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Problem

I regret to say that, as far as I know, Erdős has never
considered the sums 1k + 2k + . . . + nk , which are my subject
today1. Theorem 2 of my talk is, however, similar to the
theorem Erdős proved in his paper On integers of the form

2k + p and some related problems in 1950.
W. Bednarek asked in a letter for a characterization of pairs of
positive integers (k , m) such that for every positive integer n

1k + 2k + . . . + nk |1km + 2km + . . . + nkm. (1)

1The first sentence is not quite true, since Erdős and Moser
formulated a conjecture about the Diophantine equation
1k + 2k + . . . + (x − 1)k = x

k (added during the conference).
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Partial answer

The following theorem contains a partial answer with the help
of Bernoulli numbers. They are denoted by Bn:

B0 = 1, B1 = −
1

2
, B2 =

1

6
, B4 = −

1

30
, . . . , B2l+1 = 0,

and the Bernoulli polynomial
∑n

l=0

(

n

l

)

Blx
n−l by Bn(x).
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Theorem 1

Theorem 1. If the divisibility (1) holds for every positive

integer n, then m is odd and

Bkm/Bk ∈ Z for k even,

mBkm−1/Bk−1 ∈ Z for k odd ≥ 3.
(2)

The condition is sufficient for k ≤ 3, but insufficient for k = 4
and infinitely many m.
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Conjecture

In fact we propose

Conjecture. For k > 3 the divisibility (1) holds for every

positive integer n only for m = 1.

To support this conjecture we have

Theorem 2. For k = 4, n ≡ 58966743 (mod 56 · 112512)
the divisibility (1) holds only for m = 1.

Theorem 3. For m = n = 3 the divisibility (1) holds only

for k ≤ 3.
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Proof of Theorem 1

The proof of Theorem 1 is based on five lemmas.

Lemma 1. For all positive integers k and n

1k + . . . + (n − 1)k = Sk(n) =
1

k + 1
(Bk+1(n) − Bk+1).

This is classical.

Lemma 2. If P , Q ∈ Q[x ] and P(n)/Q(n) ∈ Z for all

sufficiently large integers n then r(x) = P(x)/Q(x) is an

integer-valued polynomial.

This is easy.
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Proof of Theorem 1

Lemma 3. If 3ν ‖ 2N, where N = n, n + 1 or n + 1

2
and

ν ≥ 1, then for every positive integer m

3ν−1 |S2m(n + 1).

Lemma 4. If 2ν ‖ N, where N = n or n + 1 and ν ≥ 1, then

for every positive integer r > 2

2ν−1 |S2r (n + 1).

Proofs of both lemmas are tedious.
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Proof of Theorem 1

Lemma 5. If a prime p satisfies p − 1/| k, then p does not

divide the denominator of Bk . If p − 1 |k, then p occurs in the

denominator of Bk in the first power only.

This is the von Staudt theorem.
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Proof of Theorem 1

Proof of Theorem 1. Necessity. Since (1) holds for n = 2 we
obtain m ≡ 1 (mod 2). Consider now k even. By Lemma 1 we
have

Sk(n) =
1

k + 1
Bk+1(n), Skm(n) =

1

km + 1
Bkm+1(n),

hence, for all integers n > 1, Bk+1(n) > 0 and

k + 1

km + 1

Bkm+1(n)

Bk+1(n)
∈ Z.
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Proof of Theorem 1

By Lemma 2

r(x) =
k + 1

km + 1

Bkm+1(x)

Bk+1(x)

is an integer-valued polynomial and, since r(0) = Bkm/Bk ,
(2) follows.
Consider next k ≥ 3 odd. We have by Lemma 1

Sk(n) =
1

k + 1
(Bk+1(n) − Bk+1),

Skm(n) =
1

km + 1
(Bkm+1(n) − Bkm+1),

hence, for all integers n > 1, Bk+1(n) > Bk+1 and

k + 1

km + 1

Bkm+1(n) − Bkm+1

Bk+1(n) − Bk+1

∈ Z.
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Proof of Theorem 1

By Lemma 2

r(x) =
k + 1

km + 1

Bkm+1(x) − Bkm+1

Bk+1(x) − Bk+1

is an integer-valued polynomial and, since
r(0) = mBkm−1/Bk−1, (2) follows.

