Extremal combinatorics in random discrete structures

Mathias Schacht

Fachbereich Mathematik Universität Hamburg

Erdős Centennial Conference

"Complete disorder is impossible."

T. S. Motzkin

"Complete disorder is impossible."

T. S. Motzkin

Given

■ discrete structure *F*

"Complete disorder is impossible."

T. S. Motzkin

Given

discrete structure *F* e.g. graph, hypergraph, arithmetic progression

"Complete disorder is impossible."

T. S. Motzkin

Given

- discrete structure *F* e.g. graph, hypergraph, arithmetic progression
- number of partition classes/colours $r \ge 2$

"Complete disorder is impossible."

T. S. Motzkin

Given

- discrete structure *F* e.g. graph, hypergraph, arithmetic progression
- number of partition classes/colours $r \ge 2$

Find

discrete structure G such that

"Complete disorder is impossible."

T. S. Motzkin

Given

discrete structure *F* e.g. graph, hypergraph, arithmetic progression

• number of partition classes/colours $r \ge 2$

Find

■ discrete structure *G* such that

 $G \to (F)_r$

"Complete disorder is impossible."

T. S. Motzkin

Given

discrete structure *F* e.g. graph, hypergraph, arithmetic progression

• number of partition classes/colours $r \ge 2$

Find

discrete structure G such that

 $G \rightarrow (F)_r$

i.e. every r-colouring of G yields monochromatic copy of F

"Complete disorder is impossible."

T. S. Motzkin

Given

discrete structure *F* e.g. graph, hypergraph, arithmetic progression

• number of partition classes/colours $r \ge 2$

Find

discrete structure G such that

 $G \rightarrow (F)_r$

i.e. every *r*-colouring of *G* yields monochromatic copy of *F*discrete structure *G* with Ramsey property and additional properties

"Complete disorder is impossible."

T. S. Motzkin

Given

- discrete structure *F* e.g. graph, hypergraph, arithmetic progression
- number of partition classes/colours $r \ge 2$

Find

discrete structure G such that

 $G \rightarrow (F)_r$

- i.e. every r-colouring of G yields monochromatic copy of F
- discrete structure G with Ramsey property and additional properties
 - "smallest" G
 - G with similar properties as F itself

Ramsey theory – classical results

Theorem (van der Waerden '27)

 $\forall k, \forall r, \exists n_0 = n_0(k, r)$, such that for every partition

$$[n] = \{1,\ldots,n\} = C_1 \dot{\cup} \ldots \dot{\cup} C_r, \quad n \ge n_0,$$

there exists a class C_i , which contains an arithmetic progression of length k (AP_k). I.e. for sufficiently large $n \ge n_0(k, r)$ we have

 $[n] \rightarrow (AP_k)_r$.

Theorem (van der Waerden '27)

 $\forall k, \forall r, \exists n_0 = n_0(k, r)$, such that for every partition

$$[n] = \{1,\ldots,n\} = C_1 \dot{\cup} \ldots \dot{\cup} C_r, \quad n \ge n_0,$$

there exists a class C_i , which contains an arithmetic progression of length k (AP_k). I.e. for sufficiently large $n \ge n_0(k, r)$ we have

$$[n] \rightarrow (AP_k)_r$$
.

Example

Theorem (van der Waerden '27)

 $\forall k, \forall r, \exists n_0 = n_0(k, r)$, such that for every partition

$$[n] = \{1,\ldots,n\} = C_1 \dot{\cup} \ldots \dot{\cup} C_r, \quad n \ge n_0,$$

there exists a class C_i , which contains an arithmetic progression of length k (AP_k). I.e. for sufficiently large $n \ge n_0(k, r)$ we have

$$[n] \rightarrow (AP_k)_r$$
.

Example

Theorem (van der Waerden '27)

 $\forall k, \forall r, \exists n_0 = n_0(k, r)$, such that for every partition

$$[n] = \{1,\ldots,n\} = C_1 \dot{\cup} \ldots \dot{\cup} C_r, \quad n \ge n_0,$$

there exists a class C_i , which contains an arithmetic progression of length k (AP_k). I.e. for sufficiently large $n \ge n_0(k, r)$ we have

$$[n] \rightarrow (AP_k)_r$$
.

