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A C Z 'the’ set of integers

solve f(x,y,z,w,...) =0 with x,y,z,w,--- € A

x+y=2z+w (add. quad.)

x +y =2z (3ap)

aim: show finding solutions is ‘equally’ difficult

(inequivalent: x+y =z,x—y =17)
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QA) = {(x,y,z.w) € A* i x+y=2z+w}

and
T(A):=={(x,y,2) € A : x +y =2z}
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QA) = {(x,y,z.w) € A* i x+y=2z+w}

and
T(A):=={(x,y,2) € A : x +y =2z}

then
Q(A) < |A* and T(A) < A1
think |A| — oo

‘many’ means positive proportion of max
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easy fact: ‘many 3aps = many add. quads.’

T(A) = leAz) > 1a(x)1a(y)

xX+y=z
1/2

2
2- A2 Z( > 1A(X)1A(y)> = (|A|Q(A))"?

z xX+y=z

IN
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easy fact: ‘many 3aps = many add. quads.’

T(A) = leAz) > 1a(x)1a(y)

xX+y=z
1/2

2
< AV (Z(Z 1A(x)1A(y)>) — (JAIQ(A)2

z xX+y=z

SO

T(A) > 5|A]? = Q(A) > 5°|AP.
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not polynomially equivalent (Behrend):

Q(A) > S|P % T(A) > 62| AP.
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not polynomially equivalent (Behrend):

Q(A) > S|P % T(A) > 62| AP.

maybe

Q(A) > BAI* = T(A) > exp(—O(log? 6~ 1))| A7
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not polynomially equivalent (Behrend):

Q(A) > S|P % T(A) > 62| AP.

maybe
Q(A) > 6|A]® = T(A) > exp(—O(log? 5 1))|A]*?
hard fact: (Freiman, Heath-Brown, Ruzsa, Szemerédi)

Q(A) = §|AP® = T(A) = exp(—6~°W) A
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generalisation: Z — (Abelian) group, ‘approximate’ group
Z — F3: Bateman-Katz!
B approximate group — Tg and Qg

plan: find an ‘approximate’ group B so that Qg and Tg (strongly)
polynomially equivalent

(A" := AN B is large and has Qg(A")|A| =~ Tg(A')?)

Bourgain

Tom Sanders Roth’s theorem on arithmetic progressions



fact: (Peng, RAdl, Rucinski, Gowers) making Q and T strongly
polynomially equivalent can be exponentially expensive.
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fact: (Peng, RAdl, Rucinski, Gowers) making Q and T strongly
polynomially equivalent can be exponentially expensive.

good aim

Q(A) > 3|A]® = T(A) > exp(—6°M)|AP?

<o precise :

Bloom, Henriot, Schoen, Shkredov
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