Extremal combinatorics in random discrete structures

Mathias Schacht

Fachbereich Mathematik
Universität Hamburg
Erdős Centennial Conference

Ramsey Theory

"Complete disorder is impossible."
T. S. Motzkin

Ramsey Theory

"Complete disorder is impossible."
T. S. Motzkin

Given

- discrete structure F

Ramsey Theory

"Complete disorder is impossible."
T. S. Motzkin

Given

- discrete structure F
e.g. graph, hypergraph, arithmetic progression

Ramsey Theory

"Complete disorder is impossible." T. S. Motzkin

Given

- discrete structure F
e.g. graph, hypergraph, arithmetic progression
- number of partition classes/colours $r \geq 2$

Ramsey Theory

"Complete disorder is impossible." T. S. Motzkin

Given

- discrete structure F
e.g. graph, hypergraph, arithmetic progression
- number of partition classes/colours $r \geq 2$

Find

- discrete structure G such that

Ramsey Theory

"Complete disorder is impossible." T. S. Motzkin

Given

- discrete structure F
e.g. graph, hypergraph, arithmetic progression
- number of partition classes/colours $r \geq 2$

Find

- discrete structure G such that

$$
G \rightarrow(F)_{r}
$$

Ramsey Theory

"Complete disorder is impossible."
Given

- discrete structure F
e.g. graph, hypergraph, arithmetic progression
- number of partition classes/colours $r \geq 2$

Find

- discrete structure G such that

$$
G \rightarrow(F)_{r}
$$

i.e. every r-colouring of G yields monochromatic copy of F

Ramsey Theory

"Complete disorder is impossible."
Given

- discrete structure F
e.g. graph, hypergraph, arithmetic progression

■ number of partition classes/colours $r \geq 2$
Find

- discrete structure G such that

$$
G \rightarrow(F)_{r}
$$

i.e. every r-colouring of G yields monochromatic copy of F

- discrete structure G with Ramsey property and additional properties

Ramsey Theory

"Complete disorder is impossible."
Given
■ discrete structure $F \quad$ e.g. graph, hypergraph, arithmetic progression
■ number of partition classes/colours $r \geq 2$
Find

- discrete structure G such that

$$
G \rightarrow(F)_{r}
$$

i.e. every r-colouring of G yields monochromatic copy of F

- discrete structure G with Ramsey property and additional properties
- "smallest" G
- G with similar properties as F itself

Ramsey theory - classical results

Example from Hamburg

Example from Hamburg

Theorem (van der Waerden '27)
$\forall k, \forall r, \exists n_{0}=n_{0}(k, r)$, such that for every partition

$$
[n]=\{1, \ldots, n\}=C_{1} \dot{\cup} \ldots \dot{\cup} C_{r}, \quad n \geq n_{0}
$$

there exists a class C_{i}, which contains an arithmetic progression of length $k\left(A P_{k}\right)$. I.e. for sufficiently large $n \geq n_{0}(k, r)$ we have

$$
[n] \rightarrow\left(A P_{k}\right)_{r} .
$$

Example from Hamburg

Theorem (van der Waerden '27)
$\forall k, \forall r, \exists n_{0}=n_{0}(k, r)$, such that for every partition

$$
[n]=\{1, \ldots, n\}=C_{1} \dot{\cup} \ldots \dot{\cup} C_{r}, \quad n \geq n_{0}
$$

there exists a class C_{i}, which contains an arithmetic progression of length $k\left(A P_{k}\right)$. I.e. for sufficiently large $n \geq n_{0}(k, r)$ we have

$$
[n] \rightarrow\left(A P_{k}\right)_{r} .
$$

Example

Example from Hamburg

Theorem (van der Waerden '27)
$\forall k, \forall r, \exists n_{0}=n_{0}(k, r)$, such that for every partition

$$
[n]=\{1, \ldots, n\}=C_{1} \dot{\cup} \ldots \dot{\cup} C_{r}, \quad n \geq n_{0}
$$

there exists a class C_{i}, which contains an arithmetic progression of length $k\left(A P_{k}\right)$. I.e. for sufficiently large $n \geq n_{0}(k, r)$ we have

$$
[n] \rightarrow\left(A P_{k}\right)_{r} .
$$

Example

Example from Hamburg

Theorem (van der Waerden '27)
$\forall k, \forall r, \exists n_{0}=n_{0}(k, r)$, such that for every partition

$$
[n]=\{1, \ldots, n\}=C_{1} \dot{\cup} \ldots \dot{\cup} C_{r}, \quad n \geq n_{0}
$$

there exists a class C_{i}, which contains an arithmetic progression of length $k\left(A P_{k}\right)$. I.e. for sufficiently large $n \geq n_{0}(k, r)$ we have