Example

Ramsey theory – classical results

Theorem (van der Waerden '27)

 $\forall k, \forall r, \exists n_0 = n_0(k, r)$, such that for every partition

$$[n] = \{1,\ldots,n\} = C_1 \dot{\cup} \ldots \dot{\cup} C_r, \quad n \ge n_0,$$

there exists a class C_i , which contains an arithmetic progression of length k (AP_k). I.e. for sufficiently large $n \ge n_0(k, r)$ we have

$$[n] \rightarrow (AP_k)_r$$
.

Example

Theorem (Ramsey '30)

$$\forall F, r \exists n_0 \forall n \geq n_0: \qquad K_n^{(k)} \to (F)_r^e.$$

Extremal Combinatorics in Random Sets

Mathias Schacht

Given

set of discrete structures

Given

set of discrete structures

graphs on n vertices, $2^{[n]}$

Given

set of discrete structures

property

graphs on n vertices, $2^{[n]}$

Given

set of discrete structures

property

graphs on *n* vertices, $2^{[n]}$ containing no cycle, AP_k -free

Given

- set of discrete structures
- property
- parameter

graphs on *n* vertices, $2^{[n]}$ containing no cycle, AP_k -free

Given

- set of discrete structures
- property
- parameter

graphs on *n* vertices, $2^{[n]}$ containing no cycle, AP_k -free number of edges, size

Given

- set of discrete structures
- property
- parameter

graphs on *n* vertices, $2^{[n]}$ containing no cycle, AP_k -free number of edges, size

Find

maximal and "almost" maximal structures with that property

Given

- set of discrete structures
- property
- parameter

graphs on *n* vertices, $2^{[n]}$ containing no cycle, AP_k -free number of edges, size

- maximal and "almost" maximal structures with that property
- number of structures with that property

Given

- set of discrete structures
- property
- parameter

graphs on *n* vertices, $2^{[n]}$ containing no cycle, AP_k -free number of edges, size

- maximal and "almost" maximal structures with that property
- number of structures with that property
- number of maximal structures

Given

- set of discrete structures
- property
- parameter

graphs on *n* vertices, $2^{[n]}$ containing no cycle, AP_k -free number of edges, size

- maximal and "almost" maximal structures with that property
- number of structures with that property
- number of maximal structures
- typical structure with that property

Given

- set of discrete structures
- property
- parameter

graphs on *n* vertices, $2^{[n]}$ containing no cycle, AP_k -free number of edges, size

- maximal and "almost" maximal structures with that property
- number of structures with that property
- number of maximal structures
- typical structure with that property
- typical structure with additional restrictions

For a *k*-uniform hypergraph *F* and $n \in \mathbb{N}$ set

$$ex(n,F) := \max \left\{ e(H) \colon H \subseteq K_n^{(k)} \text{ and } H \text{ is } F \text{-free} \right\}.$$

For a *k*-uniform hypergraph *F* and $n \in \mathbb{N}$ set

$$ex(n, F) := \max \left\{ e(H) \colon H \subseteq K_n^{(k)} \text{ and } H \text{ is } F \text{-free} \right\}.$$

Fact: $\pi_F = \lim_{n \to \infty} ex(n, F) / {n \choose k}$ exists.

For a *k*-uniform hypergraph *F* and $n \in \mathbb{N}$ set

$$ex(n, F) := \max \left\{ e(H) \colon H \subseteq K_n^{(k)} \text{ and } H \text{ is } F \text{-free} \right\}.$$

Fact: $\pi_F = \lim_{n \to \infty} ex(n, F) / \binom{n}{k}$ exists.

Theorem (Mantel, Turán, Erdős, Stone, ...) \forall graph (k = 2) F $\pi_F = 1 - \frac{1}{\chi(F) - 1}$.

For a *k*-uniform hypergraph *F* and $n \in \mathbb{N}$ set

$$ex(n, F) := \max \left\{ e(H) \colon H \subseteq K_n^{(k)} \text{ and } H \text{ is } F \text{-free} \right\}.$$

Fact: $\pi_F = \lim_{n \to \infty} ex(n, F) / {n \choose k}$ exists.

