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1. Introduction

We will need

Definition 1
Let G be an additive semigroup and A,B1, . . . ,Bk subsets of G with

(1) |Bi | ≥ 2 for i = 1, 2, . . . , k .

If

A = B1 + B2 + · · ·+ Bk ,

then this is called an (additive) k-decomposition of A, while if

A = B1 · B2 · . . . · Bk ,

then this is called a multiplicative k-decomposition of A. (A decomposition will always mean a non-trivial one, i.e.,

a decomposition satisfying (1).)

H. H. Ostmann (1954, 1956) introduced some definitions on additive properties of sequences of non-negative

integers and studied some related problems. The most interesting definitions are:
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Definition 2
A finite or infinite set C of non-negative integers is said to be reducible if it has an (additive) 2-decomposition

C = A + B, |A| ≥ 2, |B| ≥ 2.

If there are no sets A, B with these properties, then C is said to be primitive (or irreducible).

Definition 3
Two sets A, B of non-negative integers are said to be asymptotically equal if there is a number K such that

A ∩ [K ,+∞) = B ∩ [K ,+∞), and then we write A ∼ B.

Definition 4
An infinite set C of non-negative integers is said to be totalprimitive (“totally primitive”) if every C ′ with C ′ ∼ C

is primitive.

Ostmann also formulated the following beautiful conjecture:

Conjecture 1

The set P of the primes is totalprimitive.
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I met these definitions and conjecture of Ostmann as a second year university student (in 1959) when I joined

Paul Turán’s seminar. As any new student in his seminar, I got a reading assignment from him: I was to read the

first few chapters of Ostmann’s book and then to give a survey of these chapters in the seminar. I gave 8-9 talks on

this subject, and in the meantime Turán was asking related questions. I wrote a paper as an answer to one of his

questions (which appeared in the Acta Arithmetica). Not much later I received the following letter:

“Dear Mr. Sárközy,

I have heard about your nice results on totalprimitive sequences from Paul Turán. Please, come and see me

at the Mathematical Institute [of the Hungarian Academy of Sciences].

Paul Erdős”



4

I met these definitions and conjecture of Ostmann as a second year university student (in 1959) when I joined

Paul Turán’s seminar. As any new student in his seminar, I got a reading assignment from him: I was to read the

first few chapters of Ostmann’s book and then to give a survey of these chapters in the seminar. I gave 8-9 talks on

this subject, and in the meantime Turán was asking related questions. I wrote a paper as an answer to one of his

questions (which appeared in the Acta Arithmetica). Not much later I received the following letter:

“Dear Mr. Sárközy,

I have heard about your nice results on totalprimitive sequences from Paul Turán. Please, come and see me

at the Mathematical Institute [of the Hungarian Academy of Sciences].

Paul Erdős”



4

I met these definitions and conjecture of Ostmann as a second year university student (in 1959) when I joined

Paul Turán’s seminar. As any new student in his seminar, I got a reading assignment from him: I was to read the

first few chapters of Ostmann’s book and then to give a survey of these chapters in the seminar. I gave 8-9 talks on

this subject, and in the meantime Turán was asking related questions. I wrote a paper as an answer to one of his

questions (which appeared in the Acta Arithmetica). Not much later I received the following letter:

“Dear Mr. Sárközy,

I have heard about your nice results on totalprimitive sequences from Paul Turán. Please, come and see me

at the Mathematical Institute [of the Hungarian Academy of Sciences].

Paul Erdős”



5

I visited him soon. I told him my results. We had a nice discussion and he asked a related question (which was

sort of converse of the problem asked earlier by Turán). Roughly, this question was: is it true that every “dense”

sequence of non-negative integers is reducible? If the answer is affirmative, then how dense a sequence must be to

guarantee reducibility? As an answer to this question, I soon published (again in the Acta Arithmetica) my first

paper based on an Erdős problem.

This was the first “Uncle Paul session” that I attended, and it was followed by many others. During one of the

next sessions Erdős asked the following question: “It is easy to see that the sequence of the squares is totalprimitive.

Is it also true that if we change this sequence so that we change o(
√

n) elements up to n then the new sequence

must be also totalprimitive?” Szemerédi and I settled this problem nearly completely, and we wrote a joint paper on

this problem. Then I introduced Szemerédi to Erdős, and soon we published our first joint triple paper. This was

followed by 61 further joint papers with Erdős (including 10 triple papers with Szemerédi).
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These early days of my mathematical career explain that when the centennials of Erdős and Turán were

approaching I decided to celebrate their centennials by returning to these Ostmann type problems, more precisely, to

study analogous problems in finite fields.