$$
[n] \rightarrow\left(A P_{k}\right)_{r} .
$$

Example

Ramsey theory - classical results

Theorem (van der Waerden '27)
$\forall k, \forall r, \exists n_{0}=n_{0}(k, r)$, such that for every partition

$$
[n]=\{1, \ldots, n\}=C_{1} \dot{\cup} \ldots \dot{\cup} C_{r}, \quad n \geq n_{0}
$$

there exists a class C_{i}, which contains an arithmetic progression of length $k\left(A P_{k}\right)$. I.e. for sufficiently large $n \geq n_{0}(k, r)$ we have

$$
[n] \rightarrow\left(A P_{k}\right)_{r} .
$$

Example

Theorem (Ramsey '30)

$$
\forall F, r \exists n_{0} \forall n \geq n_{0}: \quad K_{n}^{(k)} \rightarrow(F)_{r}^{e} .
$$

Extremal Combinatorics

Extremal Combinatorics

Given

- set of discrete structures

Extremal Combinatorics

Given

- set of discrete structures
graphs on n vertices, $2^{[n]}$

Extremal Combinatorics

Given

- set of discrete structures graphs on n vertices, $2^{[n]}$
- property

Extremal Combinatorics

Given

- set of discrete structures
- property
graphs on n vertices, $2^{[n]}$ containing no cycle, $A P_{k}$-free

Extremal Combinatorics

Given

- set of discrete structures
- property
graphs on n vertices, $2^{[n]}$ containing no cycle, $A P_{k}$-free
- parameter

Extremal Combinatorics

Given

- set of discrete structures
- property containing no cycle, $A P_{k}$-free
- parameter

Extremal Combinatorics

Given

- set of discrete structures
- property
- parameter

> graphs on n vertices, $2^{[n]}$ containing no cycle, $A P_{k}$-free number of edges, size

Find

- maximal and "almost" maximal structures with that property

Extremal Combinatorics

Given

- set of discrete structures
- property
- parameter

> graphs on n vertices, $2^{[n]}$ containing no cycle, $A P_{k}$-free number of edges, size

Find

- maximal and "almost" maximal structures with that property
- number of structures with that property

Extremal Combinatorics

Given

- set of discrete structures
- property
- parameter

> graphs on n vertices, $2^{[n]}$ containing no cycle, $A P_{k}$-free number of edges, size

Find

- maximal and "almost" maximal structures with that property

■ number of structures with that property

- number of maximal structures

Extremal Combinatorics

Given

- set of discrete structures
- property
- parameter

> graphs on n vertices, $2^{[n]}$ containing no cycle, $A P_{k}$-free number of edges, size

Find

- maximal and "almost" maximal structures with that property

■ number of structures with that property

- number of maximal structures
- typical structure with that property

Extremal Combinatorics

Given

- set of discrete structures
- property
- parameter
graphs on n vertices, $2^{[n]}$ containing no cycle, $A P_{k}$-free number of edges, size

Find

- maximal and "almost" maximal structures with that property
- number of structures with that property
- number of maximal structures
- typical structure with that property
- typical structure with additional restrictions

Turán Theory

For a k-uniform hypergraph F and $n \in \mathbb{N}$ set

$$
\operatorname{ex}(n, F):=\max \left\{e(H): H \subseteq K_{n}^{(k)} \text { and } H \text { is } F \text {-free }\right\}
$$

Turán Theory

For a k-uniform hypergraph F and $n \in \mathbb{N}$ set

$$
\operatorname{ex}(n, F):=\max \left\{e(H): H \subseteq K_{n}^{(k)} \text { and } H \text { is } F \text {-free }\right\} .
$$

Fact: $\pi_{F}=\lim _{n \rightarrow \infty} \operatorname{ex}(n, F) /\binom{n}{k}$ exists.

Turán Theory

For a k-uniform hypergraph F and $n \in \mathbb{N}$ set

$$
\operatorname{ex}(n, F):=\max \left\{e(H): H \subseteq K_{n}^{(k)} \text { and } H \text { is } F \text {-free }\right\}
$$

Fact: $\pi_{F}=\lim _{n \rightarrow \infty} \operatorname{ex}(n, F) /\binom{n}{k}$ exists.
Theorem (Mantel, Turán, Erdős, Stone, ...)
$\forall \operatorname{graph}(k=2) F$

$$
\pi_{\digamma}=1-\frac{1}{\chi(F)-1}
$$

Turán Theory

For a k-uniform hypergraph F and $n \in \mathbb{N}$ set

$$
\operatorname{ex}(n, F):=\max \left\{e(H): H \subseteq K_{n}^{(k)} \text { and } H \text { is } F \text {-free }\right\}
$$