Theorem (Mantel, Turán, Erdős, Stone, ...) \forall graph (k = 2) F $\pi_F = 1 - \frac{1}{\chi(F) - 1}$.

extremal and almost extremal graphs are known

For a *k*-uniform hypergraph *F* and $n \in \mathbb{N}$ set

$$ex(n, F) := \max \left\{ e(H) \colon H \subseteq K_n^{(k)} \text{ and } H \text{ is } F \text{-free} \right\}.$$

Fact: $\pi_F = \lim_{n \to \infty} ex(n, F) / {n \choose k}$ exists.

Theorem (Mantel, Turán, Erdős, Stone, ...) \forall graph (k = 2) F $\pi_F = 1 - \frac{1}{\chi(F) - 1}$.

extremal and almost extremal graphs are known

• almost all K_k -free graphs are (k-1)-colourable

For a *k*-uniform hypergraph *F* and $n \in \mathbb{N}$ set

$$ex(n, F) := \max \left\{ e(H) \colon H \subseteq K_n^{(k)} \text{ and } H \text{ is } F \text{-free} \right\}.$$

Fact: $\pi_F = \lim_{n \to \infty} ex(n, F) / {n \choose k}$ exists.

Theorem (Mantel, Turán, Erdős, Stone, ...) \forall graph (k = 2) F $\pi_F = 1 - \frac{1}{\chi(F) - 1}$.

extremal and almost extremal graphs are known

- almost all K_k -free graphs are (k-1)-colourable
- almost all K_k -free graphs of given density are (k-1)-colourable

For a *k*-uniform hypergraph *F* and $n \in \mathbb{N}$ set

$$ex(n, F) := \max \left\{ e(H) \colon H \subseteq K_n^{(k)} \text{ and } H \text{ is } F \text{-free} \right\}.$$

Fact: $\pi_F = \lim_{n \to \infty} ex(n, F) / {n \choose k}$ exists.

Theorem (Mantel, Turán, Erdős, Stone, ...) \forall graph (k = 2) F $\pi_F = 1 - \frac{1}{\chi(F) - 1}$.

- extremal and almost extremal graphs are known
- almost all K_k -free graphs are (k-1)-colourable
- almost all K_k -free graphs of given density are (k-1)-colourable
- $\pi_F = 0$ iff F is k-partite

Turán Theory

For a *k*-uniform hypergraph *F* and $n \in \mathbb{N}$ set

$$ex(n,F) := \max \left\{ e(H) \colon H \subseteq K_n^{(k)} \text{ and } H \text{ is } F\text{-free} \right\}.$$

Fact: $\pi_F = \lim_{n \to \infty} ex(n,F) / {n \choose k}$ exists.

Theorem (Mantel, Turán, Erdős, Stone, ...) \forall graph (k = 2) F $\pi_F = 1 - \frac{1}{\chi(F) - 1}$.

- extremal and almost extremal graphs are known
- almost all K_k -free graphs are (k-1)-colourable
- almost all K_k -free graphs of given density are (k-1)-colourable
- $\pi_F = 0$ iff F is k-partite
- π_F known only for very few hypergraphs $k \geq 3$

$$\mathit{r}_k(X) := \mathsf{max}\left\{ |\mathsf{A}|: \, \mathsf{A} \subset X \, \, \mathsf{is} \, \, \mathsf{AP}_k ext{-free}
ight\}.$$

$$r_k(X) := \max \{ |A| : A \subset X \text{ is } AP_k \text{-free} \}.$$

Conjecture (Erdős-Turán '36)

$$\forall k \in \mathbb{N}$$

 $\lim_{n \to \infty} \frac{r_k(n)}{n} = 0.$

$$r_k(X) := \max \{ |A| : A \subset X \text{ is } AP_k \text{-free} \}.$$

$$r_k(X) := \max \{ |A| : A \subset X \text{ is } AP_k \text{-free} \}.$$

$$r_k(X) := \max \{ |A| : A \subset X \text{ is } AP_k \text{-free} \}.$$

For $X \subseteq [n]$ set

$$r_k(X) := \max \{ |A| : A \subset X \text{ is } AP_k \text{-free} \}.$$

$$r_k(X) := \max \{ |A| : A \subset X \text{ is } AP_k \text{-free} \}.$$

- Extension of van der Waerden's theorem
- multidimensional and polynomial extensions known
- density version of the Hales-Jewett theorem

