Oscillation and edge labelled graphs

Norbert Sauer

University of Calgary

Erdős Centennial

Budapest

July 1-5, 2013.

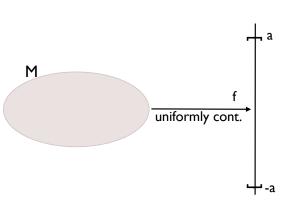
A metric space M = (M; d) has property OS if:

For every $\epsilon > 0$ and every unif. cont. bdd. function $f : M \to \Re$ there exists a copy $M^* = (M^*; d)$ of M in M for which

$$\sup\{|f(x) - f(y)| : x, y \in M^*\} < \epsilon.$$

A metric space M = (M; d) has property OS if:

For every $\epsilon > 0$ and every unif. cont. bdd. function $f : M \to \Re$ there exists a copy $M^* = (M^*; d)$ of M in M for which

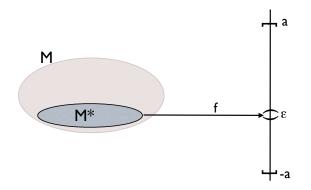


$$\sup\{|f(x)-f(y)|:x,y\in M^*\}<\epsilon.$$

A metric space M = (M; d) has property OS if:

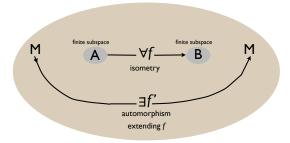
For every $\epsilon > 0$ and every unif. cont. bdd. function $f : M \to \Re$ there exists a copy $M^* = (M^*; d)$ of M in M for which

$$\sup\{|f(x)-f(y)|:x,y\in M^*\}<\epsilon.$$

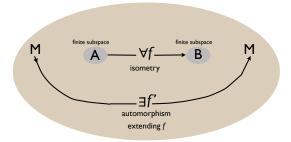


A metric space M is *homogeneous* if every isometry f of a finite subspace of M into M has an extension to an isometry f' of M.

A metric space M is *homogeneous* if every isometry f of a finite subspace of M into M has an extension to an isometry f' of M.



A metric space M is *homogeneous* if every isometry f of a finite subspace of M into M has an extension to an isometry f' of M.



A metric space M is *universal* if it embeds every finite metric space F with dist $F \subseteq \text{dist } M$.

 $\mathcal R\text{-edge}$ labeled graph can be extended to a metric

space with distances in \mathcal{R} .

 $\mathcal R\text{-edge}$ labeled graph can be extended to a metric

space with distances in \mathcal{R} .

 $\mathcal{R}:=\mathbb{N}$:

 \mathcal{R} -edge labeled graph can be extended to a metric

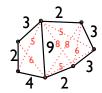
space with distances in \mathcal{R} .

 $\mathcal{R} := \mathbb{N}$:

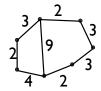
 \mathcal{R} -edge labeled graph can be extended to a metric

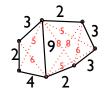
space with distances in \mathcal{R} .

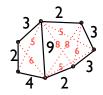
 $\mathcal{R} := \mathbb{N}$:

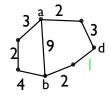


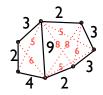
What are the conditions on a set \mathcal{R} of non negative reals so that every "*metrizable*" edge labelled graph with labels in \mathcal{R} can be embedded, label preserving, into a metric space with distances in \mathcal{R} ? $\mathcal{R} := \mathbb{N}$:

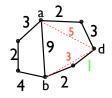


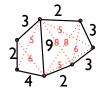




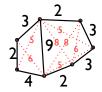




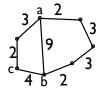


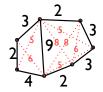


$$\mathcal{R} := \mathbb{N} \setminus \{\mathbf{5}\}$$
:

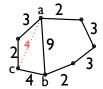


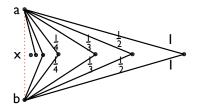
$$\mathcal{R} := \mathbb{N} \setminus \{\mathbf{5}\}$$
:

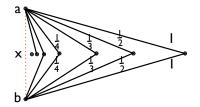




$$\mathcal{R} := \mathbb{N} \setminus \{\mathbf{5}\}$$
:

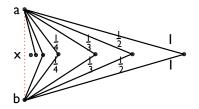






 $x \leq \frac{2}{n}$ for all *n*, hence x = 0.

