Roth's theorem on arithmetic progressions

Tom Sanders
University of Oxford
1st July 2013

solve equations in sets of integers e.g. primes, squares, ...
solve equations in sets of integers e.g. primes, squares, ... general framework: Ruzsa

$A \subset \mathbb{Z}$ 'the' set of integers

$A \subset \mathbb{Z}$ 'the' set of integers

solve $f(x, y, z, w, \ldots)=0$ with $x, y, z, w, \cdots \in A$

$A \subset \mathbb{Z}$ 'the' set of integers

solve $f(x, y, z, w, \ldots)=0$ with $x, y, z, w, \cdots \in A$

$$
x+y=z+w \text { (add. quad.) }
$$

$A \subset \mathbb{Z}$ 'the' set of integers

solve $f(x, y, z, w, \ldots)=0$ with $x, y, z, w, \cdots \in A$
$x+y=z+w$ (add. quad.)

$$
x+y=2 z(3 \mathrm{ap})
$$

$A \subset \mathbb{Z}$ 'the' set of integers

solve $f(x, y, z, w, \ldots)=0$ with $x, y, z, w, \cdots \in A$

$$
x+y=z+w \text { (add. quad.) }
$$

$$
x+y=2 z(3 \mathrm{ap})
$$

aim: show finding solutions is 'equally' difficult

$A \subset \mathbb{Z}$ 'the' set of integers

solve $f(x, y, z, w, \ldots)=0$ with $x, y, z, w, \cdots \in A$

$$
x+y=z+w \text { (add. quad.) }
$$

$$
x+y=2 z(3 a p)
$$

aim: show finding solutions is 'equally' difficult
(inequivalent: $x+y=z, x-y=7$)

$$
Q(A):=\left|\left\{(x, y, z, w) \in A^{4}: x+y=z+w\right\}\right|
$$

and

$$
T(A):=\left|\left\{(x, y, z) \in A^{3}: x+y=2 z\right\}\right|
$$

$$
Q(A):=\left|\left\{(x, y, z, w) \in A^{4}: x+y=z+w\right\}\right|
$$

and

$$
T(A):=\left|\left\{(x, y, z) \in A^{3}: x+y=2 z\right\}\right|
$$

then

$$
Q(A) \leq|A|^{3} \text { and } T(A) \leq|A|^{2}
$$

$$
Q(A):=\left|\left\{(x, y, z, w) \in A^{4}: x+y=z+w\right\}\right|
$$

and

$$
T(A):=\left|\left\{(x, y, z) \in A^{3}: x+y=2 z\right\}\right|
$$

then

$$
\begin{gathered}
Q(A) \leq|A|^{3} \text { and } T(A) \leq|A|^{2} \\
\text { think }|A| \rightarrow \infty
\end{gathered}
$$

$$
Q(A):=\left|\left\{(x, y, z, w) \in A^{4}: x+y=z+w\right\}\right|
$$

and

$$
T(A):=\left|\left\{(x, y, z) \in A^{3}: x+y=2 z\right\}\right|
$$

then

$$
\begin{gathered}
Q(A) \leq|A|^{3} \text { and } T(A) \leq|A|^{2} \\
\text { think }|A| \rightarrow \infty
\end{gathered}
$$

'many' means positive proportion of max
easy fact: 'many 3aps \Rightarrow many add. quads.'
easy fact: 'many 3 aps \Rightarrow many add. quads.'
$T(A)=\sum_{z} 1_{2 \cdot A}(z) \sum_{x+y=z} 1_{A}(x) 1_{A}(y)$
easy fact: 'many 3aps \Rightarrow many add. quads.'

$$
\begin{aligned}
T(A) & =\sum_{z} 1_{2 \cdot A}(z) \sum_{x+y=z} 1_{A}(x) 1_{A}(y) \\
& \leq|2 \cdot A|^{1 / 2}\left(\sum_{z}\left(\sum_{x+y=z} 1_{A}(x) 1_{A}(y)\right)^{2}\right)^{1 / 2}=(|A| Q(A))^{1 / 2}
\end{aligned}
$$

easy fact: 'many 3 aps \Rightarrow many add. quads.'