Fact: $\pi_{F}=\lim _{n \rightarrow \infty} \operatorname{ex}(n, F) /\binom{n}{k}$ exists.
Theorem (Mantel, Turán, Erdős, Stone, ...)
$\forall \operatorname{graph}(k=2) F$

$$
\pi_{\digamma}=1-\frac{1}{\chi(F)-1}
$$

■ extremal and almost extremal graphs are known

Turán Theory

For a k-uniform hypergraph F and $n \in \mathbb{N}$ set

$$
\operatorname{ex}(n, F):=\max \left\{e(H): H \subseteq K_{n}^{(k)} \text { and } H \text { is } F \text {-free }\right\}
$$

Fact: $\pi_{F}=\lim _{n \rightarrow \infty} \operatorname{ex}(n, F) /\binom{n}{k}$ exists.
Theorem (Mantel, Turán, Erdős, Stone, ...)
$\forall \operatorname{graph}(k=2) F$

$$
\pi_{\digamma}=1-\frac{1}{\chi(F)-1}
$$

■ extremal and almost extremal graphs are known
■ almost all K_{k}-free graphs are $(k-1)$-colourable

Turán Theory

For a k-uniform hypergraph F and $n \in \mathbb{N}$ set

$$
\operatorname{ex}(n, F):=\max \left\{e(H): H \subseteq K_{n}^{(k)} \text { and } H \text { is } F \text {-free }\right\}
$$

Fact: $\pi_{F}=\lim _{n \rightarrow \infty} \operatorname{ex}(n, F) /\binom{n}{k}$ exists.
Theorem (Mantel, Turán, Erdős, Stone, ...)
\forall graph $(k=2) F$

$$
\pi_{\digamma}=1-\frac{1}{\chi(F)-1}
$$

- extremal and almost extremal graphs are known

■ almost all K_{k}-free graphs are $(k-1)$-colourable

- almost all K_{k}-free graphs of given density are $(k-1)$-colourable

Turán Theory

For a k-uniform hypergraph F and $n \in \mathbb{N}$ set

$$
\operatorname{ex}(n, F):=\max \left\{e(H): H \subseteq K_{n}^{(k)} \text { and } H \text { is } F \text {-free }\right\}
$$

Fact: $\pi_{F}=\lim _{n \rightarrow \infty} \operatorname{ex}(n, F) /\binom{n}{k}$ exists.
Theorem (Mantel, Turán, Erdős, Stone, ...)
\forall graph $(k=2)$ F

$$
\pi_{\digamma}=1-\frac{1}{\chi(F)-1}
$$

■ extremal and almost extremal graphs are known
■ almost all K_{k}-free graphs are $(k-1)$-colourable

- almost all K_{k}-free graphs of given density are $(k-1)$-colourable
- $\pi_{F}=0$ iff F is k-partite

Turán Theory

For a k-uniform hypergraph F and $n \in \mathbb{N}$ set

$$
\operatorname{ex}(n, F):=\max \left\{e(H): H \subseteq K_{n}^{(k)} \text { and } H \text { is } F \text {-free }\right\}
$$

Fact: $\pi_{F}=\lim _{n \rightarrow \infty} \operatorname{ex}(n, F) /\binom{n}{k}$ exists.
Theorem (Mantel, Turán, Erdős, Stone, ...)
$\forall \operatorname{graph}(k=2) F$

$$
\pi_{\digamma}=1-\frac{1}{\chi(F)-1}
$$

■ extremal and almost extremal graphs are known

- almost all K_{k}-free graphs are $(k-1)$-colourable
- almost all K_{k}-free graphs of given density are $(k-1)$-colourable
- $\pi_{F}=0$ iff F is k-partite
- π_{F} known only for very few hypergraphs $k \geq 3$

Szemerédi's Theorem

For $X \subseteq[n]$ set

$$
r_{k}(X):=\max \left\{|A|: A \subset X \text { is }{A P_{k}}^{-} \text {-free }\right\} .
$$

Szemerédi's Theorem

For $X \subseteq[n]$ set

$$
r_{k}(X):=\max \left\{|A|: A \subset X \text { is } \mathrm{AP}_{k} \text {-free }\right\} .
$$

Conjecture (Erdős-Turán '36)
$\forall k \in \mathbb{N}$

$$
\lim _{n \rightarrow \infty} \frac{r_{k}(n)}{n}=0 .
$$

Szemerédi's Theorem

For $X \subseteq[n]$ set

$$
r_{k}(X):=\max \left\{|A|: A \subset X \text { is } \mathrm{AP}_{k} \text {-free }\right\} .
$$

Theorem (Szemerédi '75)
$\forall k \in \mathbb{N}$

$$
\lim _{n \rightarrow \infty} \frac{r_{k}(n)}{n}=0
$$

Szemerédi's Theorem

For $X \subseteq[n]$ set

$$
r_{k}(X):=\max \left\{|A|: A \subset X \text { is } \mathrm{AP}_{k} \text {-free }\right\} .
$$