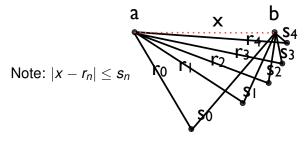
The distance *x* of *a* to *b* is "forced" to be 0.



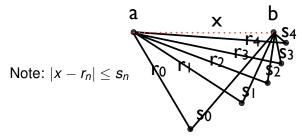
An edge labeled graph is *regular* if distances between

different points are not "forced" to be 0.

Let 0 and *r* be a limit of the set of distances \mathcal{R} . with $\lim s_n = 0$ and $\lim r_n = r$. Let 0 and *r* be a limit of the set of distances \mathcal{R} . with lim $s_n = 0$ and lim $r_n = r$.

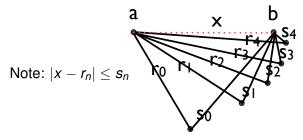


Let 0 and *r* be a limit of the set of distances \mathcal{R} . with lim $s_n = 0$ and lim $r_n = r$.



Then $|x - r| \le |x - r_n| + |r_n - r| \le s_n + |r_n - r| < \epsilon$. Hence $r \in \mathcal{R}$.

Let 0 and *r* be a limit of the set of distances \mathcal{R} . with lim $s_n = 0$ and lim $r_n = r$.



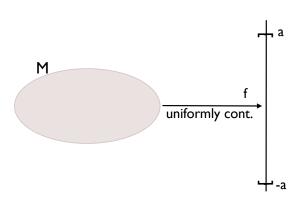
Then $|x - r| \le |x - r_n| + |r_n - r| \le s_n + |r_n - r| < \epsilon$. Hence $r \in \mathcal{R}$.

It follows that if 0 is a limit then one of the conditions on $\mathcal{R}\subseteq \Re_{\geq 0} \text{ has to be that } \mathcal{R} \text{ is a closed subset of the reals.}$

A metric space M = (M; d) has property OS if for every $\epsilon > 0$ and every uniformly continuous and bounded function $f : M \to \Re$ there exists a copy $M^* = (M^*; d)$ of M in M for which:

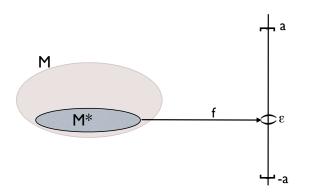
$$\sup\{|f(x)-f(y)|: x, y \in M^*\} < \epsilon.$$

A metric space M = (M; d) has property OS if for every $\epsilon > 0$ and every uniformly continuous and bounded function $f: M \to \Re$ there exists a copy $M^* = (M^*; d)$ of M in M for which:



$$\sup\{|f(x)-f(y)|:x,y\in M^*\}<\epsilon$$

A metric space M = (M; d) has property OS if for every $\epsilon > 0$ and every uniformly continuous and bounded function $f: M \to \Re$ there exists a copy $M^* = (M^*; d)$ of M in M for which:



 $\sup\{|f(x)-f(y)|:x,y\in M^*\}<\epsilon.$

A metric space M is *approximately indivisible* if:

For every $\epsilon > 0$ and $n \in \omega$ and function $\gamma : M \to n$

there exist $i \in n$ and an isometric copy $M^* = (M^*; d)$ of M with

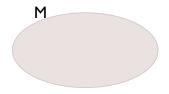
$$M^* \subseteq \left(\gamma^{-1}(i)\right)_{\epsilon}.$$

A metric space M is *approximately indivisible* if:

For every $\epsilon > 0$ and $n \in \omega$ and function $\gamma : M \to n$

there exist $i \in n$ and an isometric copy $M^* = (M^*; d)$ of M with

$$M^* \subseteq \left(\gamma^{-1}(i)\right)_{\epsilon}$$

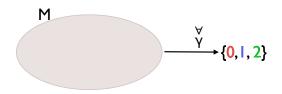


A metric space M is *approximately indivisible* if:

For every $\epsilon > 0$ and $n \in \omega$ and function $\gamma : M \to n$

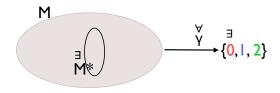
there exist $i \in n$ and an isometric copy $M^* = (M^*; d)$ of M with

$$M^* \subseteq \left(\gamma^{-1}(i)\right)_{\epsilon}$$



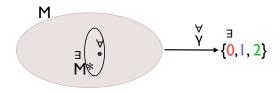
For every $\epsilon > 0$ and $n \in \omega$ and function $\gamma : M \to n$

$$M^* \subseteq \left(\gamma^{-1}(i)\right)_{\epsilon}$$



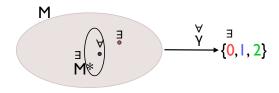
For every $\epsilon > 0$ and $n \in \omega$ and function $\gamma : M \to n$

$$M^* \subseteq \left(\gamma^{-1}(i)\right)_{\epsilon}$$



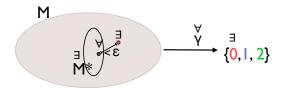
For every $\epsilon > 0$ and $n \in \omega$ and function $\gamma : M \to n$

$$M^* \subseteq \left(\gamma^{-1}(i)\right)_{\epsilon}$$



For every $\epsilon > 0$ and $n \in \omega$ and function $\gamma : M \to n$

$$M^* \subseteq \left(\gamma^{-1}(i)\right)_{\epsilon}$$



A metric space has property OS

if and only if it is approximately indivisible.

A metric space has property OS

if and only if it is approximately indivisible.

Theorem (Kechris-Pestov-Todorcevic)

In the case of homogeneous metric spaces the properties of

approximately indivisible and OS

and oscillation stable are equivalent.

Let \mathcal{R} be a closed subset of the reals $\Re_{>0}$, then:

$$s \oplus_{\mathcal{R}} r := \sup\{x \in \mathcal{R} \mid x \leq s + r\}.$$

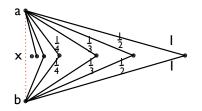
\mathcal{R} is closed under \oplus which is a commutative operation on \mathcal{R} .

For \mathcal{R} a closed subset of $\Re_{\geq 0}$.

An \mathcal{R} -edge labelled graph is metric if it is regular

For \mathcal{R} a closed subset of $\Re_{\geq 0}$.

An \mathcal{R} -edge labelled graph is metric if it is regular



For \mathcal{R} a closed subset of $\Re_{\geq 0}$.

An \mathcal{R} -edge labelled graph is metric if it is regular and the

 \oplus -sum over the labels of a path is larger than or equal to the

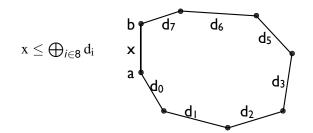
label of the edge connecting the endpoints of the path.

For \mathcal{R} a closed subset of $\Re_{\geq 0}$.

An \mathcal{R} -edge labelled graph is metric if it is regular and the

 \oplus -sum over the labels of a path is larger than or equal to the

label of the edge connecting the endpoints of the path.



If ${\mathcal R}$ is a closed subset of the reals then

every metric \mathcal{R} -edge labelled graph has an extension to a

metric space M *with* dist(M) $\subseteq \mathcal{R}$ *iff* $\oplus_{\mathcal{R}}$ *is associative.*

If 0 is a limit of \mathcal{R} and every metric \mathcal{R} -edge labelled graph has an extension to a metric space then

 \mathcal{R} is a closed subset of the reals.

Let $\mathcal{R}\subseteq \Re_{\geq 0}$ with 0 as a limit.

Let $\mathcal{R} \subseteq \Re_{\geq 0}$ with 0 as a limit.

There exists a

homogeneous universal separable complete metric space $U_{\mathcal{R}}$

iff \mathcal{R} is a closed subset of the reals and $\oplus_{\mathcal{R}}$ is associative.

Let $\mathcal{R} \subseteq \Re_{\geq 0}$ with 0 as a limit.