But first let me complete the survey of the papers written on reducibility and primitivity of infinite sequences of

non-negative integers. About 10–15 further papers have been written on questions of this type.

Volkmann, Wirsing and Sárközy estimated the Lebesgue measure, resp. Hausdorff dimension of the point set

assigned to reducible sets.

Hornfeck, Hofmann and Wolke, Elsholtz (in 3 papers) and Puchta proved partial results towards Ostmann’s

Conjecture 1 on the totalprimitivity of the set P of the primes.
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In particular, it has been proved: if there are P ′ ∼ P and A, B with

P ′ = A + B, |A|, |B| ≥ 2,

then we have
n1/2

(log n)c1

< A(n),B(n) < n1/2(log n)c2 (for n > n0)

where A(n), B(n) are the counting functions of A and B, and c1, c2 are positive absolute constants, and Elsholtz

also proved:

if

P ′ ∼ P ,

then there are no A, B, C with

P ′ = A + B + C, |A|, |B|, |C| ≥ 2.

He also studied multiplicative decompositions of the set of the shifted primes, i.e., decompositions of the form

P ′ + {c} = A · B (with c 6= 0).
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2. On additive decompositions of the set of the quadratic residues modulo p

First (inspired partly by Erdős’ problem and our result with Szemerédi on the sequence of squares) I formulated

and studied the following conjecture (Acta Arithmetica, 2012):

Conjecture 2

For a prime p let Q = Q(p) denote the set of the quadratic residues modulo p. If p is large enough then

Q = Q(p) is primitive, i.e., it has no 2-decomposition.

It turned out that here the situation is similar to Ostmann’s conjecture: the conjecture seems to be beyond

reach but I proved partial results similar to the results proved (by Elsholtz and others) in connection with Ostmann’s

conjecture.
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First I proved

Theorem 1
If p is a prime large enough and

U + V = Q
is a 2-decomposition of Q = Q(p), then we have

1

3

p1/2

log p
< |U|, |V| < p1/2 log p.

The crucial tool in the proof of Theorem 1 was Weil’s theorem (on the estimate of character sums).

Next I proved

Theorem 2
If p is a prime large enough then Q = Q(p) has no 3-decomposition

A + B + C = Q.

This theorem can be derived easily from Theorem 1 by using a result of Ruzsa:

If X , Y , Z are finite sets in a commutative group, then (using additive notation for the group operation) we

have

|X + Y + Z|2 ≤ |X + Y| |Y + Z| |X + Z|.
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Recently Shkredov and Shparlinski have improved independently on Theorem 1: they proved that it follows from

the same assumptions that

c1p
1/2 < |U|, |V| < c2p

1/2

with some positive absolute constants c1 < 1, c2 > 1.

They used different approach: They used the fact that Q is a subgroup of the multiplicative group of F∗
p.

Shparlinski also proved similar results on additive 2-decompositions of other multiplicative subgroups G of F∗
p.

While their methods use more special properties of the quadratic residues and thus they give sharper estimates,

my method gives slightly weaker estimates but, on the other hand, it has the advantage that it also works in more

general situations, e.g., it can be also used for studying additive properties of polynomial sets
{

f (xd) : x ∈ Fp

}

where f is a permutation polynomial.

For a set A write A+̂A = {a + a′ : a, a′ ∈ A, a 6= a′}. Shkredov also determined all the primes p for which

Q = Q(p) has a special additive decomposition of the form A +A or A+̂A.
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3. On additive decompositions of the set of the primitive roots modulo p

In a joint paper (Monatshefte Math., 2013) with C. Dartyge we studied the set G(p) = {g : g ∈ Fp, g is a

primitive root modulo p}. We conjectured:

Conjecture 3

If p > p0 then G = G(p) is primitive (i.e., it has no 2-decomposition).

Again, the conjecture seems to be beyond reach but we proved partial results similar to the results proved in

case of the quadratic residues:

Theorem 3
If p is a prime large enough and

U + V = G
is a 2-decomposition of G = G(p), then we have

ϕ(p − 1)

τ (p − 1)p1/2 log p
< |U|, |V| < τ (p − 1)p1/2 log p

where ϕ(n) is Euler’s function and τ (n) denotes the divisor function.
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The crucial tool in our proof was an estimate (based on Weil’s theorem) for sums
∑

g∈G
χ(f (g)), where χ is a

multiplicative character, f (x) ∈ Fp[x ], and we used some ideas from my paper on the quadratic residues, but we

also needed some further ideas.