Theorem (Szemerédi '75)

$\forall k \in \mathbb{N}$

$$
\lim _{n \rightarrow \infty} \frac{r_{k}(n)}{n}=0
$$

Szemerédi's Theorem

For $X \subseteq[n]$ set

$$
r_{k}(X):=\max \left\{|A|: A \subset X \text { is } \mathrm{AP}_{k} \text {-free }\right\} .
$$

Theorem (Szemerédi '75)

$\forall k \in \mathbb{N}$

$$
\lim _{n \rightarrow \infty} \frac{r_{k}(n)}{n}=0
$$

Szemerédi's Theorem

For $X \subseteq[n]$ set

$$
r_{k}(X):=\max \left\{|A|: A \subset X \text { is } \mathrm{AP}_{k} \text {-free }\right\} .
$$

Theorem (Szemerédi '75)

$\forall k \in \mathbb{N}$

$$
\lim _{n \rightarrow \infty} \frac{r_{k}(n)}{n}=0
$$

Szemerédi's Theorem

For $X \subseteq[n]$ set

$$
r_{k}(X):=\max \left\{|A|: A \subset X \text { is } \mathrm{AP}_{k} \text {-free }\right\} .
$$

Theorem (Szemerédi '75)

$\forall k \in \mathbb{N}$

$$
\lim _{n \rightarrow \infty} \frac{r_{k}(n)}{n}=0
$$

- Extension of van der Waerden's theorem
- multidimensional and polynomial extensions known
- density version of the Hales-Jewett theorem

Relative Versions

Question

Which sets $X \subseteq \mathbb{N}$ (or $X \subseteq \mathbb{Z} / n \mathbb{Z}$) satisfy

$$
r_{k}(X \cap[n])=o(|X|) \quad ?
$$

Relative Versions

Question

Which sets $X \subseteq \mathbb{N}$ (or $X \subseteq \mathbb{Z} / n \mathbb{Z}$) satisfy

$$
r_{k}(X \cap[n])=o(|X|) \quad ?
$$

■ $k=3, X \in\binom{[n]}{m}$ random subsets with $m=C \sqrt{n}$ elements Kohayakawa, Łuczak, and Rödl

Relative Versions

Question

Which sets $X \subseteq \mathbb{N}$ (or $X \subseteq \mathbb{Z} / n \mathbb{Z}$) satisfy

$$
r_{k}(X \cap[n])=o(|X|) \quad ?
$$

■ $k=3, X \in\binom{[n]}{m}$ random subsets with $m=C \sqrt{n}$ elements Kohayakawa, Łuczak, and Rödl

■ $X=\{2,3,5,7,11, \ldots\}$

Sum-free Sets

Observation
If $A \subseteq[n]$ with

$$
|A|>\left\lceil\frac{n}{2}\right\rceil
$$

then there exist $x, y, z \in A$ such that $x+y=z$.

Sum-free Sets

Observation

If $A \subseteq[n]$ with

$$
|A|>\left\lceil\frac{n}{2}\right\rceil
$$

then there exist $x, y, z \in A$ such that $x+y=z$.

"Corollary"

$\forall \delta>0, \exists n_{0}$ such that $\forall n \geq n_{0}$ we have, if $A \subseteq[n]$ and

$$
|A| \geq\left(\frac{1}{2}+\delta\right) n
$$

then A contains a Schur-triple.

Sum-free Sets

Observation

If $A \subseteq[n]$ with

$$
|A|>\left\lceil\frac{n}{2}\right\rceil
$$

then there exist $x, y, z \in A$ such that $x+y=z$.

"Corollary"

$\forall \delta>0, \exists n_{0}$ such that $\forall n \geq n_{0}$ we have, if $A \subseteq[n]$ and

$$
|A| \geq\left(\frac{1}{2}+\delta\right) n
$$

then A contains a Schur-triple.

- Ramsey version due to Schur '17:

$$
[r!\mathrm{e}] \rightarrow(x+y=z)_{r} .
$$

General Framework

■ sufficient density yields interesting substructures

General Framework

■ sufficient density yields interesting substructures

Definition (α-dense)

A sequence $\left(H_{n}=\left(V_{n}, E_{n}\right)\right)_{n \in \mathbb{N}}$ of ℓ-uniform hypergraphs is α-dense, if the following holds:
$\forall \delta>0, \exists \xi>0$ and n_{0} such that $\forall n \geq n_{0}$ we have If $U \subseteq V_{n}$ and

$$
|U| \geq(\alpha+\delta)\left|V_{n}\right|
$$

then $e\left(H_{n}[U]\right) \geq \xi\left|E_{n}\right|$.

