilbert solved the problem affirmatively.

Classical Waring Type Problems

Additive Number Theory

- A classical result: every positive integer is a sum of 4 squares (Lagrange, 1770).
- Waring problem: Is it true that every natural number is a sum of $g(k) k$-th powers, where g is a suitable function?
- Solutions for small $k: g(2)=4, g(3)=9, g(4)=19$.
- In 1909 Hilbert solved the problem affirmatively.
- Non-commutative analogues:

Present group elements as short products of special elements: powers, or commutators, or values of a general word w, or elements of a given conjugacy class in the group.

Notation

- Let $w=w\left(x_{1}, \ldots, x_{d}\right)$ be a non-trivial word, namely a non-identity element of the free group F_{d} on x_{1}, \ldots, x_{d}.

Notation

- Let $w=w\left(x_{1}, \ldots, x_{d}\right)$ be a non-trivial word, namely a non-identity element of the free group F_{d} on x_{1}, \ldots, x_{d}.
- Let G be a group. The word map $w: G^{d} \rightarrow G$ is defined by substituting group elements g_{1}, \ldots, g_{d} in x_{1}, \ldots, x_{d} respectively.

Notation

- Let $w=w\left(x_{1}, \ldots, x_{d}\right)$ be a non-trivial word, namely a non-identity element of the free group F_{d} on x_{1}, \ldots, x_{d}.
- Let G be a group. The word map $w: G^{d} \rightarrow G$ is defined by substituting group elements g_{1}, \ldots, g_{d} in x_{1}, \ldots, x_{d} respectively.
- Let $w(G) \subseteq G$ denote the image of this map, and denote

$$
w(G)^{k}=\left\{g_{1} \cdot g_{2} \cdot \ldots \cdot g_{k} \mid g_{i} \in w(G)\right\}
$$

Waring Type Problems in Finite Simple Groups

FSG $=$ Finite (non-abelian) Simple Group.
Assume CFSG (the Classification).

Theorem (Wilson, 1994)

Any element of a FSG is a product of commutators, where c is some absolute constant. l.e., for $w=[x, y]=x^{-1} y^{-1} x y$, $w(G)^{c}=G .(c$ unspecified)

Waring Type Problems in Finite Simple Groups

FSG $=$ Finite (non-abelian) Simple Group.
Assume CFSG (the Classification).

Theorem (Wilson, 1994)

Any element of a FSG is a product of commutators, where c is some absolute constant. l.e., for $w=[x, y]=x^{-1} y^{-1} x y$, $w(G)^{c}=G .(c$ unspecified)

> Theorem (Martinez-Zelmanov, 1996, Saxl-Wilson, 1997)
> Let $w=x^{k}$. There exist $f(k)$ such that either $w(G)=1$ or $w(G)^{f(k)}=G$ for any FSG G.

Waring Type Problems in Finite Simple Groups

FSG $=$ Finite (non-abelian) Simple Group.
Assume CFSG (the Classification).

Theorem (Wilson, 1994)

Any element of a FSG is a product of commutators, where c is some absolute constant. I.e., for $w=[x, y]=x^{-1} y^{-1} x y$, $w(G)^{c}=G .(c$ unspecified)

> Theorem (Martinez-Zelmanov, 1996, Saxl-Wilson, 1997)
> Let $w=x^{k}$. There exist $f(k)$ such that either $w(G)=1$ or $w(G)^{f(k)}=G$ for any FSG G.

Question

Are there extensions of these results to general words w?

Theorem (Liebeck-Shalev, 2001)

For any word w there exists a positive integer $c=c_{w}$ such that, for any FSG G, either $w(G)=1$ or $w(G)^{c}=G$.

Kassabov-Nikolov, Lubotzky, 2012: c_{w} genuinely depends on w.

Theorem (Liebeck-Shalev, 2001)

For any word w there exists a positive integer $c=c_{w}$ such that, for any FSG G, either $w(G)=1$ or $w(G)^{c}=G$.

Kassabov-Nikolov, Lubotzky, 2012: c_{w} genuinely depends on w. Surprise: For large G, c_{w} doesn't depend on w, and is very small:

Theorem (Liebeck-Shalev, 2001)

For any word w there exists a positive integer $c=c_{w}$ such that, for any FSG G, either $w(G)=1$ or $w(G)^{c}=G$.