From the last theorem we derived (using again Ruzsa’s theorem):
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If p is large enough then G has no 3-decomposition

A + B + C = G.

Recently Shparlinski has improved on Theorem 3 by removing the factors τ (p − 1) and log p apart from
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4. On multiplicative decompositions of the set of the shifted quadratic residues

modulo p

In Theorems 1 and 2 I studied additive 2- and 3-decompositions of the set Q = {x2 : x ∈ F
∗
p}. One might like

to study the multiplicative analogues of these results by considering (non-trivial) 2- and 3-decompositions A · B,

resp. A · B · C with |A|, |B|, |C| ≥ 2. However, some caution is needed:

First, if p > 3, then clearly

Q = Q · Q
is a (non-trivial) multiplicative 2-decomposition of Q. Thus to make the problem non-trivial we have to replace Q
by Q + c (with c 6= 0).

Next, observe that if A ⊂ Fp, 0 ∈ A and |A| ≥ 2, then

A = {0, 1} · A

is a non-trivial 2-decomposition of A; thus we have to remove 0 from Q + c . In a recent paper (to appear in the

Turán memorial volume) I formulated the conjecture that there are no further exemptions, more precisely,
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Conjecture 4

If c 6= 0, and we write

Qc = Q + {c} =
{

x2 + c : x ∈ F
∗
p

}

and

Q′
c = Qc \ {0},

then the set Q′
c has no non-trivial multiplicative 2-decomposition.

Again, this conjecture seems to be beyond reach, however, I proved partial results similar to Theorems 1 and 2

proved in the case of additive decompositions of Q:

Theorem 5
If p is large enough, c ∈ Fp, c 6= 0 and

U · V = Q′
c

is a (non-trivial) multiplicative 2-decomposition of Q′
c , then we have

1

3

p1/2

log p
< |U|, |V| < p1/2 log p.



14

Conjecture 4

If c 6= 0, and we write

Qc = Q + {c} =
{

x2 + c : x ∈ F
∗
p

}

and

Q′
c = Qc \ {0},

then the set Q′
c has no non-trivial multiplicative 2-decomposition.

Again, this conjecture seems to be beyond reach, however, I proved partial results similar to Theorems 1 and 2

proved in the case of additive decompositions of Q:

Theorem 5
If p is large enough, c ∈ Fp, c 6= 0 and

U · V = Q′
c

is a (non-trivial) multiplicative 2-decomposition of Q′
c , then we have

1

3

p1/2

log p
< |U|, |V| < p1/2 log p.



14

Conjecture 4

If c 6= 0, and we write

Qc = Q + {c} =
{

x2 + c : x ∈ F
∗
p

}

and

Q′
c = Qc \ {0},

then the set Q′
c has no non-trivial multiplicative 2-decomposition.

Again, this conjecture seems to be beyond reach, however, I proved partial results similar to Theorems 1 and 2

proved in the case of additive decompositions of Q:

Theorem 5
If p is large enough, c ∈ Fp, c 6= 0 and

U · V = Q′
c

is a (non-trivial) multiplicative 2-decomposition of Q′
c , then we have

1

3

p1/2

log p
< |U|, |V| < p1/2 log p.



14

Conjecture 4

If c 6= 0, and we write

Qc = Q + {c} =
{

x2 + c : x ∈ F
∗
p

}

and

Q′
c = Qc \ {0},

then the set Q′
c has no non-trivial multiplicative 2-decomposition.

Again, this conjecture seems to be beyond reach, however, I proved partial results similar to Theorems 1 and 2

proved in the case of additive decompositions of Q:

Theorem 5
If p is large enough, c ∈ Fp, c 6= 0 and

U · V = Q′
c

is a (non-trivial) multiplicative 2-decomposition of Q′
c , then we have

1

3

p1/2

log p
< |U|, |V| < p1/2 log p.



15

Theorem 6
If p is large enough, c ∈ Fp and c 6= 0 then Q′

c has no nontrivial multiplicative 3-decomposition

A · B · C = Q′
c .

The tools used in this paper are the same as in the additive case (Weil’s theorem on the estimate of character

sums and Ruzsa’s lemma on sumsets). However, some new ideas are also needed and, in particular, the special role

of the number 0 leads to certain complications.