Relative Versions

Question

Which sets $X \subseteq \mathbb{N}$ (or $X \subseteq \mathbb{Z}/n\mathbb{Z}$) satisfy

$$r_k(X \cap [n]) = o(|X|) \quad ?$$

Relative Versions

Question

Which sets $X \subseteq \mathbb{N}$ (or $X \subseteq \mathbb{Z}/n\mathbb{Z}$) satisfy

$$r_k(X \cap [n]) = o(|X|) \quad ?$$

• $k = 3, X \in {\binom{[n]}{m}}$ random subsets with $m = C\sqrt{n}$ elements Kohayakawa, Łuczak, and Rödl

Relative Versions

Question

Which sets $X \subseteq \mathbb{N}$ (or $X \subseteq \mathbb{Z}/n\mathbb{Z}$) satisfy

$$r_k(X \cap [n]) = o(|X|) \quad ?$$

• $k = 3, X \in {\binom{[n]}{m}}$ random subsets with $m = C\sqrt{n}$ elements Kohayakawa, Łuczak, and Rödl

•
$$X = \{2, 3, 5, 7, 11, \dots\}$$

Sum-free Sets

Observation

If $A \subseteq [n]$ with

$$|A| > \left\lceil \frac{n}{2} \right\rceil,$$

then there exist x, y, $z \in A$ such that x + y = z.

Sum-free Sets

Observation

If $A \subseteq [n]$ with

$$|A|>\left\lceil\frac{n}{2}\right\rceil\,,$$

then there exist x, y, $z \in A$ such that x + y = z .

"Corollary"

 $\forall \delta > 0, \exists n_0 \text{ such that } \forall n \ge n_0 \text{ we have, if } A \subseteq [n] \text{ and }$

$$|A| \geq \left(\frac{1}{2} + \delta\right) n,$$

then A contains a Schur-triple.

Sum-free Sets

Observation

If $A \subseteq [n]$ with

$$|A|>\left\lceil\frac{n}{2}\right\rceil\,,$$

then there exist x, y, $z \in A$ such that x + y = z.

"Corollary"

 $\forall \delta > 0, \exists n_0 \text{ such that } \forall n \ge n_0 \text{ we have, if } A \subseteq [n] \text{ and }$

$$|A| \ge \left(\frac{1}{2} + \delta\right) n_{2}$$

then A contains a Schur-triple.

Ramsey version due to Schur '17:

$$[r!e] \to (x+y=z)_r.$$

Extremal Combinatorics in Random Sets

sufficient density yields interesting substructures

sufficient density yields interesting substructures

Definition (α -dense)

A sequence $(H_n = (V_n, E_n))_{n \in \mathbb{N}}$ of ℓ -uniform hypergraphs is α -dense, if the following holds:

 $orall \delta > 0, \ \exists \xi > 0 \ \text{and} \ n_0 \ \text{such that} \ orall n \ge n_0 \ \text{we have If} \ U \subseteq V_n \ \text{and}$

 $|U|\geq (\alpha+\delta)|V_n|,$

then $e(H_n[U]) \ge \xi |E_n|$.

sufficient density yields interesting substructures

Definition (α -dense)

A sequence $(H_n = (V_n, E_n))_{n \in \mathbb{N}}$ of ℓ -uniform hypergraphs is α -dense, if the following holds:

 $orall \delta > 0, \ \exists \xi > 0 \ \text{and} \ n_0 \ \text{such that} \ orall n \ge n_0 \ \text{we have If} \ U \subseteq V_n \ \text{and}$

 $|U| \ge (\alpha + \delta)|V_n|,$

then $e(H_n[U]) \geq \xi |E_n|$.

Szemerédi's theorem

 \longrightarrow 0-dense, $\ell = k$

sufficient density yields interesting substructures

Definition (α -dense)

A sequence $(H_n = (V_n, E_n))_{n \in \mathbb{N}}$ of ℓ -uniform hypergraphs is α -dense, if the following holds:

 $\forall \delta > 0, \ \exists \xi > 0 \ \text{and} \ n_0 \ \text{such that} \ \forall n \geq n_0 \ \text{we have If} \ U \subseteq V_n \ \text{and}$

$$|U|\geq (\alpha+\delta)|V_n|,$$

then $e(H_n[U]) \ge \xi |E_n|$.

