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A metric space M is universal if it embeds every finite metric
space F with distF C dist M.
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What are the conditions on a set R of nhon negative reals so
that every “metrizable" edge labelled graph with labels in R
can be embedded, label preserving, into a metric space with

distances in R?
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x < 2 for all n, hence x = 0.
n

The distance x of ato b is “forced” to be 0.



Set of distances is #>

An edge labeled graph is regular if distances between

different points are not “forced” to be 0.
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Let 0 and r be a limit of the set of distances R.

withlims, =0andlimr, =r.

Note: |x — ry| < sp

Then |x —r| < |x—rp|+|m—r| < Sp+|m—r| <e Hencer € R.

It follows that if O is a limit then one of the conditions on
R C R0 has to be that R is a closed subset of the reals.
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Theorem
A metric space has property OS

if and only if it is approximately indivisible.




Theorem
A metric space has property OS

if and only if it is approximately indivisible.

Theorem (Kechris-Pestov-Todorcevic)
In the case of homogeneous metric spaces the properties of

approximately indivisible and OS

and oscillation stable are equivalent.







Let R be a closed subset of the reals R, then:

SOrr:=sup{x e R|x <s+r}.

R is closed under & which is a commutative operation on R.
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Theorem
If R is a closed subset of the reals then

every metric R-edge labelled graph has an extension to a

metric space M with dist(M) C R iff ©r is associative.

If 0 is a limit of R and every metric R-edge labelled graph has
an extension to a metric space then

‘R is a closed subset of the reals.
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homogeneous universal separable complete metric space Ur

iff R is a closed subset of the reals and ®©, is associative.

The space Ui has property OS,
or equivalently it is approximately indivisible,

iff R is also bounded.







Theorem
If R is finite and &y, is associative then:

there exists a countable homogeneous metric space, Uy ,

which is indivisible.
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@|o,1] is associative.

Let R C R and ®x be associative, then:

@ o.r is associative. (scaling, ¢ > 0.)

@ @5 is associative for S = {x € R | x < c}. (cut off)

@ If / > 2-max R then @& is associative
forT={r+nl|new,reR}.

@ General Cantor sets

@ Subsets of the reals closed under sums +.
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Let R C R be closed and bounded with 0 as a limit
and @&x associative. Let € > O be given.

There exists a finite subset A C R so that for every | € R:

A =min{xecA|x>1 <e

Theorem
There exists a finite set B with A C B C R and ®g associative. }




Lemma
Let R C R be closed and bounded with 0 as a limit

and ®r associative. Let A C R be finite so that ® 4 is
associative. (X—x<e forall xeR.)

Then if {a, b, c} C R is metric the set {2, b, ¢} is metric.
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Let R C R be closed and bounded with 0 as a limit

and & associative. Let A C R be finite so that © 4 is
associative. (Xx—x<e forall x e R.)

Then if {a, b, c} C R is metric the set {a, b, ¢} is metric.

Proof.
Let {a, b, c} be metricwitha< b < c.

Thena+b>a+b>candce Rimpliesa®d b> c.
This in turn implies that ¢ < 2@ b because a® b € A.
Finalyc<aob<a+b.




