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Classical Waring Type Problems

Additive Number Theory

@ A classical result: every positive integer is a sum of 4 squares
(Lagrange, 1770).

@ Waring problem: Is it true that every natural number is a sum
of g (k) k-th powers, where g is a suitable function?

@ Solutions for small k: g(2) =4, g(3) =9, g (4) = 19.
@ In 1909 Hilbert solved the problem affirmatively.

@ Non-commutative analogues:
Present group elements as short products of special elements:
powers, or commutators, or values of a general word w, or
elements of a given conjugacy class in the group.
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@ Let w = w(xy,...,xq) be a non-trivial word, namely a
non-identity element of the free group Fy on xq, ..., xy4.
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respectively.
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@ Let w = w(xy,...,xq) be a non-trivial word, namely a
non-identity element of the free group Fy on xq, ..., xy4.

o Let G be a group. The word map w : G¢ — G is defined by
substituting group elements g1, ..., g4 in x1,...,Xyg
respectively.

@ Let w(G) C G denote the image of this map, and denote

W(G)k:{g1~g2-...~gk|g,-€W(G)}.
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Waring Type Problems in Finite Simple Groups

FSG = Finite (non-abelian) Simple Group.
Assume CFSG (the Classification).

Theorem (Wilson, 1994)

Any element of a FSG is a product of ¢ commutators, where c is
some absolute constant. l.e., for w = [x,y] = x "1y~ !xy,
w(G)“ = G . (c unspecified)
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Theorem (Wilson, 1994)

Any element of a FSG is a product of ¢ commutators, where c is
some absolute constant. l.e., for w = [x,y] = x "1y lxy,
w(G)“ = G . (c unspecified)

Theorem (Martinez-Zelmanov, 1996, Saxl-Wilson, 1997)

Let w = x*. There exist f (k) such that either w (G) =1 or
w (G) ) = G for any FSG G.
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Waring Type Problems in Finite Simple Groups

FSG = Finite (non-abelian) Simple Group.
Assume CFSG (the Classification).

Theorem (Wilson, 1994)

Any element of a FSG is a product of ¢ commutators, where c is
some absolute constant. l.e., for w = [x,y] = x "1y lxy,
w(G)“ = G . (c unspecified)

Theorem (Martinez-Zelmanov, 1996, Saxl-Wilson, 1997)

Let w = x*. There exist f (k) such that either w (G) =1 or
w (G) ) = G for any FSG G.

Are there extensions of these results to general words w?
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Theorem (Liebeck-Shalev, 2001)

For any word w there exists a positive integer ¢ = ¢,, such that, for
any FSG G, either w(G) =1 or w (G)" = G.

Kassabov-Nikolov, Lubotzky, 2012: ¢, genuinely depends on w.
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Theorem (Liebeck-Shalev, 2001)

For any word w there exists a positive integer ¢ = ¢,, such that, for
any FSG G, either w(G) =1 or w (G)" = G.

Kassabov-Nikolov, Lubotzky, 2012: ¢, genuinely depends on w.
For large G, ¢, doesn’t depend on w, and is very small:

Theorem (Shalev, 2009)

For any w # 1, there exists a positive integer N = N,, such that
w(G)Y =G

for every FSG G with |G| > N.

Proof uses probabilistic methods following Erdés
New proof by Nikolov-Pyber in 2011 using Gowers' trick.
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Sharper results for some cases

Theorem (Liebeck-O'Brien-Shalev-Tiep, 2010: Ore Conjecture

1951)
For w =[x, y] and G any FSG,

w(G) = G.
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Sharper results for some cases

Theorem (Liebeck-O'Brien-Shalev-Tiep, 2010: Ore Conjecture

1951)
For w =[x, y] and G any FSG,

w(G) = G.

Theorem (Liebeck-O'Brien-Shalev-Tiep, 2012)

For w = x?y? and G any FSG,

w(G) = G.

Non-commutative analogue of Lagrange Theorem.
However, various words w are not surjective on all FSG, or even on
almost all of them. E.g. x” in not surjective whenever (n, |G|) # 1,

so x? is never surjective on a FSG.
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Hence, if w (G)? = G for every word w # 1 and all large FSG, this
would be the best possible solution.
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Hence, if W(G)2 = G for every word w # 1 and all large FSG, this
would be the best possible solution.

Theorem (Larsen-Shalev-Tiep, 2011)

Given w # 1, there exists a constant N = N, such that
w(G)? =G

for all FSG G of order at least N.

Proof involves Algebraic Geometry, Representation Theory and
Probability
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Hence, if W(G)2 = G for every word w # 1 and all large FSG, this
would be the best possible solution.

Theorem (Larsen-Shalev-Tiep, 2011)

Given w # 1, there exists a constant N = N, such that
w(G)? =G

for all FSG G of order at least N.