Kassabov-Nikolov, Lubotzky, 2012: c_{w} genuinely depends on w. Surprise: For large G, c_{w} doesn't depend on w, and is very small:

Theorem (Shalev, 2009)

For any $w \neq 1$, there exists a positive integer $N=N_{w}$ such that

$$
w(G)^{3}=G
$$

for every FSG G with $|G| \geq N$.
Proof uses probabilistic methods following Erdős
New proof by Nikolov-Pyber in 2011 using Gowers' trick.

Sharper results for some cases

Theorem (Liebeck-O'Brien-Shalev-Tiep, 2010: Ore Conjecture 1951)

For $w=[x, y]$ and G any FSG,

$$
w(G)=G .
$$

Sharper results for some cases

Theorem (Liebeck-O'Brien-Shalev-Tiep, 2010: Ore Conjecture 1951)

For $w=[x, y]$ and G any FSG,

$$
w(G)=G .
$$

Theorem (Liebeck-O'Brien-Shalev-Tiep, 2012)
For $w=x^{2} y^{2}$ and G any FSG,

$$
w(G)=G .
$$

Non-commutative analogue of Lagrange Theorem.

Theorem (Liebeck-O'Brien-Shalev-Tiep, 2010: Ore Conjecture 1951)

For $w=[x, y]$ and G any FSG,

$$
w(G)=G .
$$

Theorem (Liebeck-O'Brien-Shalev-Tiep, 2012)

For $w=x^{2} y^{2}$ and G any FSG,

$$
w(G)=G .
$$

Non-commutative analogue of Lagrange Theorem. However, various words w are not surjective on all FSG, or even on almost all of them. E.g. x^{n} in not surjective whenever $(n,|G|) \neq 1$, so x^{2} is never surjective on a FSG.

Hence, if $w(G)^{2}=G$ for every word $w \neq 1$ and all large FSG, this would be the best possible solution.

Hence, if $w(G)^{2}=G$ for every word $w \neq 1$ and all large FSG, this would be the best possible solution.

Theorem (Larsen-Shalev-Tiep, 2011)

Given $w \neq 1$, there exists a constant $N=N_{w}$ such that

$$
w(G)^{2}=G
$$

for all FSG G of order at least N.
Proof involves Algebraic Geometry, Representation Theory and Probability

Hence, if $w(G)^{2}=G$ for every word $w \neq 1$ and all large FSG, this would be the best possible solution.

Theorem (Larsen-Shalev-Tiep, 2011)

Given $w \neq 1$, there exists a constant $N=N_{w}$ such that

$$
w(G)^{2}=G
$$

for all FSG G of order at least N.
Proof involves Algebraic Geometry, Representation Theory and Probability

Corollary

Given $k \geq 1$ there exists N_{k} such that, if G is a FSG satisfying $|G| \geq N_{k}$, then every element of G is a product of two k-th powers.

Better solution to Waring problem in the non-commutative world!

- A word w is called a power word if there exists some integer $r>1$ and a word u such that $w=u^{r}$.
- A word w is called a power word if there exists some integer $r>1$ and a word u such that $w=u^{r}$.
- If w is a power word, we cannot hope that w will be onto all large FSG.
- A word w is called a power word if there exists some integer $r>1$ and a word u such that $w=u^{r}$.
- If w is a power word, we cannot hope that w will be onto all large FSG.

Question

Are power words the only case?

- A word w is called a power word if there exists some integer $r>1$ and a word u such that $w=u^{r}$.
- If w is a power word, we cannot hope that w will be onto all large FSG.

Question

Are power words the only case?
NO!

Example (Jambor-Liebeck-O'Brien, 2013)

$w=x^{2}\left[x^{-2}, y^{-1}\right]^{k}$ is not surjective on $\operatorname{PSL}_{2}(q)$ for infinitely many q.

- Engel words are words of the form

$$
w_{n}=\underbrace{[\ldots[[[x, y], y], y], \ldots, y]}_{n \text { times }} .
$$

- Engel words are words of the form

$$
w_{n}=\underbrace{[\ldots[[[x, y], y], y], \ldots, y]}_{n \text { times }} .
$$

Theorem (Bandman-Garion-Grunewald, 2010)

Let w_{n} be the n-th Engel word. Then $w_{n}(G)=G$ for $G=\operatorname{PSL}_{2}(q)$ when $q \geq q_{0}(n)$.

- Engel words are words of the form

$$
w_{n}=\underbrace{[\ldots[[[x, y], y], y], \ldots, y]}_{n \text { times }} .
$$

Theorem (Bandman-Garion-Grunewald, 2010)

Let w_{n} be the n-th Engel word. Then $w_{n}(G)=G$ for $G=\operatorname{PSL}_{2}(q)$ when $q \geq q_{0}(n)$.

