On sum of powers of the positive integers

A. Schinzel Institute of Mathematics Polish Academy of Sciences Warszawa

I regret to say that, as far as I know, Erdős has never considered the sums $1^k + 2^k + \ldots + n^k$, which are my subject today¹. Theorem 2 of my talk is, however, similar to the theorem Erdős proved in his paper *On integers of the form* $2^k + p$ and some related problems in 1950. W. Bednarek asked in a letter for a characterization of pairs of positive integers (k, m) such that for every positive integer n

$$1^{k} + 2^{k} + \ldots + n^{k} | 1^{km} + 2^{km} + \ldots + n^{km}.$$
 (1)

¹The first sentence is not quite true, since Erdős and Moser formulated a conjecture about the Diophantine equation $1^{k} + 2^{k} + \ldots + (x - 1)^{k} = x^{k}$ (added during the conference): The following theorem contains a partial answer with the help of Bernoulli numbers. They are denoted by B_n :

$$B_0 = 1, \ B_1 = -\frac{1}{2}, \ B_2 = \frac{1}{6}, \ B_4 = -\frac{1}{30}, \dots, \ B_{2l+1} = 0,$$

and the Bernoulli polynomial $\sum_{l=0}^{n} {n \choose l} B_l x^{n-l}$ by $B_n(x)$.

< 回 > < 回 > < 回 > <

Theorem 1. If the divisibility (1) holds for every positive integer n, then m is odd and

$$B_{km}/B_k \in \mathbb{Z} \text{ for } k \text{ even,}$$

$$mB_{km-1}/B_{k-1} \in \mathbb{Z} \text{ for } k \text{ odd} \ge 3.$$
 (2)

The condition is sufficient for $k \le 3$, but insufficient for k = 4 and infinitely many m.

< 回 > < 回 > < 回 >

In fact we propose

Conjecture. For k > 3 the divisibility (1) holds for every positive integer n only for m = 1.

To support this conjecture we have

Theorem 2. For k = 4, $n \equiv 58966743 \pmod{5^6 \cdot 11251^2}$ the divisibility (1) holds only for m = 1.

Theorem 3. For m = n = 3 the divisibility (1) holds only for $k \leq 3$.

・ロト ・ 一日 ト ・ 日 ト

The proof of Theorem 1 is based on five lemmas.

Lemma 1. For all positive integers k and n

$$1^k + \ldots + (n-1)^k = S_k(n) = \frac{1}{k+1}(B_{k+1}(n) - B_{k+1}).$$

This is classical.

Lemma 2. If $P, Q \in \mathbb{Q}[x]$ and $P(n)/Q(n) \in \mathbb{Z}$ for all sufficiently large integers n then r(x) = P(x)/Q(x) is an integer-valued polynomial.

This is easy.

< 同 > < 三 > < 三 >

Lemma 3. If $3^{\nu} \parallel 2N$, where N = n, n+1 or $n + \frac{1}{2}$ and $\nu \ge 1$, then for every positive integer m

$$3^{\nu-1}|S_{2m}(n+1).$$

Lemma 4. If $2^{\nu} \parallel N$, where N = n or n + 1 and $\nu \ge 1$, then for every positive integer r > 2

$$2^{\nu-1} | S_{2r}(n+1).$$

Proofs of both lemmas are tedious.

< 回 > < 回 > < 回 >

Lemma 5. If a prime p satisfies $p - 1 \not\mid k$, then p does not divide the denominator of B_k . If $p - 1 \mid k$, then p occurs in the denominator of B_k in the first power only.

This is the von Staudt theorem.

不良 とうてい うちょ

Proof of Theorem 1. Necessity. Since (1) holds for n = 2 we obtain $m \equiv 1 \pmod{2}$. Consider now k even. By Lemma 1 we have

$$S_k(n) = \frac{1}{k+1}B_{k+1}(n), \quad S_{km}(n) = \frac{1}{km+1}B_{km+1}(n),$$

hence, for all integers n > 1, $B_{k+1}(n) > 0$ and

$$\frac{k+1}{km+1}\frac{B_{km+1}(n)}{B_{k+1}(n)}\in\mathbb{Z}.$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Proof of Theorem 1

By Lemma 2

$$r(x) = rac{k+1}{km+1} \, rac{B_{km+1}(x)}{B_{k+1}(x)}$$

is an integer-valued polynomial and, since $r(0) = B_{km}/B_k$, (2) follows.

Consider next $k \ge 3$ odd. We have by Lemma 1

$$egin{aligned} S_k(n) &= rac{1}{k+1}(B_{k+1}(n) - B_{k+1}), \ S_{km}(n) &= rac{1}{km+1}(B_{km+1}(n) - B_{km+1}), \end{aligned}$$

hence, for all integers n > 1, $B_{k+1}(n) > B_{k+1}$ and

$$\frac{k+1}{km+1} \frac{B_{km+1}(n) - B_{km+1}}{B_{k+1}(n) - B_{k+1}} \in \mathbb{Z}.$$

By Lemma 2

$$r(x) = \frac{k+1}{km+1} \frac{B_{km+1}(x) - B_{km+1}}{B_{k+1}(x) - B_{k+1}}$$

is an integer-valued polynomial and, since $r(0) = mB_{km-1}/B_{k-1}$, (2) follows.