General Framework

- sufficient density yields interesting substructures

Definition (α-dense)

A sequence $\left(H_{n}=\left(V_{n}, E_{n}\right)\right)_{n \in \mathbb{N}}$ of ℓ-uniform hypergraphs is α-dense, if the following holds:
$\forall \delta>0, \exists \xi>0$ and n_{0} such that $\forall n \geq n_{0}$ we have If $U \subseteq V_{n}$ and

$$
|U| \geq(\alpha+\delta)\left|V_{n}\right|
$$

then $e\left(H_{n}[U]\right) \geq \xi\left|E_{n}\right|$.

■ Szemerédi's theorem
$\longrightarrow 0$-dense, $\ell=k$

General Framework

- sufficient density yields interesting substructures

Definition (α-dense)

A sequence $\left(H_{n}=\left(V_{n}, E_{n}\right)\right)_{n \in \mathbb{N}}$ of ℓ-uniform hypergraphs is α-dense, if the following holds:
$\forall \delta>0, \exists \xi>0$ and n_{0} such that $\forall n \geq n_{0}$ we have If $U \subseteq V_{n}$ and

$$
|U| \geq(\alpha+\delta)\left|V_{n}\right|
$$

then $e\left(H_{n}[U]\right) \geq \xi\left|E_{n}\right|$.

- Szemerédi's theorem
$\longrightarrow 0$-dense, $\ell=k$
- multidim. Szemerédi theorem
$\longrightarrow 0$-dense, $\ell=|F|$

General Framework

■ sufficient density yields interesting substructures

Definition (α-dense)

A sequence $\left(H_{n}=\left(V_{n}, E_{n}\right)\right)_{n \in \mathbb{N}}$ of ℓ-uniform hypergraphs is α-dense, if the following holds:
$\forall \delta>0, \exists \xi>0$ and n_{0} such that $\forall n \geq n_{0}$ we have If $U \subseteq V_{n}$ and

$$
|U| \geq(\alpha+\delta)\left|V_{n}\right|
$$

then $e\left(H_{n}[U]\right) \geq \xi\left|E_{n}\right|$.

- Szemerédi's theorem
$\longrightarrow 0$-dense, $\ell=k$
- multidim. Szemerédi theorem
- Schur-triple
$\longrightarrow 0$-dense, $\ell=|F|$
$\longrightarrow 1 / 2$-dense, $\ell=3$

General Framework

- sufficient density yields interesting substructures

Definition (α-dense)

A sequence $\left(H_{n}=\left(V_{n}, E_{n}\right)\right)_{n \in \mathbb{N}}$ of ℓ-uniform hypergraphs is α-dense, if the following holds:
$\forall \delta>0, \exists \xi>0$ and n_{0} such that $\forall n \geq n_{0}$ we have If $U \subseteq V_{n}$ and

$$
|U| \geq(\alpha+\delta)\left|V_{n}\right|
$$

then $e\left(H_{n}[U]\right) \geq \xi\left|E_{n}\right|$.

■ Szemerédi's theorem

- multidim. Szemerédi theorem
- Schur-triple
- Turán type problems
$\longrightarrow 0$-dense, $\ell=k$
$\longrightarrow 0$-dense, $\ell=|F|$
$\longrightarrow 1 / 2$-dense, $\ell=3$
$\longrightarrow \pi_{F}$-dense, $\ell=e(F)$

General Framework

- sufficient density yields interesting substructures

Definition (α-dense)

A sequence $\left(H_{n}=\left(V_{n}, E_{n}\right)\right)_{n \in \mathbb{N}}$ of ℓ-uniform hypergraphs is α-dense, if the following holds:
$\forall \delta>0, \exists \xi>0$ and n_{0} such that $\forall n \geq n_{0}$ we have If $U \subseteq V_{n}$ and

$$
|U| \geq(\alpha+\delta)\left|V_{n}\right|
$$

then $e\left(H_{n}[U]\right) \geq \xi\left|E_{n}\right|$.

■ Szemerédi's theorem

- multidim. Szemerédi theorem
- Schur-triple
- Turán type problems
$\longrightarrow 0$-dense, $\ell=k$
$\longrightarrow 0$-dense, $\ell=|F|$
$\longrightarrow 1 / 2$-dense, $\ell=3$
$\longrightarrow \pi_{F}$-dense, $\ell=e(F)$

Random Versions

Relative Versions in Random Subsets

For which random model are scaled/relative versions of the mentioned results true?

Relative Versions in Random Subsets

For which random model are scaled/relative versions of the mentioned results true?

- Let $k \in \mathbb{N}, \delta>0$ and $X \subseteq[n]$ "random".

Relative Versions in Random Subsets

For which random model are scaled/relative versions of the mentioned results true?

- Let $k \in \mathbb{N}, \delta>0$ and $X \subseteq[n]$ "random".