This, and computer experiments on other groups suggest:
Conjecture
Let G be a FSG. Let w_{n} be the n-th Engel word. Then $w_{n}(G)=G$.

Conjugacy classes and Thompson Conjecture

Notation

For a conjugacy class C, we denote
$C^{k}=\left\{c_{1} \cdot c_{2} \cdot \ldots \cdot c_{k} \mid c_{i} \in C\right\}$.

Conjugacy classes and Thompson Conjecture

Notation

For a conjugacy class C, we denote
$C^{k}=\left\{c_{1} \cdot c_{2} \cdot \ldots \cdot c_{k} \mid c_{i} \in C\right\}$.

Conjecture (Thompson)

Every FSG G has a conjugacy class C such that $C^{2}=G$.
This implies that every element in G is a commutator (Ore Conjecture - LOST Theorem). Known for A_{n}.

Conjugacy classes and Thompson Conjecture

Notation

For a conjugacy class C, we denote
$C^{k}=\left\{c_{1} \cdot c_{2} \cdot \ldots \cdot c_{k} \mid c_{i} \in C\right\}$.

Conjecture (Thompson)

Every FSG G has a conjugacy class C such that $C^{2}=G$.
This implies that every element in G is a commutator (Ore Conjecture - LOST Theorem). Known for A_{n}.

Theorem (Ellers-Gordeev, 1998)

Thompson conjecture holds for groups of Lie type over a finite field F_{q}, provided $q>8$.

Probabilistic method:

Theorem (Shalev, 2008-2009)
For a random conjugacy class C of a $F S G ~ G$ we have $C^{3}=G$, and $\left|C^{2}\right|=(1-o(1))|G|$.

Probabilistic method:

Theorem (Shalev, 2008-2009)

For a random conjugacy class C of a $F S G ~ G$ we have $C^{3}=G$, and $\left|C^{2}\right|=(1-o(1))|G|$.

Theorem (Larsen-Shalev-Tiep, 2011)

Every large FSG G has two conjugacy classes C_{1}, C_{2} with $C_{1} C_{2} \cup\{1\}=G$.

Probabilistic method:

Theorem (Shalev, 2008-2009)

For a random conjugacy class C of a FSG G we have $C^{3}=G$, and $\left|C^{2}\right|=(1-o(1))|G|$.

Theorem (Larsen-Shalev-Tiep, 2011)

Every large FSG G has two conjugacy classes C_{1}, C_{2} with $C_{1} C_{2} \cup\{1\}=G$.

Theorem (Guralnick-Malle, 2012)

Every FSG G has two conjugacy classes C_{1}, C_{2} with $C_{1} C_{2} \cup\{1\}=G$.

Words and Probability

Till now we only asked which elements lie in $w(G)$ and in $w(G)^{k}$. We can further ask about the distribution in which they occur. Denote by $U_{w(G)}$ the uniform distribution on $w(G)$.

Words and Probability

Till now we only asked which elements lie in $w(G)$ and in $w(G)^{k}$.
We can further ask about the distribution in which they occur.
Denote by $U_{w(G)}$ the uniform distribution on $w(G)$.
Denote by $U_{w(G)}^{* k}$ the distribution induced on $w(G)^{k}$ by a k-fold product:

$$
U_{w(G)}^{* k}(g)=\operatorname{Prob}\left\{\begin{array}{l|l}
g_{1} g_{2} \ldots g_{k}=g & \begin{array}{c}
g_{1}, \ldots, g_{k} \text { distribute uniformly } \\
\text { and independently in } w(G)
\end{array}
\end{array}\right\}
$$

This is the distribution induced on G by a k-step random walk on the (directed) Cayley graph of G with $w(G)$ as a generating set.

Theorem (Larsen-Schul-Shalev, 2008-9)

For $w \neq 1,\left\|U_{w(G)}^{* 2}-U_{G}\right\|_{1} \rightarrow 0$ as $|G| \rightarrow \infty$ and G is FSG.
Thus the mixing time of the random walk on G with respect to $w(G)$ as a generating set is 2 .

Larsen-Shalev (2008) - alternating groups
Schul-Shalev (2009) - groups of Lie type.

Theorem (Larsen-Schul-Shalev, 2008-9)

For $w \neq 1,\left\|U_{w(G)}^{* 2}-U_{G}\right\|_{1} \rightarrow 0$ as $|G| \rightarrow \infty$ and G is FSG.
Thus the mixing time of the random walk on G with respect to $w(G)$ as a generating set is 2 .