Proof of sufficiency for $k \leq 3$ is tedious.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Insufficiency for k = 4. Take m to be a prime $\equiv 17 \pmod{30}$. The condition (2) is fulfilled, since $B_{4m}/B_4 = -30B_{4m} \in \mathbb{Z}$. Indeed, by Lemma 5, B_{4m} has in the denominator only the first powers of primes p such that p - 1 | 4m. The divisibility gives p = 2, 3, 5, 2m + 1 or 4m + 1. Now, $2 \cdot 3 \cdot 5 = 30, 2m + 1$ is divisible by 5 and 4m + 1 by 3. It follows from Theorem 2 that $S_4(n+1) \nmid S_{4m}(n+1)$ for a positive integer n.

- 4 戸 ト 4 戸 ト - 4 戸 ト -

Lemmas to Theorem 2

The proof of Theorem 2 is based on four lemmas. **Lemma 6.** If p is a prime, $k' \equiv k \not\equiv 0 \pmod{p-1}$ and $n' \equiv n \pmod{p}$, then

$$S_{k'}(n') \equiv S_k(n) \pmod{p}.$$

Lemma 7. If p > 2 is a prime, $k \ge \alpha \ge 2$, $k' \ge \alpha$, $k \not\equiv 0 \pmod{p(p-1)}$, $k' \equiv k \pmod{p^{\alpha-1}(p-1)}$ and $n' \equiv n \pmod{p^{\alpha+1}}$, then

$$S_{k'}(n') \equiv S_k(n) \pmod{p^{\alpha}}.$$

ヘロト 人間ト ヘヨト ヘヨト

Lemma 8. If $n \equiv 58966743 \pmod{11251^2}$, then $S_{4m}(n+1) \equiv 0 \pmod{11251}$ only if $m \equiv 1 \pmod{5625}$. *Proof.* The number p = 11251 is a prime and $n \equiv 252 \pmod{p}$, $\lfloor \frac{n}{p} \rfloor \equiv 5241 \pmod{p}$. If $4m \equiv 0 \pmod{p-1}$, then

$$S_{4m}(n+1) \equiv n - \left\lfloor \frac{n}{p}
ight
floor \equiv -4989
ot \equiv 0 \pmod{p}.$$

If $4m \not\equiv 0 \pmod{p-1}$, it suffices by Lemma 6 to verify the congruence $S_{4m}(252) \equiv 0 \pmod{p}$ for *m* in the interval [1,11249]. The verification has been performed by J. Browkin.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Lemma 9. If $n \equiv 58966743 \pmod{5^6}$, then $S_{4m}(n+1) \equiv 0 \pmod{5^5}$ only if m = 1 or $m \equiv 501 \pmod{625}$.

Proof. We have $58966743 \equiv 13618 \pmod{5^6}$. If $m \equiv 0 \pmod{5}$, then

$$S_{4m}(n+1) \equiv n - \lfloor \frac{n}{5} \rfloor \equiv 13618 - 2723 = 10895 \not\equiv 0 \pmod{25}.$$

If $m \not\equiv 0 \pmod{5}$, it suffices by Lemma 7 to verify the congruence $S_{4m}(13619) \equiv 0 \pmod{5^5}$ for *m* in the interval [1,626]. The verification has been performed by J. Browkin.

・ロト ・得ト ・ヨト ・ヨト

Proof of Theorem 2. Since for $n \equiv 58966743$ $(\mod 5^6 \cdot 11251^2)$ we have

$$S_4(n+1) \equiv 0 \pmod{5^5 \cdot 11251}$$

the theorem follows from Lemmas 8 and 9.

・ 同 ト ・ ヨ ト ・ ヨ ト

The proof of Theorem 3 is based on Lemma 10. For every positive integer k

$$(2^k, 1+2^k+3^k) \le 4,$$

 $(3^{k+1}, 1+2^k+3^k) \le 3k.$

This is easy.

(日本) (日本) (日本)

Proof of Theorem 3

Proof of Theorem 3. We have

 $1 + 2^{3k} + 3^{3k} - 2^k \cdot 3^{k+1} = (1 + 2^k + 3^k)(1 + 2^{2k} + 3^{2k} - 2^k - 3^k - 6^k),$

thus if (1) holds, then

$$1 + 2^k + 3^k | 2^k \cdot 3^{k+1}. \tag{3}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● ●

By Lemma 10 $(2^k \cdot 3^{k+1}, 1+2^k+3^k) \le 12k$, thus by (3) $1+2^k+3^k \le 12k,$

which implies $k \leq 3$.