On sum of powers of the positive integers

A. Schinzel
Institute of Mathematics
Polish Academy of Sciences
Warszawa

I regret to say that, as far as I know, Erdős has never considered the sums $1^{k}+2^{k}+\ldots+n^{k}$, which are my subject today ${ }^{1}$. Theorem 2 of my talk is, however, similar to the theorem Erdős proved in his paper On integers of the form $2^{k}+p$ and some related problems in 1950.
W. Bednarek asked in a letter for a characterization of pairs of positive integers (k, m) such that for every positive integer n

$$
\begin{equation*}
1^{k}+2^{k}+\ldots+n^{k} \mid 1^{k m}+2^{k m}+\ldots+n^{k m} \tag{1}
\end{equation*}
$$

[^0]
Partial answer

The following theorem contains a partial answer with the help of Bernoulli numbers. They are denoted by B_{n} :

$$
B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}, B_{4}=-\frac{1}{30}, \ldots, B_{2 l+1}=0,
$$

and the Bernoulli polynomial $\sum_{l=0}^{n}\binom{n}{1} B_{l} x^{n-l}$ by $B_{n}(x)$.

Theorem 1

Theorem 1. If the divisibility (1) holds for every positive integer n, then m is odd and

$$
\begin{gather*}
B_{k m} / B_{k} \in \mathbb{Z} \text { for } k \text { even }, \tag{2}\\
m B_{k m-1} / B_{k-1} \in \mathbb{Z} \text { for } k \text { odd } \geq 3
\end{gather*}
$$

The condition is sufficient for $k \leq 3$, but insufficient for $k=4$ and infinitely many m.

Conjecture

In fact we propose
Conjecture. For $k>3$ the divisibility (1) holds for every positive integer n only for $m=1$.

To support this conjecture we have
Theorem 2. For $k=4, n \equiv 58966743\left(\bmod 5^{6} \cdot 11251^{2}\right)$ the divisibility (1) holds only for $m=1$.

Theorem 3. For $m=n=3$ the divisibility (1) holds only for $k \leq 3$.

Proof of Theorem 1

The proof of Theorem 1 is based on five lemmas.
Lemma 1. For all positive integers k and n

$$
1^{k}+\ldots+(n-1)^{k}=S_{k}(n)=\frac{1}{k+1}\left(B_{k+1}(n)-B_{k+1}\right) .
$$

This is classical.
Lemma 2. If $P, Q \in \mathbb{Q}[x]$ and $P(n) / Q(n) \in \mathbb{Z}$ for all sufficiently large integers n then $r(x)=P(x) / Q(x)$ is an integer-valued polynomial.

This is easy.

Proof of Theorem 1

Lemma 3. If $3^{\nu} \| 2 N$, where $N=n, n+1$ or $n+\frac{1}{2}$ and $\nu \geq 1$, then for every positive integer m

$$
3^{\nu-1} \mid S_{2 m}(n+1) .
$$

Lemma 4. If $2^{\nu} \| N$, where $N=n$ or $n+1$ and $\nu \geq 1$, then for every positive integer $r>2$

$$
2^{\nu-1} \mid S_{2 r}(n+1) .
$$

Proofs of both lemmas are tedious.

Proof of Theorem 1

Lemma 5. If a prime p satisfies $p-1 \nmid k$, then p does not divide the denominator of B_{k}. If $p-1 \mid k$, then p occurs in the denominator of B_{k} in the first power only.

This is the von Staudt theorem.

Proof of Theorem 1

Proof of Theorem 1. Necessity. Since (1) holds for $n=2$ we obtain $m \equiv 1(\bmod 2)$. Consider now k even. By Lemma 1 we have

$$
S_{k}(n)=\frac{1}{k+1} B_{k+1}(n), \quad S_{k m}(n)=\frac{1}{k m+1} B_{k m+1}(n),
$$

hence, for all integers $n>1, B_{k+1}(n)>0$ and

$$
\frac{k+1}{k m+1} \frac{B_{k m+1}(n)}{B_{k+1}(n)} \in \mathbb{Z} .
$$

Proof of Theorem 1

By Lemma 2

$$
r(x)=\frac{k+1}{k m+1} \frac{B_{k m+1}(x)}{B_{k+1}(x)}
$$

is an integer-valued polynomial and, since $r(0)=B_{k m} / B_{k}$,
(2) follows.

Consider next $k \geq 3$ odd. We have by Lemma 1

$$
\begin{aligned}
S_{k}(n) & =\frac{1}{k+1}\left(B_{k+1}(n)-B_{k+1}\right) \\
S_{k m}(n) & =\frac{1}{k m+1}\left(B_{k m+1}(n)-B_{k m+1}\right)
\end{aligned}
$$

hence, for all integers $n>1, B_{k+1}(n)>B_{k+1}$ and

$$
\frac{k+1}{k m+1} \frac{B_{k m+1}(n)-B_{k m+1}}{B_{k+1}(n)-B_{k+1}} \in \mathbb{Z}
$$

Proof of Theorem 1

By Lemma 2

$$
r(x)=\frac{k+1}{k m+1} \frac{B_{k m+1}(x)-B_{k m+1}}{B_{k+1}(x)-B_{k+1}}
$$

is an integer-valued polynomial and, since
$r(0)=m B_{k m-1} / B_{k-1}$, (2) follows.
Proof of sufficiency for $k \leq 3$ is tedious.