Larsen-Shalev (2008) - alternating groups
Schul-Shalev (2009) - groups of Lie type.

Corollary

If $w \neq 1$ then $\frac{\left|w(G)^{2}\right|}{|G|} \rightarrow 1$ as $|G| \rightarrow \infty$ (G FSG).

Another natural distribution induced on G by a word map:
$P_{w, G}(g)=\operatorname{Prob}\left\{\begin{array}{l|l}w\left(g_{1}, \ldots, g_{d}\right)=g & \begin{array}{c}g_{1} \ldots g_{d} \text { distribute uniformly } \\ \text { and independently in } G\end{array}\end{array}\right\}$.
How small is $P_{w, G}(g)$?

Another natural distribution induced on G by a word map:
$P_{w, G}(g)=\operatorname{Prob}\left\{\begin{array}{l|l}w\left(g_{1}, \ldots, g_{d}\right)=g & \begin{array}{c}g_{1} \ldots g_{d} \text { distribute uniformly } \\ \text { and independently in } G\end{array}\end{array}\right\}$.
How small is $P_{w, G}(g)$?

Theorem (Larsen-Shalev, 2012)

For any word $w \neq 1$ there exists $\epsilon=\epsilon_{w}>0$ such that for all large $F S G G$ and $g \in G$, we have $P_{w, G}(g) \leq|G|^{-\epsilon}$.

Best possible bound. Applications to Subgroup Growth and to Representation Varieties.

Another natural distribution induced on G by a word map:
$P_{w, G}(g)=\operatorname{Prob}\left\{\begin{array}{l|l}w\left(g_{1}, \ldots, g_{d}\right)=g & \begin{array}{c}g_{1} \ldots g_{d} \text { distribute uniformly } \\ \text { and independently in } G\end{array}\end{array}\right\}$.
How small is $P_{w, G}(g)$?

Theorem (Larsen-Shalev, 2012)

For any word $w \neq 1$ there exists $\epsilon=\epsilon_{w}>0$ such that for all large $F S G G$ and $g \in G$, we have $P_{w, G}(g) \leq|G|^{-\epsilon}$.

Best possible bound. Applications to Subgroup Growth and to Representation Varieties.
$P_{w, G}$ is a class function on G, hence a linear combination of irreducible characters: $P_{w, G}=|G|^{-1} \sum_{\chi} a_{\chi} \chi$. (Fourier expansion) Hence character methods are highly relevant.

Theorem (Garion-Shalev, 2009)

For FSG $G,\left\|P_{[x, y], G}-U_{G}\right\|_{1} \rightarrow 0$ as $|G| \rightarrow \infty$.
Sketch of proof:
(i) $\left\|P_{[x, y], G}-U_{G}\right\|_{1} \leq \sum_{\chi \neq 1} \chi(1)^{-2}$.
(ii) $\sum_{\chi \neq 1} \chi(1)^{-2} \rightarrow 0$ as $|G| \rightarrow \infty$.

Application to Product Replacement Algorithm. Similar result for $x^{2} y^{2}$.

Theorem (Garion-Shalev, 2009)

For FSG $G,\left\|P_{[x, y], G}-U_{G}\right\|_{1} \rightarrow 0$ as $|G| \rightarrow \infty$.
Sketch of proof:
(i) $\left\|P_{[x, y], G}-U_{G}\right\|_{1} \leq \sum_{\chi \neq 1} \chi(1)^{-2}$.
(ii) $\sum_{\chi \neq 1} \chi(1)^{-2} \rightarrow 0$ as $|G| \rightarrow \infty$.

Application to Product Replacement Algorithm. Similar result for $x^{2} y^{2}$.

Theorem (Larsen-Shalev, 2013)

Fix $n, m \geq 1$. Then for FSG $G,\left\|P_{x^{m} y^{n}, G}-U_{G}\right\|_{1} \rightarrow 0$ as $|G| \rightarrow \infty$.

Work in progress: Same for $w_{1} w_{2}$, where $w_{1}, w_{2} \neq 1$ are words in disjoint variables.

For $w=x$ we have: $P_{x, G} \equiv \frac{1}{|G|}$ for every finite group G.
Theorem (Puder-Parzanchevski, 2011)
$P_{w, G} \equiv \frac{1}{|G|}$ for every finite group G if and only if w is a primitive word (there exists $\varphi \in \operatorname{Aut}\left(F_{d}\right)$ with $\varphi(w)=x$).

For $w=x$ we have: $P_{x, G} \equiv \frac{1}{|G|}$ for every finite group G.

