Origami	The product replacement algorithm	Curves with many automorphisms	Non-congruence Veechgroup

ps

Origami and the product replacement algorithm

Jan-Christoph Schlage-Puchta Gabriela Weitze-Schmitthüsen

> University Rostock KIT Karlsruhe

> > 4.7.2013

Origami ●○○	The product replacement algorithm	Curves with many automorphisms	Non-congruence Veechgroups
Origa	ımi		

A *translational surface* is a two dimensional manifold which has an atlas, such that changes of charts are translations. An *Origami* of size d is

- A *d*-sheated covering of a puctured Torus;
- Two permutations in S_d generating a transitive group
- A set of *d* squares, glued together along corresponding sides, such that the resulting surface is connected

Origami give translational surfaces/higher genus curves which are not much more complicated then the torus/elliptic curves.

 Origami
 The product replacement algorithm

 ○●○
 ○○○

Curves with many automorphisms

Non-congruence Veechgroups

The action of $Sl_2(\mathbb{R})$

An origami defines a map from $\mathrm{Sl}_2(\mathbb{R})/\mathrm{Sl}_2(\mathbb{Z})$ to the space of curves with given topological data.

Curves with many automorphisms

Non-congruence Veechgroups

The action of $Sl_2(\mathbb{Z})$

 $\operatorname{Sl}_2(\mathbb{Z})$ acts on the set of origami. The stabilizer of an origami is the *Veechgroup* of the origami. The orbit of this action corresponds to different descriptions of isomorphic curves.

Non-congruence Veechgroups

The product replacement algorithm

Problem: Given a finite group G, choose elements from G at random.

Application: Las-Vegas-algorithms Define random walk on

$$X = \{(x_1, \ldots, x_k) \in G^k | \langle x_1, \ldots, x_k \rangle = G\}$$

by choosing $i \neq j$ at random, and replacing x_i by $x_i x_j$. Experimentally the distribution quickly converges to something close to an equidistribution, however, proving anything is quiet difficult.

Non-congruence Veechgroups

Product replacement and Origami

Let $\pi, \sigma \in S_d$ be permutations generating a transitive permutation groups.

- (π, σ) defines an origami, which defines an orbit of the action under Sl₂(Z);
- (π, σ) defines a generating pair of a transitive subgroup of S_d, which defines a connected component of the product replacement algorithm.

These notions coincide:

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \hat{=} (x, y) \mapsto (xy, y), \qquad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \hat{=} (x, y) \mapsto (y, x)$$

Reason: $\operatorname{Out}(F_2) \cong \operatorname{Sl}_2(\mathbb{Z})$

0	ri	g	а	m	ıi	
	0	0				

Non-congruence Veechgroups

Motivation

Groups help Curves:

Finite group theory well developed, Combinatorics allows for easy constructions

Curves help Groups:

Curves have additional structure, might yield non-obvious invariants

Curves with many automorphisms •00

Non-congruence Veechgroups

Curves with many automorphisms

Theorem (Hurwitz, 1896)

- A curve of genus $g \ge 2$ has at most 84(g-1) automorphisms.
- Provide the exists a curve of genus g ≥ 2 with 84(g − 1) automorphisms if and only if there exists a (2, 3, 7)-generated group of order 84(g − 1).

Theorem (S-P&W-S, 2013)

- A translational surface of genus g ≥ 2 has at most 4(g − 1) automorphisms.
- If C is a translational surface with maximal automorphism group then C is a branched covering of an elliptic curves with all branching orders 1 or 2;
- There exists a translational surface of genus $g \ge 2$ with 4(g-1) automorphisms if and only if (g-1,6) > 1.

Origami 000	The product replacement algorithm	Curves with many automorphisms ○●○	Non-congruence Veechgroups
Proof	2		

 $p: X \to X/\operatorname{Aut}(X)$ defines a normal covering. Since p is normal, all branching orders over some point are equal. Computation using Riemann-Hurwitz-formula yields that $X/\operatorname{Aut}(X)$ has genus 1, one branch point, and all branching orders equal 2. Hence X is an origami.

Branch points of X correspond to cycles of $[\pi, \sigma]$. Hence translational surfaces with maximal automorphism group correspond to normal subgroups $N \triangleleft F_2$ such that $F_2/N = \langle a, b \rangle$ where [a, b] has order 2.

Origami	The product	replacement	algorith

Curves with many automorphisms $\circ \circ \bullet$

Non-congruence Veechgroups

Proof, continued:

Theorem

There exists a 2-generated group $G = \langle a, b \rangle$ of order n, such that [a, b] has order 2, if and only if n is divisible by 8 or 12.

Proof.

Existence: Direct product of cyclic groups with generalized quaternion groups or A_4 .

ım

Necessity: If neither by 8 nor 12 divide |G|, then G is solvable. Let H be a 2'-Hall group of G. If $4 \nmid |G|$, then H is normal, thus $G' \leq H$, hence |G'| is odd. If (|G|, 24) = 4, then $(G : N_G(H))$ divides (G : H) = 4.

Counting orbits of the action of H on its conjugates yields: $(G : N_G(H)) - 1$ is non-negative linear combination of prime divisors of |H|. Hence H is normal, and |G'| is odd.

igami	The product	replacement	algorithm

Ori

Non-congruence Veechgroups ●○

Congruence subgroups

A principal congruence subgroup of $\operatorname{Sl}_2(\mathbb{Z})$ is the kernel of the map $\operatorname{Sl}_2(\mathbb{Z}) \to \operatorname{Sl}_2(\mathbb{Z}/q\mathbb{Z})$ for some integer q. A congruence subgroup is a subgroup containing some principal congruence subgroup. A subgroup Δ is totally non-congruence, if $\Delta \to \operatorname{Sl}_2(\mathbb{Z}/q\mathbb{Z})$ is surjective for all q.

Congruence subgroups are rare: There are $\mathcal{O}(n^{c \log n})$ congruence subgroups of index *n*, compared with $n!^{1/6+o(1)}$ subgroups.

But: Veechgroups are not random subgroups, constructions yield congruence subgroups.

Theorem (Hubert-Lelièvre)

There exists precisely one origami with genus 2 and one branch point of order 2, whose Veechgroup is congruence.

Drigami	The	product	replacement	algor

Theorem (S-P&W-S)

For any given branching data there exists an origami realizing these branching orders, which have totally non-congruence Veechgroup.

Translates to: There exist $\pi, \sigma \in S_d$, such that

ithm

- $\langle \pi, \sigma \rangle$ acts transitive;
- $[\pi, \sigma]$ has prescribed cycle structure;
- For each prime number p there exists (π', σ') in the orbit of (π, σ), such that p ∤ o(π')o(σ').

Theorem (S-P&W-S)

Almost all origami have totally non-congruence Veechgroup.

For the proof study $\pi, \pi\sigma, \pi\sigma^2, \ldots$ using representation theory. Proof mimics Romanov's theorem on integers of the form $p + 2^a$.