Szemerédi's theorem \longrightarrow 0-dense, $\ell = k$ multidim. Szemerédi theorem \longrightarrow 0-dense, $\ell = |F|$

sufficient density yields interesting substructures

Definition (α -dense)

A sequence $(H_n = (V_n, E_n))_{n \in \mathbb{N}}$ of ℓ -uniform hypergraphs is α -dense, if the following holds:

 $orall \delta > 0, \ \exists \xi > 0 \ \text{and} \ n_0 \ \text{such that} \ orall n \ge n_0 \ \text{we have If} \ U \subseteq V_n \ \text{and}$

$$|U|\geq (\alpha+\delta)|V_n|,$$

then $e(H_n[U]) \ge \xi |E_n|$.

- Szemerédi's theorem
- multidim. Szemerédi theorem
- Schur-triple

 \longrightarrow 0-dense, $\ell = k$

$$\longrightarrow$$
 0-dense, $\ell = |F|$

$$\longrightarrow 1/2$$
-dense, $\ell=3$

sufficient density yields interesting substructures

Definition (α -dense)

A sequence $(H_n = (V_n, E_n))_{n \in \mathbb{N}}$ of ℓ -uniform hypergraphs is α -dense, if the following holds:

 $orall \delta > 0, \ \exists \xi > 0 \ \text{and} \ n_0 \ \text{such that} \ orall n \ge n_0 \ \text{we have If} \ U \subseteq V_n \ \text{and}$

$$|U|\geq (\alpha+\delta)|V_n|,$$

then $e(H_n[U]) \ge \xi |E_n|$.

- Szemerédi's theorem
- multidim. Szemerédi theorem
- Schur-triple
- Turán type problems

- \longrightarrow 0-dense, $\ell = k$
- \longrightarrow 0-dense, $\ell = |F|$
- $\longrightarrow 1/2$ -dense, $\ell = 3$
- $\longrightarrow \pi_F$ -dense, $\ell = e(F)$

sufficient density yields interesting substructures

Definition (α -dense)

A sequence $(H_n = (V_n, E_n))_{n \in \mathbb{N}}$ of ℓ -uniform hypergraphs is α -dense, if the following holds:

 $orall \delta > 0, \ \exists \xi > 0 \ \text{and} \ n_0 \ \text{such that} \ orall n \ge n_0 \ \text{we have If} \ U \subseteq V_n \ \text{and}$

$$|U|\geq (\alpha+\delta)|V_n|,$$

then $e(H_n[U]) \ge \xi |E_n|$.

- Szemerédi's theorem
- multidim. Szemerédi theorem
- Schur-triple
- Turán type problems

- \longrightarrow 0-dense, $\ell = k$
- \longrightarrow 0-dense, $\ell = |F|$
- $\longrightarrow 1/2$ -dense, $\ell = 3$
- $\longrightarrow \pi_F$ -dense, $\ell = e(F)$

Random Versions

Mathias Schacht

Extremal Combinatorics in Random Sets

July 2013

For which random model are scaled/relative versions of the mentioned results true?

For which random model are scaled/relative versions of the mentioned results true?

```
• Let k \in \mathbb{N}, \delta > 0 and X \subseteq [n] "random".
```

For which random model are scaled/relative versions of the mentioned results true?

Let k ∈ N, δ > 0 and X ⊆ [n] "random".
 Does X a.a.s. have the following property: Every A ⊆ X with

 $|A| \geq \delta |X|$

contains an AP_k ,

For which random model are scaled/relative versions of the mentioned results true?

Let k ∈ N, δ > 0 and X ⊆ [n] "random".
 Does X a.a.s. have the following property: Every A ⊆ X with

 $|A| \geq \delta |X|$

contains an AP_k , i.e. $\mathbb{P}(r_k(X) \leq \delta |X|) = 1 - o(1)$?

For which random model are scaled/relative versions of the mentioned results true?