Theorem (Puder-Parzanchevski, 2011)

$P_{w, G} \equiv \frac{1}{|G|}$ for every finite group G if and only if w is a primitive word (there exists $\varphi \in \operatorname{Aut}\left(F_{d}\right)$ with $\varphi(w)=x$).

For any $w \in F_{d}$ and $\varphi \in \operatorname{Aut}\left(F_{d}\right), P_{w, G} \equiv P_{\varphi(w), G}$ for every finite group G.
(since $\varphi(w)\left(h_{1}, \ldots, h_{d}\right)=w\left(g_{1}, \ldots, g_{d}\right)$, where $\left.h_{i}=\varphi^{-1}\left(x_{i}\right)\left(g_{1}, \ldots g_{d}\right)\right)$.

For $w=x$ we have: $P_{x, G} \equiv \frac{1}{|G|}$ for every finite group G.

Theorem (Puder-Parzanchevski, 2011)

$P_{w, G} \equiv \frac{1}{|G|}$ for every finite group G if and only if w is a primitive word (there exists $\varphi \in \operatorname{Aut}\left(F_{d}\right)$ with $\varphi(w)=x$).

For any $w \in F_{d}$ and $\varphi \in \operatorname{Aut}\left(F_{d}\right), P_{w, G} \equiv P_{\varphi(w), G}$ for every finite group G.
(since $\varphi(w)\left(h_{1}, \ldots, h_{d}\right)=w\left(g_{1}, \ldots, g_{d}\right)$, where $\left.h_{i}=\varphi^{-1}\left(x_{i}\right)\left(g_{1}, \ldots g_{d}\right)\right)$.

Question

Given $w, w^{\prime} \in F_{d}$ such that $P_{w, G}=P_{w^{\prime}, G}$ for every finite group G, is there $\varphi \in \operatorname{Aut}\left(F_{d}\right)$ with $\varphi(w)=w^{\prime}$?

Extensions to Infinite Groups

G semisimple, simply connected, algebraic group over \mathbb{Q}.
Consider the p-adic group $G\left(\mathbb{Z}_{p}\right)$, and the arithmetic group $G(\mathbb{Z})$. Can we extend results from finite simple groups to infinite p-adic and arithmetic groups?

Extensions to Infinite Groups

G semisimple, simply connected, algebraic group over \mathbb{Q}.
Consider the p-adic group $G\left(\mathbb{Z}_{p}\right)$, and the arithmetic group $G(\mathbb{Z})$.
Can we extend results from finite simple groups to infinite p-adic and arithmetic groups?

Theorem (Avni-Gelander-Kassabov-Shalev, 2013)

For any word $w \neq 1$ there exists a number N_{w} such that, if $p \geq N_{w}$ is a prime, then $w\left(G\left(\mathbb{Z}_{p}\right)\right)^{3}=G\left(\mathbb{Z}_{p}\right)$.

Condition on p necessary. Not true for $w\left(G\left(\mathbb{Z}_{p}\right)\right)^{2}$.

Extensions to Infinite Groups

G semisimple, simply connected, algebraic group over \mathbb{Q}.
Consider the p-adic group $G\left(\mathbb{Z}_{p}\right)$, and the arithmetic group $G(\mathbb{Z})$.
Can we extend results from finite simple groups to infinite p-adic and arithmetic groups?

Theorem (Avni-Gelander-Kassabov-Shalev, 2013)

For any word $w \neq 1$ there exists a number N_{w} such that, if $p \geq N_{w}$ is a prime, then $w\left(G\left(\mathbb{Z}_{p}\right)\right)^{3}=G\left(\mathbb{Z}_{p}\right)$.

Condition on p necessary. Not true for $w\left(G\left(\mathbb{Z}_{p}\right)\right)^{2}$.

Theorem (Avni-Gelander-Kassabov-Shalev, 2013)

If n is a proper divisor of $p-1$ then every element of $\mathrm{PSL}_{n}\left(\mathbb{Z}_{p}\right)$ is
a commutator.

Ore Conjecture for p-adic and arithmetic groups:

Question

Suppose $n>2$. Is every element of $\mathrm{SL}_{n}\left(\mathbb{Z}_{p}\right)$ a commutator? Is every element of $\mathrm{SL}_{n}(\mathbb{Z})$ a commutator?

Ore Conjecture for p-adic and arithmetic groups:

Question

Suppose $n>2$. Is every element of $\mathrm{SL}_{n}\left(\mathbb{Z}_{p}\right)$ a commutator? Is every element of $\mathrm{SL}_{n}(\mathbb{Z})$ a commutator?

Thank you!

