Origami and the product replacement algorithm

Jan-Christoph Schlage-Puchta Gabriela Weitze-Schmitthüsen

University Rostock
KIT Karlsruhe
4.7.2013

Origami

A translational surface is a two dimensional manifold which has an atlas, such that changes of charts are translations.
An Origami of size d is

- A d-sheated covering of a puctured Torus;
- Two permutations in S_{d} generating a transitive group
- A set of d squares, glued together along corresponding sides, such that the resulting surface is connected
Origami give translational surfaces/higher genus curves which are not much more complicated then the torus/elliptic curves.

The action of $\mathrm{Sl}_{2}(\mathbb{R})$

An origami defines a map from $\mathrm{Sl}_{2}(\mathbb{R}) / \mathrm{Sl}_{2}(\mathbb{Z})$ to the space of curves with given topological data.

The action of $\mathrm{Sl}_{2}(\mathbb{Z})$

((12), (134))
((12), 234))
$\mathrm{Sl}_{2}(\mathbb{Z})$ acts on the set of origami. The stabilizer of an origami is the Veechgroup of the origami. The orbit of this action corresponds to different descriptions of isomorphic curves.

The product replacement algorithm

Problem: Given a finite group G, choose elements from G at random.
Application: Las-Vegas-algorithms
Define random walk on

$$
X=\left\{\left(x_{1}, \ldots, x_{k}\right) \in G^{k} \mid\left\langle x_{1}, \ldots, x_{k}\right\rangle=G\right\}
$$

by choosing $i \neq j$ at random, and replacing x_{i} by $x_{i} x_{j}$.
Experimentally the distribution quickly converges to something close to an equidistribution, however, proving anything is quiet difficult.

Product replacement and Origami

Let $\pi, \sigma \in S_{d}$ be permutations generating a transitive permutation groups.

- (π, σ) defines an origami, which defines an orbit of the action under $\mathrm{Sl}_{2}(\mathbb{Z})$;
- (π, σ) defines a generating pair of a transitive subgroup of S_{d}, which defines a connected component of the product replacement algorithm.
These notions coincide:

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \hat{=}(x, y) \mapsto(x y, y), \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \hat{=}(x, y) \mapsto(y, x)
$$

Reason: $\operatorname{Out}\left(F_{2}\right) \cong \operatorname{Sl}_{2}(\mathbb{Z})$

Motivation

Groups help Curves:
Finite group theory well developed, Combinatorics allows for easy constructions
Curves help Groups:
Curves have additional structure, might yield non-obvious invariants

Curves with many automorphisms

Theorem (Hurwitz, 1896)

(1) A curve of genus $g \geq 2$ has at most 84($g-1$) automorphisms.
(2) There exists a curve of genus $g \geq 2$ with $84(g-1)$
automorphisms if and only if there exists a (2,3,7)-generated group of order 84($g-1$).

Theorem (S-P\&W-S, 2013)

(1) A translational surface of genus $g \geq 2$ has at most $4(g-1)$ automorphisms.
(2) If C is a translational surface with maximal automorphism group then C is a branched covering of an elliptic curves with all branching orders 1 or 2;
(3) There exists a translational surface of genus $g \geq 2$ with $4(g-1)$ automorphisms if and only if $(g-1,6)>1$.

Proof:

$p: X \rightarrow X / \operatorname{Aut}(X)$ defines a normal covering. Since p is normal, all branching orders over some point are equal. Computation using Riemann-Hurwitz-formula yields that $X / \operatorname{Aut}(X)$ has genus 1 , one branch point, and all branching orders equal 2. Hence X is an origami.
Branch points of X correspond to cycles of $[\pi, \sigma]$. Hence translational surfaces with maximal automorphism group correspond to normal subgroups $N \triangleleft F_{2}$ such that $F_{2} / N=\langle a, b\rangle$ where $[a, b]$ has order 2.

Proof, continued:

Theorem

There exists a 2-generated group $G=\langle a, b\rangle$ of order n, such that $[a, b]$ has order 2 , if and only if n is divisible by 8 or 12 .

Proof.

Existence: Direct product of cyclic groups with generalized quaternion groups or A_{4}.
Necessity: If neither by 8 nor 12 divide $|G|$, then G is solvable. Let H be a 2^{\prime}-Hall group of G. If $4 \nmid|G|$, then H is normal, thus $G^{\prime} \leq H$, hence $\left|G^{\prime}\right|$ is odd.
If $(|G|, 24)=4$, then $\left(G: N_{G}(H)\right)$ divides $(G: H)=4$.
Counting orbits of the action of H on its conjugates yields: $\left(G: N_{G}(H)\right)-1$ is non-negative linear combination of prime divisors of $|H|$. Hence H is normal, and $\left|G^{\prime}\right|$ is odd.

Congruence subgroups

A principal congruence subgroup of $\mathrm{Sl}_{2}(\mathbb{Z})$ is the kernel of the map $\mathrm{Sl}_{2}(\mathbb{Z}) \rightarrow \mathrm{Sl}_{2}(\mathbb{Z} / q \mathbb{Z})$ for some integer q. A congruence subgroup is a subgroup containing some principal congruence subgroup. A subgroup Δ is totally non-congruence, if $\Delta \rightarrow \mathrm{Sl}_{2}(\mathbb{Z} / q \mathbb{Z})$ is surjective for all q.
Congruence subgroups are rare: There are $\mathcal{O}\left(n^{c \log n}\right)$ congruence subgroups of index n, compared with $n!^{1 / 6+o(1)}$ subgroups.
But: Veechgroups are not random subgroups, constructions yield congruence subgroups.

Theorem (Hubert-Lelièvre)

There exists precisely one origami with genus 2 and one branch point of order 2, whose Veechgroup is congruence.

Theorem (S-P\&W-S)

For any given branching data there exists an origami realizing these branching orders, which have totally non-congruence Veechgroup.

Translates to: There exist $\pi, \sigma \in S_{d}$, such that

- $\langle\pi, \sigma\rangle$ acts transitive;
- $[\pi, \sigma]$ has prescribed cycle structure;
- For each prime number p there exists $\left(\pi^{\prime}, \sigma^{\prime}\right)$ in the orbit of (π, σ), such that $p \nmid o\left(\pi^{\prime}\right) o\left(\sigma^{\prime}\right)$.

Theorem (S-P\&W-S)

Almost all origami have totally non-congruence Veechgroup.
For the proof study $\pi, \pi \sigma, \pi \sigma^{2}, \ldots$ using representation theory. Proof mimics Romanov's theorem on integers of the form $p+2^{a}$.