Let k ∈ N, δ > 0 and X ⊆ [n] "random".
 Does X a.a.s. have the following property: Every A ⊆ X with

 $|A| \geq \delta |X|$

contains an AP_k , i.e. $\mathbb{P}(r_k(X) \le \delta |X|) = 1 - o(1)$?

• Let F be a hypergraph, $\delta > 0$ and G a "random hypergraph".

For which random model are scaled/relative versions of the mentioned results true?

Let k ∈ N, δ > 0 and X ⊆ [n] "random".
 Does X a.a.s. have the following property: Every A ⊆ X with

 $|A| \geq \delta |X|$

contains an AP_k , i.e. $\mathbb{P}(r_k(X) \le \delta |X|) = 1 - o(1)$?

• Let F be a hypergraph, $\delta > 0$ and G a "random hypergraph". Does G a.a.s. have the following property: Every subhypergraph $H \subseteq G$ with

$$e(H) \ge (\pi_F + \delta)e(G)$$

contains a copy of F?

What are the asymptotics of the smallest sequence $(p_n)_{n \in \mathbb{N}}$ of probabilities such that α -density from $(H_n)_{n \in \mathbb{N}}$ can be transferred to $(H_n[V_{n,p_n}])_{n \in \mathbb{N}}$?

What are the asymptotics of the smallest sequence $(p_n)_{n \in \mathbb{N}}$ of probabilities such that α -density from $(H_n)_{n \in \mathbb{N}}$ can be transferred to $(H_n[V_{n,p_n}])_{n \in \mathbb{N}}$?

• Let $k \in \mathbb{N}$, $\delta > 0$.

What are the asymptotics of the smallest sequence $(p_n)_{n \in \mathbb{N}}$ of probabilities such that α -density from $(H_n)_{n \in \mathbb{N}}$ can be transferred to $(H_n[V_{n,p_n}])_{n \in \mathbb{N}}$?

• Let $k \in \mathbb{N}$, $\delta > 0$. For which $(p_n)_{n \in \mathbb{N}}$ we have

 $\lim_{n\to\infty}\mathbb{P}\big(\forall\,A\subseteq [n]_{\rho_n} \text{ with } |A|\geq \delta|[n]_{\rho_n}| \text{ contains } \mathsf{AP}_k\big)=1\,?$

What are the asymptotics of the smallest sequence $(p_n)_{n \in \mathbb{N}}$ of probabilities such that α -density from $(H_n)_{n \in \mathbb{N}}$ can be transferred to $(H_n[V_{n,p_n}])_{n \in \mathbb{N}}$?

• Let $k \in \mathbb{N}$, $\delta > 0$. For which $(p_n)_{n \in \mathbb{N}}$ we have

 $\lim_{n\to\infty} \mathbb{P}\big(\forall A\subseteq [n]_{p_n} \text{ with } |A|\geq \delta|[n]_{p_n}| \text{ contains } \mathsf{AP}_k\big)=1\,?$

• Let *F* be a *k*-uniform hypergraph, $\delta > 0$.

What are the asymptotics of the smallest sequence $(p_n)_{n \in \mathbb{N}}$ of probabilities such that α -density from $(H_n)_{n \in \mathbb{N}}$ can be transferred to $(H_n[V_{n,p_n}])_{n \in \mathbb{N}}$?

• Let $k \in \mathbb{N}$, $\delta > 0$. For which $(p_n)_{n \in \mathbb{N}}$ we have

 $\lim_{n\to\infty} \mathbb{P}\big(\forall A \subseteq [n]_{p_n} \text{ with } |A| \geq \delta |[n]_{p_n}| \text{ contains } \mathsf{AP}_k\big) = 1?$

• Let F be a k-uniform hypergraph, $\delta > 0$. For which $(p_n)_{n \in \mathbb{N}}$ we have

$$\lim_{n \to \infty} \mathbb{P}(\forall H \subseteq G^{(k)}(n, p_n) \text{ with } |e(H)| \ge (\pi_F + \delta)e(G^{(k)}(n, p_n))$$

conatins a copy of $F) = 1$?

Lower bounds

First Idea

Random subsets must contain the given structure

Lower bounds

First Idea

Random subsets must contain the given structure **Example:** (Szemerédi's theorem): $p^k n^2 \rightarrow 0$.

