Roth's theorem on arithmetic progressions

Tom Sanders

University of Oxford

1st July 2013

solve equations in sets of integers e.g. primes, squares, ...

solve equations in sets of integers e.g. primes, squares, ...

general framework: Ruzsa

 $A \subset \mathbb{Z}$ 'the' set of integers

$A \subset \mathbb{Z}$ 'the' set of integers

solve
$$f(x, y, z, w, \dots) = 0$$
 with $x, y, z, w, \dots \in A$

$A \subset \mathbb{Z}$ 'the' set of integers

solve
$$f(x, y, z, w, \dots) = 0$$
 with $x, y, z, w, \dots \in A$

$$x + y = z + w$$
 (add. quad.)

$$A \subset \mathbb{Z}$$
 'the' set of integers

solve
$$f(x, y, z, w, \dots) = 0$$
 with $x, y, z, w, \dots \in A$

$$x + y = z + w$$
 (add. quad.)

$$x + y = 2z$$
 (3ap)

・ロト ・日・・日・・日・・ つくの

$$A\subset\mathbb{Z}$$
 'the' set of integers

solve
$$f(x, y, z, w, \dots) = 0$$
 with $x, y, z, w, \dots \in A$

$$x + y = z + w$$
 (add. quad.)

$$x + y = 2z \text{ (3ap)}$$

aim: show finding solutions is 'equally' difficult

< ∃ →

$$A\subset\mathbb{Z}$$
 'the' set of integers

solve
$$f(x, y, z, w, \dots) = 0$$
 with $x, y, z, w, \dots \in A$

$$x + y = z + w$$
 (add. quad.)

$$x + y = 2z \text{ (3ap)}$$

aim: show finding solutions is 'equally' difficult

(inequivalent:
$$x + y = z, x - y = 7$$
)

< ∃ →

$$Q(A) := |\{(x, y, z, w) \in A^4 : x + y = z + w\}$$

 $T(A) := |\{(x, y, z) \in A^3 : x + y = 2z\}|$

and

・ロト ・日・・日・・日・・ つくの

$$Q(A):=|\{(x,y,z,w)\in A^4:x+y=z+w\}$$
 and $T(A):=|\{(x,y,z)\in A^3:x+y=2z\}|$

then

$$Q(A) \leq |A|^3$$
 and $T(A) \leq |A|^2$

$$Q(A):=|\{(x,y,z,w)\in A^4:x+y=z+w\}$$
 and $T(A):=|\{(x,y,z)\in A^3:x+y=2z\}|$

then

$$Q(A) \leq |A|^3$$
 and $T(A) \leq |A|^2$ think $|A|
ightarrow \infty$

and
$$Q(A):=|\{(x,y,z,w)\in A^4:x+y=z+w\}$$

 $T(A):=|\{(x,y,z)\in A^3:x+y=2z\}|$

then

$$Q(A) \leq |A|^3 ext{ and } T(A) \leq |A|^2$$
 think $|A| o \infty$

'many' means positive proportion of max

$$T(A) = \sum_{z} 1_{2 \cdot A}(z) \sum_{x+y=z} 1_A(x) 1_A(y)$$

$$T(A) = \sum_{z} 1_{2 \cdot A}(z) \sum_{x+y=z} 1_{A}(x) 1_{A}(y)$$

$$\leq |2 \cdot A|^{1/2} \left(\sum_{z} \left(\sum_{x+y=z} 1_{A}(x) 1_{A}(y) \right)^{2} \right)^{1/2} = (|A|Q(A))^{1/2}$$

$$T(A) = \sum_{z} 1_{2 \cdot A}(z) \sum_{x+y=z} 1_{A}(x) 1_{A}(y)$$

$$\leq |2 \cdot A|^{1/2} \left(\sum_{z} \left(\sum_{x+y=z} 1_{A}(x) 1_{A}(y) \right)^{2} \right)^{1/2} = (|A|Q(A))^{1/2}$$

so

$$T(A) \ge \delta |A|^2 \Rightarrow Q(A) \ge \delta^2 |A|^3.$$

not polynomially equivalent (Behrend):

$$Q(A) \ge \delta |A|^3 \not\Rightarrow T(A) \ge \delta^{O(1)} |A|^2.$$

not polynomially equivalent (Behrend):

$$Q(A) \ge \delta |A|^3 \not\Rightarrow T(A) \ge \delta^{O(1)} |A|^2.$$

maybe

$$Q(A) \geq \delta |A|^3 \Rightarrow T(A) \geq \exp(-O(\log^2 \delta^{-1}))|A|^2?$$

not polynomially equivalent (Behrend):

$$Q(A) \ge \delta |A|^3 \not\Rightarrow T(A) \ge \delta^{O(1)} |A|^2.$$

maybe

$$Q(A) \geq \delta |A|^3 \Rightarrow T(A) \geq \exp(-O(\log^2 \delta^{-1}))|A|^2?$$

hard fact: (Freiman, Heath-Brown, Ruzsa, Szemerédi)

$$Q(A) \ge \delta |A|^3 \Rightarrow T(A) \ge \exp(-\delta^{-O(1)})|A|^2$$

generalisation: $\mathbb{Z} \mapsto$ (Abelian) group

- ∢ ≣ ▶

- ∢ ≣ ▶

- ∢ ≣ ▶

 $\mathbb{Z} \mapsto \mathbb{F}_3^n$: Bateman-Katz!

伺 ト く ヨ ト く ヨ ト

 $\mathbb{Z} \mapsto \mathbb{F}_3^n$: Bateman-Katz!

B approximate group $ightarrow T_B$ and Q_B

伺 ト く ヨ ト く ヨ ト

 $\mathbb{Z} \mapsto \mathbb{F}_3^n$: Bateman-Katz!

B approximate group $ightarrow T_B$ and Q_B

plan: find an 'approximate' group B so that Q_B and T_B (strongly) polynomially equivalent

向 ト イヨ ト イヨ ト

```
\mathbb{Z} \mapsto \mathbb{F}_3^n: Bateman-Katz!
```

B approximate group $ightarrow T_B$ and Q_B

plan: find an 'approximate' group B so that Q_B and T_B (strongly) polynomially equivalent

 $(A' := A \cap B$ is large and has $Q_B(A')|A'| \approx T_B(A')^2)$

伺い イラト イラト

```
\mathbb{Z} \mapsto \mathbb{F}_3^n: Bateman-Katz!
```

B approximate group $ightarrow T_B$ and Q_B

plan: find an 'approximate' group B so that Q_B and T_B (strongly) polynomially equivalent

 $(A' := A \cap B \text{ is large and has } Q_B(A')|A'| \approx T_B(A')^2)$

Bourgain

伺い イラト イラト

fact: (Peng, Rödl, Rucinski, Gowers) making Q and T strongly polynomially equivalent *can* be exponentially expensive.

fact: (Peng, Rödl, Rucinski, Gowers) making Q and T strongly polynomially equivalent *can* be exponentially expensive.

good aim

$$Q(A) \ge \delta |A|^3 \Rightarrow T(A) \ge \exp(-\delta^{o(1)})|A|^2?$$

fact: (Peng, Rödl, Rucinski, Gowers) making Q and T strongly polynomially equivalent *can* be exponentially expensive.

good aim

$$Q(A) \ge \delta |A|^3 \Rightarrow T(A) \ge \exp(-\delta^{o(1)})|A|^2?$$

so precise direct counting Bloom, Henriot, Schoen, Shkredov