There exists a

homogeneous universal separable complete metric space $U_{\mathcal{R}}$

iff \mathcal{R} is a closed subset of the reals and $\oplus_{\mathcal{R}}$ is associative.

The space $U_{\mathcal{R}}$ has property OS,

or equivalently it is approximately indivisible,

iff \mathcal{R} is also bounded.

If \mathcal{R} is finite and $\oplus_{\mathcal{R}}$ is associative then:

there exists a countable homogeneous metric space, $\textbf{\textit{U}}_{\!\mathcal{R}}$,

which is indivisible.

Let $\mathcal{R}\subseteq\Re$ and $\oplus_{\mathcal{R}}$ be associative, then:

Let $\mathcal{R}\subseteq\Re$ and $\oplus_{\mathcal{R}}$ be associative, then:

1 $\oplus_{c\mathcal{R}}$ is associative. (scaling, $c \geq 0$.)

Let $\mathcal{R}\subseteq\Re$ and $\oplus_{\mathcal{R}}$ be associative, then:

- **1** $\oplus_{c\mathcal{R}}$ is associative. (scaling, $c \geq 0$.)
- 2 $\oplus_{\mathcal{S}}$ is associative for $\mathcal{S} = \{x \in \mathcal{R} \mid x \leq c\}$. (cut off)

Let $\mathcal{R} \subseteq \Re$ and $\oplus_{\mathcal{R}}$ be associative, then:

- **1** $\oplus_{c\mathcal{R}}$ is associative. (scaling, $c \geq 0$.)
- 2 $\oplus_{\mathcal{S}}$ is associative for $\mathcal{S} = \{x \in \mathcal{R} \mid x \leq c\}$. (cut off)
- 3 If $l > 2 \cdot \max \mathcal{R}$ then $\oplus_{\mathcal{T}}$ is associative

for $\mathcal{T} = \{ \mathbf{r} + \mathbf{nl} \mid \mathbf{n} \in \omega, \mathbf{r} \in \mathcal{R} \}.$

Let $\mathcal{R} \subseteq \Re$ and $\oplus_{\mathcal{R}}$ be associative, then:

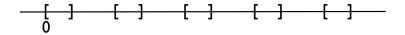
- **1** $\oplus_{c\mathcal{R}}$ is associative. (scaling, $c \geq 0$.)
- ② ⊕_S is associative for $S = \{x \in \mathcal{R} \mid x \leq c\}$. (cut off)
- 3 If $l > 2 \cdot \max \mathcal{R}$ then $\oplus_{\mathcal{T}}$ is associative

for
$$\mathcal{T} = \{ r + nl \mid n \in \omega, r \in \mathcal{R} \}.$$

Let $\mathcal{R} \subseteq \Re$ and $\oplus_{\mathcal{R}}$ be associative, then:

- **1** $\oplus_{c\mathcal{R}}$ is associative. (scaling, $c \geq 0$.)
- ② ⊕_S is associative for $S = \{x \in \mathcal{R} \mid x \leq c\}$. (cut off)
- 3 If $l > 2 \cdot \max \mathcal{R}$ then $\oplus_{\mathcal{T}}$ is associative

for
$$\mathcal{T} = \{ r + nl \mid n \in \omega, r \in \mathcal{R} \}.$$



Let $\mathcal{R} \subseteq \Re$ and $\oplus_{\mathcal{R}}$ be associative, then:

- **1** $\oplus_{c\mathcal{R}}$ is associative. (scaling, $c \geq 0$.)
- 2 $\oplus_{\mathcal{S}}$ is associative for $\mathcal{S} = \{x \in \mathcal{R} \mid x \leq c\}$. (cut off)

3 If
$$l > 2 \cdot \max \mathcal{R}$$
 then $\oplus_{\mathcal{T}}$ is associative
for $\mathcal{T} = \{r + nl \mid n \in \omega, r \in \mathcal{R}\}.$

General Cantor sets

Let $\mathcal{R} \subseteq \Re$ and $\oplus_{\mathcal{R}}$ be associative, then:

- **1** $\oplus_{c\mathcal{R}}$ is associative. (scaling, $c \geq 0$.)
- 2 $\oplus_{\mathcal{S}}$ is associative for $\mathcal{S} = \{x \in \mathcal{R} \mid x \leq c\}$. (cut off)

3 If
$$l > 2 \cdot \max \mathcal{R}$$
 then $\oplus_{\mathcal{T}}$ is associative
for $\mathcal{T} = \{r + nl \mid n \in \omega, r \in \mathcal{R}\}.$

- ④ General Cantor sets
- 5 Subsets of the reals closed under sums +.