Does X a.a.s. have the following property: Every $A \subseteq X$ with

$$
|A| \geq \delta|X|
$$

contains an $A P_{k}$,

Relative Versions in Random Subsets

For which random model are scaled/relative versions of the mentioned results true?

- Let $k \in \mathbb{N}, \delta>0$ and $X \subseteq[n]$ "random".

Does X a.a.s. have the following property: Every $A \subseteq X$ with

$$
|A| \geq \delta|X|
$$

contains an $A P_{k}$, i.e. $\mathbb{P}\left(r_{k}(X) \leq \delta|X|\right)=1-o(1)$?

Relative Versions in Random Subsets

For which random model are scaled/relative versions of the mentioned results true?

- Let $k \in \mathbb{N}, \delta>0$ and $X \subseteq[n]$ "random".

Does X a.a.s. have the following property: Every $A \subseteq X$ with

$$
|A| \geq \delta|X|
$$

contains an $A P_{k}$, i.e. $\mathbb{P}\left(r_{k}(X) \leq \delta|X|\right)=1-o(1)$?

- Let F be a hypergraph, $\delta>0$ and G a "random hypergraph".

Relative Versions in Random Subsets

For which random model are scaled/relative versions of the mentioned results true?

- Let $k \in \mathbb{N}, \delta>0$ and $X \subseteq[n]$ "random".

Does X a.a.s. have the following property: Every $A \subseteq X$ with

$$
|A| \geq \delta|X|
$$

contains an $A P_{k}$, i.e. $\mathbb{P}\left(r_{k}(X) \leq \delta|X|\right)=1-o(1)$?

- Let F be a hypergraph, $\delta>0$ and G a "random hypergraph".

Does G a.a.s. have the following property: Every subhypergraph $H \subseteq G$ with

$$
e(H) \geq\left(\pi_{F}+\delta\right) e(G)
$$

contains a copy of F ?

Main Question

What are the asymtotics of the smallest sequence $\left(p_{n}\right)_{n \in \mathbb{N}}$ of probabilities such that α-density from $\left(H_{n}\right)_{n \in \mathbb{N}}$ can be transferred to $\left(H_{n}\left[V_{n, p_{n}}\right]\right)_{n \in \mathbb{N}}$?

Main Question

What are the asymtotics of the smallest sequence $\left(p_{n}\right)_{n \in \mathbb{N}}$ of probabilities such that α-density from $\left(H_{n}\right)_{n \in \mathbb{N}}$ can be transferred to $\left(H_{n}\left[V_{n, p_{n}}\right]\right)_{n \in \mathbb{N}}$?

- Let $k \in \mathbb{N}, \delta>0$.

Main Question

What are the asymtotics of the smallest sequence $\left(p_{n}\right)_{n \in \mathbb{N}}$ of probabilities such that α-density from $\left(H_{n}\right)_{n \in \mathbb{N}}$ can be transferred to $\left(H_{n}\left[V_{n, p_{n}}\right]\right)_{n \in \mathbb{N}}$?

- Let $k \in \mathbb{N}, \delta>0$.

For which $\left(p_{n}\right)_{n \in \mathbb{N}}$ we have

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\forall A \subseteq[n]_{p_{n}} \text { with }|A| \geq \delta\left|[n]_{p_{n}}\right| \text { contains } A P_{k}\right)=1 \text { ? }
$$

Main Question

What are the asymtotics of the smallest sequence $\left(p_{n}\right)_{n \in \mathbb{N}}$ of probabilities such that α-density from $\left(H_{n}\right)_{n \in \mathbb{N}}$ can be transferred to $\left(H_{n}\left[V_{n, p_{n}}\right]\right)_{n \in \mathbb{N}}$?

- Let $k \in \mathbb{N}, \delta>0$.

For which $\left(p_{n}\right)_{n \in \mathbb{N}}$ we have

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\forall A \subseteq[n]_{p_{n}} \text { with }|A| \geq \delta\left|[n]_{p_{n}}\right| \text { contains } A P_{k}\right)=1 \text { ? }
$$

- Let F be a k-uniform hypergraph, $\delta>0$.

Main Question

What are the asymtotics of the smallest sequence $\left(p_{n}\right)_{n \in \mathbb{N}}$ of probabilities such that α-density from $\left(H_{n}\right)_{n \in \mathbb{N}}$ can be transferred to $\left(H_{n}\left[V_{n, p_{n}}\right]\right)_{n \in \mathbb{N}}$?

- Let $k \in \mathbb{N}, \delta>0$.

For which $\left(p_{n}\right)_{n \in \mathbb{N}}$ we have

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\forall A \subseteq[n]_{p_{n}} \text { with }|A| \geq \delta\left|[n]_{p_{n}}\right| \text { contains } A P_{k}\right)=1 \text { ? }
$$

- Let F be a k-uniform hypergraph, $\delta>0$.