Shparlinski also studied multiplicative 2-decompositions of sets of form {m + 1,m + 2, . . . ,m + n} ⊂ F
∗
p.
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5. On the reducibility of large subsets of Fp

I mentioned my early papers answering the questions of Turán and Erdős on the reducibility of dense sets of

non-negative integers. In a recent joint paper with K. Gyarmati and S. Konyagin (Journal of Number Theory, 2013)

we studied the finite analogues of these old results of mine: we estimated the cardinality f (p) of the largest

primitive subset of Fp.

Note that Green, Gowers and Green, and Alon studied a closely related problem: they studied representations of

large subsets C of Fp in form

A +A = C.
Let g(p) denote the cardinality of the largest subset C of Fp which cannot be represented in this form. Clearly

f (p) ≤ g(p). Improving on results of Gowers and Green, Alon proved that

p − c1

p2/3

(log p)1/3
< g(p) < p − c2

p1/2

log p
.

By f (p) ≤ g(p) it follows from the upper bound here that

(2) f (p) < p − c2

p1/2

log p
.
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Gyarmati, Konyagin and I first proved:

Theorem 7
If p is a prime, p > 2, ℓ ∈ Fp and

|C| ≥ p − p1/2,

then C can be represented in the form

(3) A + B = C with |B| = 2.

Our proof is an existence proof using a rather simple counting argument.

(Note that Alon, Granville and Ubis gave an estimate for the number of the sets C ⊂ Fp having a representation

of form (3).)

It follows from Theorem 7 that

Corollary 1

For p > 2 we have

f (p) < p − p1/2.

This improves slightly (by a log p factor) on the upper bound (2) which follows from Alon’s result. Replacing

|B| = 2 in (3) by |B| ≥ 2 we could prove much more:
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Theorem 8
For p > p0 we have

f (p) < p − c3

p

log p
.

This is proved by a rather tricky and complicated counting argument using graph theory.

From the opposite side we proved:

Theorem 9
For p > p1 we have

f (p) > p − c4

log log p

(log p)1/2
p.

This is also proved by a rather tricky and complicated counting argument which also involved the set of the

quadratic residues modulo p and the use of Weil’s theorem.
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6. On primitive, k-primitive, reducible and k-reducible subsets of Fp

In two papers to be completed soon K. Gyarmati and I studied primitive and reducible subsets of Fp, the

connections between them, and we also introduced and studied further related definitions. First we presented three

criteria for primitivity of subsets of Fp (note that while there are several criteria for primitivity of sequences of

integers, no criteria have been proved for primitivity of subsets of Fp).

Theorem 10
Assume that A = {a1, a2, . . . , at} is a subset of Fp, and there are i, j with 1 ≤ i < j ≤ t such that

ai + aj − ak /∈ A for every k with 1 ≤ k ≤ t, k 6= i , k 6= j

and

ai − aj + ak /∈ A for every k with 1 ≤ k ≤ t, k 6= j .

Then A is primitive.
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To illustrate the applicability of this criterion we showed

Corollary 2

If p is a prime of form p = 4k + 1 and A ⊂ Fp is defined by

A = {0, 1} ∪
{

a ∈ Fp :

(

a

p

)

= 1,

(

a − 1

p

)

= −1, a 6= −1, a 6= 2

}

,

then A is primitive.

It also follows from Theorem 10 that

Corollary 3

If A ⊂ Fp is a Sidon set, then it is primitive.

(A set A = {a1, a2, . . . , at} is called Sidon set if the sums ai + aj with 1 ≤ i < j ≤ t are distinct.)

The second criterion for primitivity is

Theorem 11
If A ⊂ Fp is of the form

A = {0} ∪ A0 with A0 ⊂ [p/3, 2p/3),

then A is primitive.
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The third criterion is:

Theorem 12
Let A ⊂ Fp and for d ∈ F

∗
p denote the number of solutions of

a − a′ = d , a ∈ A, a′ ∈ A

by f (A, d). If

max
d∈F∗p

f (A, d) < |A|1/2,

then A is primitive.

Note that Corollary 3 (the primitivity of Sidon sets) also follows from this criterion.

We also proved that Theorem 12 is sharp in the range 0 < |A| ≪ p1/2:

Theorem 13
If p is large enough and k is a positive integer with k0 < k < 1

2
p1/4, then there is a set A ⊂ Fp such that

|A| = k2,

max
d∈F∗p

f (A, d) = |A|1/2

and A is reducible.