 $\begin{array}{ll} \mbox{Let } \mathcal{R} \subseteq \Re \mbox{ be closed and bounded with 0 as a limit} \\ \mbox{and } \oplus_{\mathcal{R}} \mbox{ associative.} & \mbox{Let } \epsilon > 0 \mbox{ be given.} \end{array}$

There exists a finite subset $A \subseteq \mathcal{R}$ so that for every $I \in \mathcal{R}$:

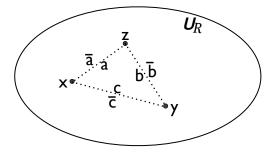
$$\overline{I}^{A} := \min\{x \in A \mid x \ge I\} < \epsilon.$$

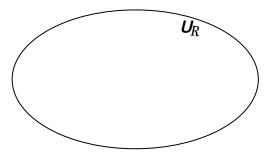
Theorem

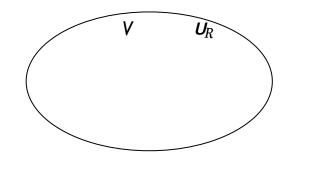
There exists a finite set B with $A \subseteq B \subseteq \mathcal{R}$ and \oplus_B associative.

Let $\mathcal{R} \subseteq \mathfrak{R}$ be closed and bounded with 0 as a limit and $\oplus_{\mathcal{R}}$ associative. Let $A \subseteq \mathcal{R}$ be finite so that \oplus_A is associative. $(\bar{x} - x < \epsilon \text{ for all } x \in \mathcal{R}.)$

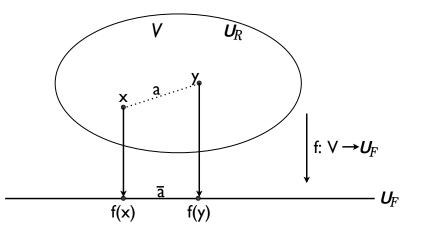
Then if $\{a, b, c\} \subseteq \mathcal{R}$ is metric the set $\{\bar{a}, \bar{b}, \bar{c}\}$ is metric.