Proof involves Algebraic Geometry, Representation Theory and
Probability

Given k > 1 there exists Nj such that, if G is a FSG satisfying
|G| > N, then every element of G is a product of two k-th powers.
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@ A word w is called a power word if there exists some integer
r > 1 and a word v such that w = u".
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o If wis a power word, we cannot hope that w will be onto all
large FSG.
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@ A word w is called a power word if there exists some integer
r > 1 and a word u such that w = u".

o If wis a power word, we cannot hope that w will be onto all
large FSG.

Are power words the only case?

NOI
Example (Jambor-Liebeck-O'Brien, 2013)

w = x° [x_2,y_1]k is not surjective on PSL; (q) for infinitely
many q.
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@ Engel words are words of the form
wo =[x,y ¥yl .yl

n times
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@ Engel words are words of the form
Wn = [[[[Xay]ay]vy]vv.y]

n times

Theorem (Bandman-Garion-Grunewald, 2010)

Let wy, be the n-th Engel word. Then w, (G) = G for
G = PSLy(q) when g > qo (n).
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@ Engel words are words of the form
Wn = [[[[Xay]ay]vy]vv.y]

n times

Theorem (Bandman-Garion-Grunewald, 2010)

Let wy,, be the n-th Engel word. Then w, (G) = G for
G = PSLy(q) when g > qo (n).

This, and computer experiments on other groups suggest:

Let G be a FSG. Let wy, be the n-th Engel word. Then w, (G) = G.
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Conjugacy classes and Thompson Conjecture

For a conjugacy class C, we denote
Ck:{cl-q-...-ck | ci € C}.
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Conjugacy classes and Thompson Conjecture

For a conjugacy class C, we denote
Ck:{cl-q-...-ck | ci € C}.

Conjecture (Thompson)
Every FSG G has a conjugacy class C such that C> = G.

This implies that every element in G is a commutator (Ore
Conjecture — LOST Theorem). Known for A,,.

Theorem (Ellers-Gordeev, 1998)

Thompson conjecture holds for groups of Lie type over a finite field
Fq. provided q > 8.
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Probabilistic method:
Theorem (Shalev, 2008-2009)

For a random conjugacy class C of a FSG G we have C3 = G,
and |C?| = (1 — o(1))|G|.
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Probabilistic method:
Theorem (Shalev, 2008-2009)

For a random conjugacy class C of a FSG G we have C3 = G,
and |C?| = (1 — o(1))|G|.

\

Theorem (Larsen-Shalev-Tiep, 2011)

Every large FSG G has two conjugacy classes Cy, Cy with
GG U {1} = G.

A\

Theorem (Guralnick-Malle, 2012)

Every FSG G has two conjugacy classes Cy, C; with
GGuU {1} = G.

N,
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Words and Probability

Till now we only asked which elements lie in w (G) and in w (G)¥.

We can further ask about the distribution in which they occur.
Denote by U,,(¢) the uniform distribution on w (G).
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Words and Probability

Till now we only asked which elements lie in w (G) and in w (G)¥.
We can further ask about the distribution in which they occur.
Denote by U,,(¢) the uniform distribution on w (G).

Denote by U"fV’EG) the distribution induced on w (G)* by a k-fold
product:

i (6) = Probd gigr.. g =& g1, - - -, &k distribute uniformly .
w(G) and independently in w (G)

This is the distribution induced on G by a k-step random walk on
the (directed) Cayley graph of G with w (G) as a generating set.
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Theorem (Larsen-Schul-Shalev, 2008-9)

Forw # 1, ’U;"/%G) - UGH1 — 0 as |G| — oo and G is FSG.

Thus the mixing time of the random walk on G with respect to
w (G) as a generating set is 2.

Larsen-Shalev (2008) - alternating groups
Schul-Shalev (2009) - groups of Lie type.
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Theorem (Larsen-Schul-Shalev, 2008-9)

Forw # 1, ’U;/%G) - UGH1 — 0 as |G| — oo and G is FSG.
Thus the mixing time of the random walk on G with respect to
w (G) as a generating set is 2.

Larsen-Shalev (2008) - alternating groups
Schul-Shalev (2009) - groups of Lie type.

| A

Corollary

2
Fw #1 then 9] 1 a5 6] - o0 (G FSG).
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Another natural distribution induced on G by a word map:

and independently in G

... g4 distribute uniformly
Pw.c (g) = Prob {W(gla e =g| B8

How small is P, (g)?
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Another natural distribution induced on G by a word map:

Puw.c(g) = Prob{W(glv---,gd) =g

g1 - - - &4 distribute uniformly
and independently in G

How small is P, (g)?