Proof of sufficiency for k ≤ 3 is tedious.
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Proof of Theorem 1

Insufficiency for k = 4. Take m to be a prime ≡ 17 (mod 30).
The condition (2) is fulfilled, since B4m/B4 = −30B4m ∈ Z.
Indeed, by Lemma 5, B4m has in the denominator only the first
powers of primes p such that p − 1 |4m. The divisibility gives
p = 2, 3, 5, 2m + 1 or 4m + 1. Now, 2 · 3 · 5 = 30, 2m + 1 is
divisible by 5 and 4m + 1 by 3. It follows from Theorem 2 that
S4(n + 1)/| S4m(n + 1) for a positive integer n.
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Lemmas to Theorem 2

The proof of Theorem 2 is based on four lemmas.

Lemma 6. If p is a prime, k ′ ≡ k 6≡ 0 (mod p − 1) and

n′ ≡ n (mod p), then

Sk ′(n′) ≡ Sk(n) (mod p).

Lemma 7. If p > 2 is a prime, k ≥ α ≥ 2, k ′ ≥ α, k 6≡ 0
(mod p(p − 1)), k ′ ≡ k (mod pα−1(p − 1)) and n′ ≡ n

(mod pα+1), then

Sk ′(n′) ≡ Sk(n) (mod pα).
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Lemma 8

Lemma 8. If n ≡ 58966743 (mod 112512), then

S4m(n + 1) ≡ 0 (mod 11251) only if m ≡ 1 (mod 5625).

Proof. The number p = 11251 is a prime and n ≡ 252
(mod p),

⌊

n
p

⌋

≡ 5241 (mod p). If 4m ≡ 0 (mod p − 1), then

S4m(n + 1) ≡ n −
⌊n

p

⌋

≡ −4989 6≡ 0 (mod p).

If 4m 6≡ 0 (mod p − 1), it suffices by Lemma 6 to verify the
congruence S4m(252) ≡ 0 (mod p) for m in the interval
[1, 11249]. The verification has been performed by J. Browkin.
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Lemma 9

Lemma 9. If n ≡ 58966743 (mod 56), then S4m(n + 1) ≡ 0
(mod 55) only if m = 1 or m ≡ 501 (mod 625).

Proof. We have 58966743 ≡ 13618 (mod 56). If m ≡ 0
(mod 5), then

S4m(n+1) ≡ n−
⌊n

5

⌋

≡ 13618−2723 = 10895 6≡ 0 (mod 25).

If m 6≡ 0 (mod 5), it suffices by Lemma 7 to verify the
congruence S4m(13619) ≡ 0 (mod 55) for m in the interval
[1, 626]. The verification has been performed by J. Browkin.
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Proof of Theorem 2

Proof of Theorem 2. Since for n ≡ 58966743
(mod 56 · 112512) we have

S4(n + 1) ≡ 0 (mod 55 · 11251)

the theorem follows from Lemmas 8 and 9.
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Proof of Theorem 3

The proof of Theorem 3 is based on

Lemma 10. For every positive integer k

(2k , 1 + 2k + 3k) ≤ 4,

(3k+1, 1 + 2k + 3k) ≤ 3k .

This is easy.
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Proof of Theorem 3

Proof of Theorem 3. We have

1+23k+33k−2k ·3k+1 = (1+2k+3k)(1+22k+32k−2k−3k−6k),

thus if (1) holds, then

1 + 2k + 3k |2k · 3k+1. (3)

By Lemma 10 (2k · 3k+1, 1 + 2k + 3k) ≤ 12k , thus by (3)

1 + 2k + 3k ≤ 12k ,

which implies k ≤ 3.

A. Schinzel, IMPAN, Warsaw Sum of powers of the positive integers