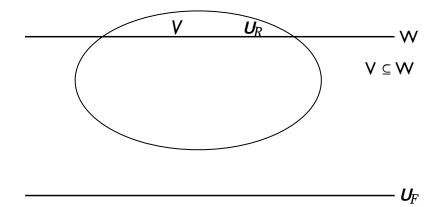


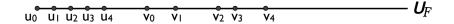


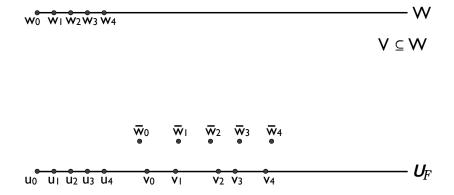


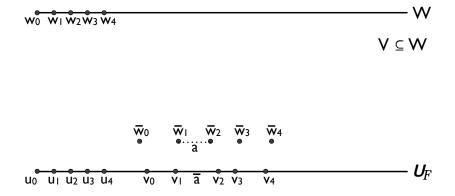
 U_{F}

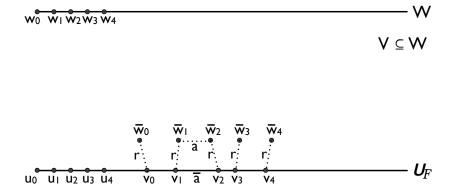


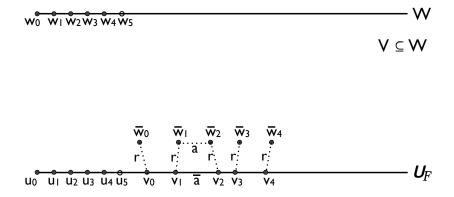


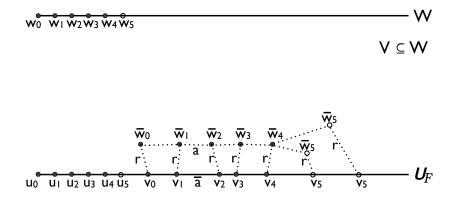












Let $\mathcal{R} \subseteq \Re$ be closed and bounded with 0 as a limit and $\oplus_{\mathcal{R}}$ associative. Let $A \subseteq \mathcal{R}$ be finite so that \oplus_A is associative. $(\bar{x} - x < \epsilon \text{ for all } x \in \mathcal{R}.)$ Then if $\{a, b, c\} \subseteq \mathcal{R}$ is metric the set $\{\bar{a}, \bar{b}, \bar{c}\}$ is metric.

Let $\mathcal{R} \subseteq \Re$ be closed and bounded with 0 as a limit and $\oplus_{\mathcal{R}}$ associative. Let $A \subseteq \mathcal{R}$ be finite so that \oplus_A is associative. $(\bar{x} - x < \epsilon \text{ for all } x \in \mathcal{R}.)$ Then if $\{a, b, c\} \subseteq \mathcal{R}$ is metric the set $\{\bar{a}, \bar{b}, \bar{c}\}$ is metric.

Proof.

Let $\{a, b, c\}$ be metric with $a \le b \le c$.

Let $\mathcal{R} \subseteq \mathfrak{R}$ be closed and bounded with 0 as a limit and $\oplus_{\mathcal{R}}$ associative. Let $A \subseteq \mathcal{R}$ be finite so that \oplus_A is associative. $(\bar{x} - x < \epsilon \text{ for all } x \in \mathcal{R}.)$ Then if $\{a, b, c\} \subseteq \mathcal{R}$ is metric the set $\{\bar{a}, \bar{b}, \bar{c}\}$ is metric.

Proof.

Let $\{a, b, c\}$ be metric with $a \le b \le c$. Then $\bar{a} + \bar{b} \ge a + b \ge c$ and $c \in \mathcal{R}$ implies $\bar{a} \oplus \bar{b} \ge c$.

Let $\mathcal{R} \subseteq \mathfrak{R}$ be closed and bounded with 0 as a limit and $\oplus_{\mathcal{R}}$ associative. Let $A \subseteq \mathcal{R}$ be finite so that \oplus_A is associative. $(\bar{x} - x < \epsilon \text{ for all } x \in \mathcal{R}.)$ Then if $\{a, b, c\} \subseteq \mathcal{R}$ is metric the set $\{\bar{a}, \bar{b}, \bar{c}\}$ is metric.

Proof.

Let $\{a, b, c\}$ be metric with $a \le b \le c$. Then $\bar{a} + \bar{b} \ge a + b \ge c$ and $c \in \mathcal{R}$ implies $\bar{a} \oplus \bar{b} \ge c$. This in turn implies that $\bar{c} \le \bar{a} \oplus \bar{b}$ because $\bar{a} \oplus \bar{b} \in A$.

Let $\mathcal{R} \subseteq \mathfrak{R}$ be closed and bounded with 0 as a limit and $\oplus_{\mathcal{R}}$ associative. Let $A \subseteq \mathcal{R}$ be finite so that \oplus_A is associative. $(\bar{x} - x < \epsilon \text{ for all } x \in \mathcal{R}.)$ Then if $\{a, b, c\} \subseteq \mathcal{R}$ is metric the set $\{\bar{a}, \bar{b}, \bar{c}\}$ is metric.

Proof.

Let $\{a, b, c\}$ be metric with $a \le b \le c$. Then $\bar{a} + \bar{b} \ge a + b \ge c$ and $c \in \mathcal{R}$ implies $\bar{a} \oplus \bar{b} \ge c$. This in turn implies that $\bar{c} \le \bar{a} \oplus \bar{b}$ because $\bar{a} \oplus \bar{b} \in A$. Finally $\bar{c} \le \bar{a} \oplus \bar{b} \le \bar{a} + \bar{b}$.