Lower bounds

First Idea

Random subsets must contain the given structure **Example:** (Szemerédi's theorem): $p^k n^2 \rightarrow 0$.

Second Idea

A.a.s. we need

$$e(H_n[V_{n,p_n}]) \gg |V_{n,p_n}|.$$

Examples:

• $p^k n^2 \gg pn$

Szemerédi's theorem

Lower bounds

First Idea

Random subsets must contain the given structure **Example:** (Szemerédi's theorem): $p^k n^2 \rightarrow 0$.

Second Idea

A.a.s. we need

$$e(H_n[V_{n,p_n}]) \gg |V_{n,p_n}|.$$

Examples:

 $p^{k} n^{2} \gg pn$ $p^{|F|} n^{d+1} \gg pn^{d}$ $p^{3} n^{2} \gg pn$

Szemerédi's theorem

multidim. Szemerédi theorem

Schur-triples

Lower bounds

First Idea

Random subsets must contain the given structure **Example:** (Szemerédi's theorem): $p^k n^2 \rightarrow 0$.

Second Idea

A.a.s. we need

$$e(H_n[V_{n,p_n}]) \gg |V_{n,p_n}|.$$

Examples:

• $p^k n^2 \gg pn$	Szemerédi's theorem
• $p^{ F }n^{d+1} \gg pn^d$	multidim. Szemerédi theorem
• $p^3 n^2 \gg pn$	Schur-triples
• $p^{e(F')}n^{v(F')} \gg pn^k \forall F' \subseteq F$	Turán

Extremal Combinatorics in Random Sets

Mathias Schacht

Extremal Combinatorics in Random Sets

July 2013

Theorem

Second lower bound is asymptotically correct.

Theorem

Second lower bound is asymptotically correct.

similar results were obtained by Conlon and Gowers

Theorem

Second lower bound is asymptotically correct.

similar results were obtained by Conlon and Gowers

Corollary (probabilistic version of Szemerédi's theorem) $\forall k \geq 3, \forall \delta > 0, \exists 0 < c < C$, such that $\forall (q_n)_{n \in \mathbb{N}}$

$$\lim_{n\to\infty}\mathbb{P}\big(r_k([n]_{q_n})\leq\delta q_nn\big)=\begin{cases}1, & \text{if } q_n\geq Cn^{-1/(k-1)},\\0, & \text{if } q_n\leq cn^{-1/(k-1)}.\end{cases}$$

Theorem

Second lower bound is asymptotically correct.

similar results were obtained by Conlon and Gowers

Corollary (probabilistic version of Szemerédi's theorem) $\forall k \ge 3, \forall \delta > 0, \exists 0 < c < C$, such that $\forall (q_n)_{n \in \mathbb{N}}$

$$\lim_{n\to\infty} \mathbb{P}\big(r_k([n]_{q_n}) \le \delta q_n n\big) = \begin{cases} 1, & \text{if } q_n \ge Cn^{-1/(k-1)}, \\ 0, & \text{if } q_n \le cn^{-1/(k-1)}. \end{cases}$$

Main result yields probabilistic versions of many extremal results

- multidimensional and polynomial variants of Szemerédi's theorem
- maximal sum-free subsets
- theorems of Turán and of Erdős and Stone for G(n, p) and $G^{(k)}(n, p)$

 probabilistic version of Turán's theorem was conjectured by Kohayakawa, Łuczak, and Rödl and only known for a few graphs F: K₃, K₄, K₅, K₆, trees, cycles (KŁR, Haxell, Steger et al.)

- probabilistic version of Turán's theorem was conjectured by Kohayakawa, Łuczak, and Rödl and only known for a few graphs F: K₃, K₄, K₅, K₆, trees, cycles (KŁR, Haxell, Steger et al.)
- probabilistic versions of Ramsey's theorem and Rado's theorem follow by a similar approach

- probabilistic version of Turán's theorem was conjectured by Kohayakawa, Łuczak, and Rödl and only known for a few graphs F: K₃, K₄, K₅, K₆, trees, cycles (KŁR, Haxell, Steger et al.)
- probabilistic versions of Ramsey's theorem and Rado's theorem follow by a similar approach
- approach was refined by Samotij to obtain Erdős-Simonovits stability theorem for *G*(*n*, *p*)