Proof of Theorem 1

Insufficiency for $k=4$. Take m to be a prime $\equiv 17(\bmod 30)$. The condition (2) is fulfilled, since $B_{4 m} / B_{4}=-30 B_{4 m} \in \mathbb{Z}$. Indeed, by Lemma 5, $B_{4 m}$ has in the denominator only the first powers of primes p such that $p-1 \mid 4 m$. The divisibility gives $p=2,3,5,2 m+1$ or $4 m+1$. Now, $2 \cdot 3 \cdot 5=30,2 m+1$ is divisible by 5 and $4 m+1$ by 3 . It follows from Theorem 2 that $S_{4}(n+1) \backslash S_{4 m}(n+1)$ for a positive integer n.

Lemmas to Theorem 2

The proof of Theorem 2 is based on four lemmas.
Lemma 6. If p is a prime, $k^{\prime} \equiv k \not \equiv 0(\bmod p-1)$ and $n^{\prime} \equiv n(\bmod p)$, then

$$
S_{k^{\prime}}\left(n^{\prime}\right) \equiv S_{k}(n)(\bmod p)
$$

Lemma 7. If $p>2$ is a prime, $k \geq \alpha \geq 2, k^{\prime} \geq \alpha, k \not \equiv 0$ $(\bmod p(p-1)), k^{\prime} \equiv k\left(\bmod p^{\alpha-1}(p-1)\right)$ and $n^{\prime} \equiv n$ $\left(\bmod p^{\alpha+1}\right)$, then

$$
S_{k^{\prime}}\left(n^{\prime}\right) \equiv S_{k}(n)\left(\bmod p^{\alpha}\right)
$$

Lemma 8

Lemma 8. If $n \equiv 58966743\left(\bmod 11251^{2}\right)$, then
$S_{4 m}(n+1) \equiv 0(\bmod 11251)$ only if $m \equiv 1(\bmod 5625)$.
Proof. The number $p=11251$ is a prime and $n \equiv 252$ $(\bmod p),\left\lfloor\frac{n}{p}\right\rfloor \equiv 5241(\bmod p)$. If $4 m \equiv 0(\bmod p-1)$, then

$$
S_{4 m}(n+1) \equiv n-\left\lfloor\frac{n}{p}\right\rfloor \equiv-4989 \not \equiv 0(\bmod p)
$$

If $4 m \not \equiv 0(\bmod p-1)$, it suffices by Lemma 6 to verify the congruence $S_{4 m}(252) \equiv 0(\bmod p)$ for m in the interval $[1,11249]$. The verification has been performed by J. Browkin.

Lemma 9

Lemma 9. If $n \equiv 58966743\left(\bmod 5^{6}\right)$, then $S_{4 m}(n+1) \equiv 0$ $\left(\bmod 5^{5}\right)$ only if $m=1$ or $m \equiv 501(\bmod 625)$.
Proof. We have $58966743 \equiv 13618\left(\bmod 5^{6}\right)$. If $m \equiv 0$ $(\bmod 5)$, then
$S_{4 m}(n+1) \equiv n-\left\lfloor\frac{n}{5}\right\rfloor \equiv 13618-2723=10895 \not \equiv 0(\bmod 25)$.
If $m \not \equiv 0(\bmod 5)$, it suffices by Lemma 7 to verify the congruence $S_{4 m}(13619) \equiv 0\left(\bmod 5^{5}\right)$ for m in the interval $[1,626]$. The verification has been performed by J. Browkin.

Proof of Theorem 2

Proof of Theorem 2. Since for $n \equiv 58966743$ $\left(\bmod 5^{6} \cdot 11251^{2}\right)$ we have

$$
S_{4}(n+1) \equiv 0\left(\bmod 5^{5} \cdot 11251\right)
$$

the theorem follows from Lemmas 8 and 9 .

Proof of Theorem 3

The proof of Theorem 3 is based on
Lemma 10. For every positive integer k

$$
\begin{gathered}
\left(2^{k}, 1+2^{k}+3^{k}\right) \leq 4, \\
\left(3^{k+1}, 1+2^{k}+3^{k}\right) \leq 3 k .
\end{gathered}
$$

This is easy.

Proof of Theorem 3

Proof of Theorem 3. We have
$1+2^{3 k}+3^{3 k}-2^{k} \cdot 3^{k+1}=\left(1+2^{k}+3^{k}\right)\left(1+2^{2 k}+3^{2 k}-2^{k}-3^{k}-6^{k}\right)$,
thus if (1) holds, then

$$
\begin{equation*}
1+2^{k}+3^{k} \mid 2^{k} \cdot 3^{k+1} \tag{3}
\end{equation*}
$$

By Lemma $10\left(2^{k} \cdot 3^{k+1}, 1+2^{k}+3^{k}\right) \leq 12 k$, thus by (3)

$$
1+2^{k}+3^{k} \leq 12 k,
$$

which implies $k \leq 3$.

[^0]: ${ }^{1}$ The first sentence is not quite true, since Erdős and Moser formulated a conjecture about the Diophantine equation $1^{k}+2^{k}+\ldots+(x-1)^{k}=x^{k}$ (added during the conference).