Each of the three criteria can be proved in an elementary way. We also showed that these criteria are

independent, i.e., for each criterion there is a primitive subset which satisfies it, but it does not satisfy the conditions

in the two other criteria.
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in the two other criteria.
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As we have seen, Ostmann’s definitions for reducibility and primitivity can be extended to Fp (indeed, these

definitions can be used in any additive semigroup). On the other hand, the situation is very much different in case

of the definition of totalprimitivity: clearly, this definition cannot be used in its original form in case of finite sets.

Instead, we introduced the following definitions:

Definition 5
If A,B ⊂ Fp, then their distance is defined as the cardinality of their symmetric difference and it is denoted by

D(A,B):
D(A,B) =

∣

∣(A \ B) ∪ (B \ A)
∣

∣.

Definition 6
For k ∈ N a set A ⊂ Fp is said to be k-primitive if every set A′ ⊂ Fp with D(A,A′) ≤ k is primitive.

(In other words, A is k-primitive if changing at most k elements of it we always get a primitive set.)
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From Theorem 12 (the third criterion for primitivity) we derived the following criterion for k-primitivity:

Theorem 14
Let A ⊂ Fp and define f (A, d) again by f (A, d) =

∣

∣{(a, a′) : a ∈ A, a′ ∈ A, a − a′ = d}
∣

∣.

If

max
d∈F∗p

f (A, d) <
1

2
|A|1/2

and k ∈ N with

k ≤ 1

4
|A|1/2,

then A is k-primitive.

It follows from this theorem that

Corollary 4

If A ⊂ Fp is a Sidon set and k =
[

1
4
|A|1/2

]

, then A is k-primitive.

If p is a prime then let M(p) denote the greatest integer k such that there is a k-primitive set A in Fp. Our

next goal was to estimate M(p). We proved:

Theorem 15
For p → ∞ we have

(c + o(1))p < M(p) <

(

1

2
+ o(1)

)

p

where c = 0.119 . . . is the smaller zero of the function log 2
2

+
(

x log x + (1 − x) log(1 − x)
)

in (0, 1).
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Here the upper bound is trivial while the lower bound is based on a result of Alon, Granville and Ubis: they

proved that the number of the reducible subsets of Fp is 2p/2+o(p).

Next we studied the following problem: if A is a subset of Fp then, depending on the cardinality of A, what can

be said about the size of the greatest reducible subset of A?

If A is a Sidon set, then its subsets are also Sidon sets, thus by Corollary 3 they are primitive so that A has no

reducible subset. Since the cardinality of a Sidon set in Fp can be ≫ p1/2, thus a subset A ⊂ Fp of cardinality

≪ p1/2 need not contain a reducible subset. On the other hand, we proved that a subset of cardinality ≫ p1/2 must

contain a reducible set. This follows from

Theorem 16
If A is a subset of Fp with

|A|2 − |A| > p − 1,

then it contains a reducible subset of form

(4) B + C with |B + C| ≥ min

{|A|2 − |A|
p − 1

, p

}

, |C| = 2.



24

Here the upper bound is trivial while the lower bound is based on a result of Alon, Granville and Ubis: they

proved that the number of the reducible subsets of Fp is 2p/2+o(p).

Next we studied the following problem: if A is a subset of Fp then, depending on the cardinality of A, what can

be said about the size of the greatest reducible subset of A?

If A is a Sidon set, then its subsets are also Sidon sets, thus by Corollary 3 they are primitive so that A has no

reducible subset. Since the cardinality of a Sidon set in Fp can be ≫ p1/2, thus a subset A ⊂ Fp of cardinality

≪ p1/2 need not contain a reducible subset. On the other hand, we proved that a subset of cardinality ≫ p1/2 must

contain a reducible set. This follows from

Theorem 16
If A is a subset of Fp with

|A|2 − |A| > p − 1,

then it contains a reducible subset of form

(4) B + C with |B + C| ≥ min

{|A|2 − |A|
p − 1

, p

}

, |C| = 2.



24

Here the upper bound is trivial while the lower bound is based on a result of Alon, Granville and Ubis: they

proved that the number of the reducible subsets of Fp is 2p/2+o(p).

Next we studied the following problem: if A is a subset of Fp then, depending on the cardinality of A, what can

be said about the size of the greatest reducible subset of A?