For which $\left(p_{n}\right)_{n \in \mathbb{N}}$ we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \mathbb{P}\left(\forall H \subseteq G^{(k)}\left(n, p_{n}\right) \text { with }|e(H)| \geq\left(\pi_{F}+\delta\right) e\left(G^{(k)}\left(n, p_{n}\right)\right)\right. \\
&\quad \text { conatins a copy of } F)=1 ?
\end{aligned}
$$

Lower bounds

First Idea
 Random subsets must contain the given structure

Lower bounds

First Idea

Random subsets must contain the given structure Example: (Szemerédi's theorem): $p^{k} n^{2} \leftrightarrow 0$.

Lower bounds

First Idea

Random subsets must contain the given structure
Example: (Szemerédi's theorem): $p^{k} n^{2} \nrightarrow 0$.

Second Idea

A.a.s. we need

$$
e\left(H_{n}\left[V_{n, p_{n}}\right]\right) \gg\left|V_{n, p_{n}}\right| .
$$

Examples:

- $p^{k} n^{2} \gg p n$

Szemerédi's theorem

Lower bounds

First Idea

Random subsets must contain the given structure
Example: (Szemerédi's theorem): $p^{k} n^{2} \nrightarrow 0$.

Second Idea

A.a.s. we need

$$
e\left(H_{n}\left[V_{n, p_{n}}\right]\right) \gg\left|V_{n, p_{n}}\right|
$$

Examples:

- $p^{k} n^{2} \gg p n$
- $p^{|F|} n^{d+1} \gg p n^{d}$
- $p^{3} n^{2} \gg p n$

Szemerédi's theorem multidim. Szemerédi theorem Schur-triples

Lower bounds

First Idea

Random subsets must contain the given structure
Example: (Szemerédi's theorem): $p^{k} n^{2} \nrightarrow 0$.

Second Idea

A.a.s. we need

$$
e\left(H_{n}\left[V_{n, p_{n}}\right]\right) \gg\left|V_{n, p_{n}}\right|
$$

Examples:

- $p^{k} n^{2} \gg p n$
- $p^{|F|} n^{d+1} \gg p n^{d}$
- $p^{3} n^{2} \gg p n$
- $p^{e\left(F^{\prime}\right)} n^{v\left(F^{\prime}\right)} \gg p n^{k} \quad \forall F^{\prime} \subseteq F$

Szemerédi's theorem multidim. Szemerédi theorem Schur-triples

Turán

Extremal Combinatorics in Random Sets

Result

Theorem
Second lower bound is asymptotically correct.

Result

Theorem
Second lower bound is asymptotically correct.

- similar results were obtained by Conlon and Gowers

Result

Theorem

Second lower bound is asymptotically correct.

- similar results were obtained by Conlon and Gowers

Corollary (probabilistic version of Szemerédi's theorem)
$\forall k \geq 3, \forall \delta>0, \exists 0<c<C$, such that $\forall\left(q_{n}\right)_{n \in \mathbb{N}}$

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(r_{k}\left([n]_{q_{n}}\right) \leq \delta q_{n} n\right)= \begin{cases}1, & \text { if } q_{n} \geq C n^{-1 /(k-1)} \\ 0, & \text { if } q_{n} \leq c n^{-1 /(k-1)}\end{cases}
$$

Result

Theorem

Second lower bound is asymptotically correct.

- similar results were obtained by Conlon and Gowers

Corollary (probabilistic version of Szemerédi's theorem)
$\forall k \geq 3, \forall \delta>0, \exists 0<c<C$, such that $\forall\left(q_{n}\right)_{n \in \mathbb{N}}$

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(r_{k}\left([n]_{q_{n}}\right) \leq \delta q_{n} n\right)= \begin{cases}1, & \text { if } q_{n} \geq C n^{-1 /(k-1)} \\ 0, & \text { if } q_{n} \leq c n^{-1 /(k-1)}\end{cases}
$$

- Main result yields probabilistic versions of many extremal results
- multidimensional and polynomial variants of Szemerédi's theorem
- maximal sum-free subsets
- theorems of Turán and of Erdős and Stone for $G(n, p)$ and $G^{(k)}(n, p)$

Remarks

■ probabilistic version of Turán's theorem was conjectured by Kohayakawa, Łuczak, and Rödl and only known for a few graphs F: $K_{3}, K_{4}, K_{5}, K_{6}$, trees, cycles (KŁR, Haxell, Steger et al.)