- probabilistic version of Turán's theorem was conjectured by Kohayakawa, Łuczak, and Rödl and only known for a few graphs F: K₃, K₄, K₅, K₆, trees, cycles (KŁR, Haxell, Steger et al.)
- probabilistic versions of Ramsey's theorem and Rado's theorem follow by a similar approach
- approach was refined by Samotij to obtain Erdős-Simonovits stability theorem for *G*(*n*, *p*)
- new proofs for more general results were found recently by:
 - Balogh, Morris and Samotij
 - Saxton and Thomason
- joint work with Conlon, Gowers and Samotij shows that approaches give a "Counting Lemma" for Szemerédi's regularity lemma for subgraphs of G(n, p)
 - \rightarrow probabilistic version of the Removal Lemma

Mathias Schacht

• What can we say about the gap between *c* and *C*?

- What can we say about the gap between *c* and *C*?
 - \rightarrow sharp thresholds?

- What can we say about the gap between *c* and *C*?
 - \rightarrow sharp thresholds?
 - $\rightarrow\,$ van der Waerden: joint work with Friedgut, Hàn and Person

- What can we say about the gap between *c* and *C*?
 - \rightarrow sharp thresholds?
 - $\rightarrow\,$ van der Waerden: joint work with Friedgut, Hàn and Person
- Which pseudorandom subsets $X \subseteq \mathbb{Z}/n\mathbb{Z}$ have the Roth-property?

- What can we say about the gap between *c* and *C*?
 - \rightarrow sharp thresholds?
 - $\rightarrow\,$ van der Waerden: joint work with Friedgut, Hàn and Person

• Which pseudorandom subsets $X \subseteq \mathbb{Z}/n\mathbb{Z}$ have the Roth-property? \rightarrow Is $\lambda(X) \ll |X|^2/n$ sufficient? $\Rightarrow |X| \gg n^{2/3}$

- What can we say about the gap between *c* and *C*?
 - \rightarrow sharp thresholds?
 - $\rightarrow\,$ van der Waerden: joint work with Friedgut, Hàn and Person

• Which pseudorandom subsets $X \subseteq \mathbb{Z}/n\mathbb{Z}$ have the Roth-property?

- \rightarrow Is $\lambda(X) \ll |X|^2/n$ sufficient?
- ightarrow known: $\lambda(X) \ll |X|^3/n^2$ suffices

 $\Rightarrow |X| \gg n^{2/3} \\ \Rightarrow |X| \gg n^{4/5}$

- What can we say about the gap between *c* and *C*?
 - \rightarrow sharp thresholds?
 - $\rightarrow\,$ van der Waerden: joint work with Friedgut, Hàn and Person

• Which pseudorandom subsets $X \subseteq \mathbb{Z}/n\mathbb{Z}$ have the Roth-property?

- $\begin{array}{ll} \rightarrow \ \text{Is } \lambda(X) \ll |X|^2/n \text{ sufficient?} \\ \rightarrow \ \text{known: } \lambda(X) \ll |X|^3/n^2 \text{ suffices} \end{array} \qquad \begin{array}{ll} \Rightarrow |X| \gg n^{2/3} \\ \Rightarrow |X| \gg n^{4/5} \end{array}$
- Which pseudorandom graphs have the Turán-property for a given graph F?
 Conlon, Fox & Zhao

- What can we say about the gap between *c* and *C*?
 - \rightarrow sharp thresholds?
 - $\rightarrow\,$ van der Waerden: joint work with Friedgut, Hàn and Person

• Which pseudorandom subsets $X \subseteq \mathbb{Z}/n\mathbb{Z}$ have the Roth-property?

- $\begin{array}{ll} \rightarrow \ \text{Is } \lambda(X) \ll |X|^2/n \text{ sufficient?} \\ \rightarrow \ \text{known: } \lambda(X) \ll |X|^3/n^2 \text{ suffices} \end{array} \qquad \begin{array}{ll} \Rightarrow |X| \gg n^{2/3} \\ \Rightarrow |X| \gg n^{4/5} \end{array}$
- Which pseudorandom graphs have the Turán-property for a given graph F?
 Conlon, Fox & Zhao