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A metric space M = (M; d) has property OS if:

For every ε > 0 and every unif. cont. bdd. function f : M → <

there exists a copy M∗ = (M∗; d) of M in M for which

sup{|f (x)− f (y)| : x , y ∈ M∗} < ε.
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A metric space M is homogeneous if every isometry f of a finite

subspace of M into M has an extension to an isometry f ′ of M.

f ’∃

f∀
isometry

automorphism

extending f

M MA B
finite subspace finite subspace

A metric space M is universal if it embeds every finite metric

space F with dist F ⊆ dist M.
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Characterize the subsets R of the reals so that every

R-edge labeled graph can be extended to a metric

space with distances in R.

R := N:
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What are the conditions on a set R of non negative reals so

that every “metrizable" edge labelled graph with labels in R

can be embedded, label preserving, into a metric space with

distances in R?
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Set of distances is <≥0
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An edge labeled graph is regular if distances between

different points are not “forced” to be 0.
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Let 0 and r be a limit of the set of distances R.

with lim sn = 0 and lim rn = r .

r0 r1 r2
r3
r4

s0
s1
s2
s3
s4xa b

Note: |x − rn| ≤ sn

Then |x − r | ≤ |x − rn|+ |rn− r | ≤ sn + |rn− r | < ε. Hence r ∈ R.

It follows that if 0 is a limit then one of the conditions on

R ⊆ <≥0 has to be that R is a closed subset of the reals.
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A metric space M is approximately indivisible if:

For every ε > 0 and n ∈ ω and function γ : M → n

there exist i ∈ n and an isometric copy M∗ = (M∗; d) of M with

M∗ ⊆
(
γ−1(i)

)
ε
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Theorem
A metric space has property OS

if and only if it is approximately indivisible.

Theorem (Kechris-Pestov-Todorcevic)
In the case of homogeneous metric spaces the properties of

approximately indivisible and OS

and oscillation stable are equivalent.
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Let R be a closed subset of the reals <≥0, then:

s ⊕R r := sup{x ∈ R | x ≤ s + r}.

R is closed under ⊕ which is a commutative operation on R.



Definition
For R a closed subset of <≥0.

An R-edge labelled graph is metric if it is regular

and the

⊕-sum over the labels of a path is larger than or equal to the

label of the edge connecting the endpoints of the path.
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Theorem
If R is a closed subset of the reals then

every metric R-edge labelled graph has an extension to a

metric space M with dist(M) ⊆ R iff ⊕R is associative.

If 0 is a limit of R and every metric R-edge labelled graph has

an extension to a metric space then

R is a closed subset of the reals.



Theorem
Let R ⊆ <≥0 with 0 as a limit.

There exists a

homogeneous universal separable complete metric space UR

iff R is a closed subset of the reals and ⊕R is associative.

The space UR has property OS,

or equivalently it is approximately indivisible,

iff R is also bounded.
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Theorem
If R is finite and ⊕R is associative then:

there exists a countable homogeneous metric space, UR ,

which is indivisible.



⊕[0,1] is associative.

Let R ⊆ < and ⊕R be associative, then:

1 ⊕cR is associative. (scaling, c ≥ 0.)

2 ⊕S is associative for S = {x ∈ R | x ≤ c}. (cut off)

3 If l > 2 ·maxR then ⊕T is associative

for T = {r + nl | n ∈ ω, r ∈ R}.

4 General Cantor sets

5 Subsets of the reals closed under sums +.
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Let R ⊆ < be closed and bounded with 0 as a limit
and ⊕R associative. Let ε > 0 be given.

There exists a finite subset A ⊆ R so that for every l ∈ R:

l̄A := min{x ∈ A | x ≥ l} < ε.

Theorem
There exists a finite set B with A ⊆ B ⊆ R and ⊕B associative.
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Lemma
Let R ⊆ < be closed and bounded with 0 as a limit

and ⊕R associative. Let A ⊆ R be finite so that ⊕A is

associative. ( x̄ − x < ε for all x ∈ R.)

Then if {a,b, c} ⊆ R is metric the set {ā, b̄, c̄} is metric.
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Lemma
Let R ⊆ < be closed and bounded with 0 as a limit
and ⊕R associative. Let A ⊆ R be finite so that ⊕A is
associative. ( x̄ − x < ε for all x ∈ R.)
Then if {a,b, c} ⊆ R is metric the set {ā, b̄, c̄} is metric.

Proof.
Let {a,b, c} be metric with a ≤ b ≤ c.

Then ā + b̄ ≥ a + b ≥ c and c ∈ R implies ā⊕ b̄ ≥ c.

This in turn implies that c̄ ≤ ā⊕ b̄ because ā⊕ b̄ ∈ A.

Finally c̄ ≤ ā⊕ b̄ ≤ ā + b̄.
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