If A is a Sidon set, then its subsets are also Sidon sets, thus by Corollary 3 they are primitive so that A has no

reducible subset. Since the cardinality of a Sidon set in Fp can be ≫ p1/2, thus a subset A ⊂ Fp of cardinality

≪ p1/2 need not contain a reducible subset. On the other hand, we proved that a subset of cardinality ≫ p1/2 must

contain a reducible set. This follows from

Theorem 16
If A is a subset of Fp with

|A|2 − |A| > p − 1,

then it contains a reducible subset of form

(4) B + C with |B + C| ≥ min

{|A|2 − |A|
p − 1

, p

}

, |C| = 2.



24

Here the upper bound is trivial while the lower bound is based on a result of Alon, Granville and Ubis: they

proved that the number of the reducible subsets of Fp is 2p/2+o(p).

Next we studied the following problem: if A is a subset of Fp then, depending on the cardinality of A, what can

be said about the size of the greatest reducible subset of A?

If A is a Sidon set, then its subsets are also Sidon sets, thus by Corollary 3 they are primitive so that A has no

reducible subset. Since the cardinality of a Sidon set in Fp can be ≫ p1/2, thus a subset A ⊂ Fp of cardinality

≪ p1/2 need not contain a reducible subset. On the other hand, we proved that a subset of cardinality ≫ p1/2 must

contain a reducible set. This follows from

Theorem 16
If A is a subset of Fp with

|A|2 − |A| > p − 1,

then it contains a reducible subset of form

(4) B + C with |B + C| ≥ min

{|A|2 − |A|
p − 1

, p

}

, |C| = 2.



24

Here the upper bound is trivial while the lower bound is based on a result of Alon, Granville and Ubis: they

proved that the number of the reducible subsets of Fp is 2p/2+o(p).

Next we studied the following problem: if A is a subset of Fp then, depending on the cardinality of A, what can

be said about the size of the greatest reducible subset of A?

If A is a Sidon set, then its subsets are also Sidon sets, thus by Corollary 3 they are primitive so that A has no

reducible subset. Since the cardinality of a Sidon set in Fp can be ≫ p1/2, thus a subset A ⊂ Fp of cardinality

≪ p1/2 need not contain a reducible subset. On the other hand, we proved that a subset of cardinality ≫ p1/2 must

contain a reducible set. This follows from

Theorem 16
If A is a subset of Fp with

|A|2 − |A| > p − 1,

then it contains a reducible subset of form

(4) B + C with |B + C| ≥ min

{|A|2 − |A|
p − 1

, p

}

, |C| = 2.



25

A simple counting argument is used to prove the result.

Observe that the decomposition B + C in the last theorem is of very special type: one of two summands is a

2-element subset. One may expect that if |A| increases, then there are also better balanced decompositions where

both |B| and |C| are large. Indeed, we have proved such a theorem but before presenting it we need a further

definition.

Definition 7
If k is a positive integer and the set A ⊂ Fp has a k-decomposition

A = B1 + B2 + · · ·+ Bk (with |B1|, |B2|, . . . , |Bk | ≥ 2),

then A is said to be k-reducible.

We raised two problems on k-reducibility.

(i) Recall that I conjectured that the set of the quadratic residues and the set of the primitive roots are

primitive, i.e., they are not 2-reducible, and as a partial result it has been proved that they are not 3-reducible. Does

it not follow from this partial result that they are not 2-reducible either? We gave a negative answer by constructing

subsets of Fp which are 2-reducible but they are not 3-reducible.
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(ii) Is it true that large subsets of Fp must contain a k-reducible subset for some large k? We proved that the

answer to this question is affirmative, and simultaneously we also proved the existence of reducible subsets in large

subsets of Fp with balanced 2-decompositions into large subsets:

Theorem 17
If p is a prime large enough, A ⊂ Fp, d ∈ N and

(5) |A| ≥ 3p1−2−d
,

then

(i) A contains a reducible subset of form B + C with min{|B|, |C|} ≥ [d/2],

(ii) A contains a d-reducible subset.

Note that if p is large enough and |A| ≥ 2, then (5) holds with

d =

[

1

log 2
log

log p

log(3p/|A|)

]

,

thus we may take this d value in the conclusions (i) and (ii).
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∗ ∗ ∗
All the results I was speaking about (and also their proofs) can be extended from Fp to Fq with q = pr (but not

to Zm).



27

∗ ∗ ∗
All the results I was speaking about (and also their proofs) can be extended from Fp to Fq with q = pr (but not

to Zm).