Remarks

- probabilistic version of Turán's theorem was conjectured by Kohayakawa, Łuczak, and Rödl and only known for a few graphs F : $K_{3}, K_{4}, K_{5}, K_{6}$, trees, cycles (KŁR, Haxell, Steger et al.)
- probabilistic versions of Ramsey's theorem and Rado's theorem follow by a similar approach

Remarks

■ probabilistic version of Turán's theorem was conjectured by Kohayakawa, Łuczak, and Rödl and only known for a few graphs F: $K_{3}, K_{4}, K_{5}, K_{6}$, trees, cycles (KŁR, Haxell, Steger et al.)

- probabilistic versions of Ramsey's theorem and Rado's theorem follow by a similar approach

■ approach was refined by Samotij to obtain Erdős-Simonovits stability theorem for $G(n, p)$

Remarks

- probabilistic version of Turán's theorem was conjectured by Kohayakawa, Łuczak, and Rödl and only known for a few graphs F : $K_{3}, K_{4}, K_{5}, K_{6}$, trees, cycles (KŁR, Haxell, Steger et al.)
- probabilistic versions of Ramsey's theorem and Rado's theorem follow by a similar approach
- approach was refined by Samotij to obtain Erdős-Simonovits stability theorem for $G(n, p)$
- new proofs for more general results were found recently by:
- Balogh, Morris and Samotij
- Saxton and Thomason
- joint work with Conlon, Gowers and Samotij shows that approaches give a "Counting Lemma" for Szemerédi's regularity lemma for subgraphs of $G(n, p)$
\rightarrow probabilistic version of the Removal Lemma

Future work and open questions

Future work and open questions

■ What can we say about the gap between c and C ?

Future work and open questions

■ What can we say about the gap between c and C ?
\rightarrow sharp thresholds?

Future work and open questions

■ What can we say about the gap between c and C ?
\rightarrow sharp thresholds?
\rightarrow van der Waerden: joint work with Friedgut, Hàn and Person

Future work and open questions

■ What can we say about the gap between c and C ?
\rightarrow sharp thresholds?
\rightarrow van der Waerden: joint work with Friedgut, Hàn and Person

- Which pseudorandom subsets $X \subseteq \mathbb{Z} / n \mathbb{Z}$ have the Roth-property?

Future work and open questions

■ What can we say about the gap between c and C ?
\rightarrow sharp thresholds?
\rightarrow van der Waerden: joint work with Friedgut, Hàn and Person

- Which pseudorandom subsets $X \subseteq \mathbb{Z} / n \mathbb{Z}$ have the Roth-property?
\rightarrow Is $\lambda(X) \ll|X|^{2} / n$ sufficient? $\quad \Rightarrow|X| \gg n^{2 / 3}$

Future work and open questions

■ What can we say about the gap between c and C ?
\rightarrow sharp thresholds?
\rightarrow van der Waerden: joint work with Friedgut, Hàn and Person

- Which pseudorandom subsets $X \subseteq \mathbb{Z} / n \mathbb{Z}$ have the Roth-property?
\rightarrow Is $\lambda(X) \ll|X|^{2} / n$ sufficient?
\rightarrow known: $\lambda(X) \ll|X|^{3} / n^{2}$ suffices
$\Rightarrow|X| \gg n^{2 / 3}$
$\Rightarrow|X| \gg n^{4 / 5}$

Future work and open questions

■ What can we say about the gap between c and C ?
\rightarrow sharp thresholds?
\rightarrow van der Waerden: joint work with Friedgut, Hàn and Person

- Which pseudorandom subsets $X \subseteq \mathbb{Z} / n \mathbb{Z}$ have the Roth-property?

$$
\begin{array}{ll}
\rightarrow \text { Is } \lambda(X) \ll|X|^{2} / n \text { sufficient? } & \Rightarrow|X| \gg n^{2 / 3} \\
\rightarrow \text { known: } \lambda(X) \ll|X|^{3} / n^{2} \text { suffices } & \Rightarrow|X| \gg n^{4 / 5}
\end{array}
$$

- Which pseudorandom graphs have the Turán-property for a given graph F ?

Conlon, Fox \& Zhao

Future work and open questions

■ What can we say about the gap between c and C ?
\rightarrow sharp thresholds?
\rightarrow van der Waerden: joint work with Friedgut, Hàn and Person

- Which pseudorandom subsets $X \subseteq \mathbb{Z} / n \mathbb{Z}$ have the Roth-property?

$$
\begin{array}{ll}
\rightarrow \text { Is } \lambda(X) \ll|X|^{2} / n \text { sufficient? } & \Rightarrow|X| \gg n^{2 / 3} \\
\rightarrow \text { known: } \lambda(X) \ll|X|^{3} / n^{2} \text { suffices } & \Rightarrow|X| \gg n^{4 / 5}
\end{array}
$$

- Which pseudorandom graphs have the Turán-property for a given graph F ?

Conlon, Fox \& Zhao