Theorem (Larsen-Shalev, 2012)

For any word w # 1 there exists ¢ = €,, > 0 such that for all large
FSG G and g € G, we have P, c(g) < |G|~

. Applications to Subgroup Growth and to
Representation Varieties.
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Another natural distribution induced on G by a word map:

... g4 distribute uniforml
Pw.c(g)=Pr0b{W(g1,--.,gd)=g o8 '

and independently in G

How small is P, (g)?

Theorem (Larsen-Shalev, 2012)

For any word w # 1 there exists ¢ = €,, > 0 such that for all large
FSG G and g € G, we have P, c(g) < |G|

. Applications to Subgroup Growth and to
Representation Varieties.
Py G is a class function on G, hence a linear combination of
. . . o 71
irreducible characters: Py, ¢ = |G| >, ayx.
Hence character methods are highly relevant.
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Theorem (Garion-Shalev, 2009)
For FSG G,

Pixyl,c — Ugll, = 0 as |G| — oo.

Sketch of proof:

(') HP[X,y],G - Ung <Dt x(1)72.

(i) >y X(1)7° — 0 as |G| — co.

Application to Product Replacement Algorithm. Similar result for
x°y2.
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Theorem (Garion-Shalev, 2009)
For FSG G,

FﬁXLyL(;‘_'chlll — 0 as |G| — .

Sketch of proof:

(i) || Preytc = Uslly < 2ppen x(1) 72

(i) 321 X(1)72 = 0 as |G| = oo.

Application to . Similar result for
x2y?.

Theorem (Larsen-Shalev, 2013)

Fix n,m > 1. Then for FSG G,
|G| — 0.

meyn7G — UG||1 — 0 as

Work in progress: Same for wiws, where wy, wy # 1 are words in
disjoint variables.

15/1



For w = x we have: P, ¢ = % for every finite group G.
/ |G

Theorem (Puder-Parzanchevski, 2011)

Pwc = ﬁ for every finite group G if and only if w is a primitive
word (there exists ¢ € Aut (Fy) with ¢ (w) = x).
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Theorem (Puder-Parzanchevski, 2011)

Pwc = ﬁ for every finite group G if and only if w is a primitive
word (there exists ¢ € Aut (Fy) with ¢ (w) = x).

For any w € Fy and ¢ € Aut (Fy), Pw.c = P,(w),c for every finite
group G.
(since @ (w) (hy,. .., hg) = w(gt,...,gq4), where hi = o™ (x) (g1, - - - &4))-
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For w = x we have: P, ¢ = % for every finite group G.
, |G]

Theorem (Puder-Parzanchevski, 2011)

Pwc = ﬁ for every finite group G if and only if w is a primitive
word (there exists ¢ € Aut (Fy) with ¢ (w) = x).

For any w € Fy and ¢ € Aut (Fy), Pw.c = P,(w),c for every finite
group G.
(since @ (w) (hy,. .., hg) = w(gt,...,gq4), where hi = o™ (x) (g1, - - - &4))-

Given w,w' € Fy4 such that P, ¢ = P, ¢ for every finite group G,
is there ¢ € Aut (Fy) with ¢ (w) = w'?
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Extensions to Infinite Groups

G semisimple, simply connected, algebraic group over QQ.

Consider the p-adic group G(Zp), and the arithmetic group G(Z).
Can we extend results from finite simple groups to infinite p-adic
and arithmetic groups?
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G semisimple, simply connected, algebraic group over QQ.
Consider the p-adic group G(Zp), and the arithmetic group G(Z).
Can we extend results from finite simple groups to infinite p-adic
and arithmetic groups?

Theorem (Avni-Gelander-Kassabov-Shalev, 2013)

For any word w # 1 there exists a number N,, such that, if p > N,
is a prime, then w(G(Zp))? = G(Zp).

Condition on p necessary. Not true for w(G(Z,)).
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Extensions to Infinite Groups

G semisimple, simply connected, algebraic group over QQ.
Consider the p-adic group G(Zp), and the arithmetic group G(Z).
Can we extend results from finite simple groups to infinite p-adic
and arithmetic groups?

Theorem (Avni-Gelander-Kassabov-Shalev, 2013)

For any word w # 1 there exists a number N,, such that, if p > N,
is a prime, then w(G(Zp))? = G(Zp).

Condition on p necessary. Not true for w(G(Z,)).

Theorem (Avni-Gelander-Kassabov-Shalev, 2013)

If n is a proper divisor of p — 1 then every element of PSL,(Z,) is
a commutator.

17/1



Ore Conjecture for p-adic and arithmetic groups:

Suppose n > 2. Is every element of SL,(Z,) a commutator?
Is every element of SL,(7Z) a commutator?
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Ore Conjecture for p-adic and arithmetic groups:

Suppose n > 2. Is every element of SL,(Z,) a commutator?
Is every element of SL,(7Z) a commutator?

Thank youl!
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