$$
\begin{aligned}
T(A) & =\sum_{z} 1_{2 \cdot A}(z) \sum_{x+y=z} 1_{A}(x) 1_{A}(y) \\
& \leq|2 \cdot A|^{1 / 2}\left(\sum_{z}\left(\sum_{x+y=z} 1_{A}(x) 1_{A}(y)\right)^{2}\right)^{1 / 2}=(|A| Q(A))^{1 / 2}
\end{aligned}
$$

so

$$
T(A) \geq \delta|A|^{2} \Rightarrow Q(A) \geq \delta^{2}|A|^{3}
$$

not polynomially equivalent (Behrend):

$$
Q(A) \geq \delta|A|^{3} \nRightarrow T(A) \geq \delta^{O(1)}|A|^{2}
$$

not polynomially equivalent (Behrend):

$$
Q(A) \geq \delta|A|^{3} \nRightarrow T(A) \geq \delta^{O(1)}|A|^{2}
$$

maybe

$$
Q(A) \geq \delta|A|^{3} \Rightarrow T(A) \geq \exp \left(-O\left(\log ^{2} \delta^{-1}\right)\right)|A|^{2} ?
$$

not polynomially equivalent (Behrend):

$$
Q(A) \geq \delta|A|^{3} \nRightarrow T(A) \geq \delta^{O(1)}|A|^{2}
$$

maybe

$$
Q(A) \geq \delta|A|^{3} \Rightarrow T(A) \geq \exp \left(-O\left(\log ^{2} \delta^{-1}\right)\right)|A|^{2} ?
$$

hard fact: (Freĭman, Heath-Brown, Ruzsa, Szemerédi)

$$
Q(A) \geq \delta|A|^{3} \Rightarrow T(A) \geq \exp \left(-\delta^{-O(1)}\right)|A|^{2}
$$

Arguments

generalisation: $\mathbb{Z} \mapsto($ Abelian $)$ group

Arguments

generalisation: $\mathbb{Z} \mapsto(A b e l i a n)$ group, 'approximate' group

Arguments

generalisation: $\mathbb{Z} \mapsto($ Abelian $)$ group, 'approximate' group
$\mathbb{Z} \mapsto \mathbb{F}_{3}^{n}:$ Bateman-Katz!

Arguments

generalisation: $\mathbb{Z} \mapsto($ Abelian $)$ group, 'approximate' group
$\mathbb{Z} \mapsto \mathbb{F}_{3}^{n}$: Bateman-Katz!
B approximate group $\rightarrow T_{B}$ and Q_{B}

Arguments

generalisation: $\mathbb{Z} \mapsto(A b e l i a n)$ group, 'approximate' group
$\mathbb{Z} \mapsto \mathbb{F}_{3}^{n}:$ Bateman-Katz!
B approximate group $\rightarrow T_{B}$ and Q_{B}
plan: find an 'approximate' group B so that Q_{B} and T_{B} (strongly) polynomially equivalent

Arguments

generalisation: $\mathbb{Z} \mapsto($ Abelian $)$ group, 'approximate' group
$\mathbb{Z} \mapsto \mathbb{F}_{3}^{n}$: Bateman-Katz!
B approximate group $\rightarrow T_{B}$ and Q_{B}
plan: find an 'approximate' group B so that Q_{B} and T_{B} (strongly) polynomially equivalent
$\left(A^{\prime}:=A \cap B\right.$ is large and has $\left.Q_{B}\left(A^{\prime}\right)\left|A^{\prime}\right| \approx T_{B}\left(A^{\prime}\right)^{2}\right)$

Arguments

generalisation: $\mathbb{Z} \mapsto($ Abelian $)$ group, 'approximate' group
$\mathbb{Z} \mapsto \mathbb{F}_{3}^{n}$: Bateman-Katz!
B approximate group $\rightarrow T_{B}$ and Q_{B}
plan: find an 'approximate' group B so that Q_{B} and T_{B} (strongly) polynomially equivalent
$\left(A^{\prime}:=A \cap B\right.$ is large and has $\left.Q_{B}\left(A^{\prime}\right)\left|A^{\prime}\right| \approx T_{B}\left(A^{\prime}\right)^{2}\right)$
Bourgain
fact: (Peng, Rödl, Rucinski, Gowers) making Q and T strongly polynomially equivalent can be exponentially expensive.
fact: (Peng, Rödl, Rucinski, Gowers) making Q and T strongly polynomially equivalent can be exponentially expensive.
good aim

$$
Q(A) \geq \delta|A|^{3} \Rightarrow T(A) \geq \exp \left(-\delta^{o(1)}\right)|A|^{2} ?
$$

fact: (Peng, Rödl, Rucinski, Gowers) making Q and T strongly polynomially equivalent can be exponentially expensive.
good aim

$$
Q(A) \geq \delta|A|^{3} \Rightarrow T(A) \geq \exp \left(-\delta^{o(1)}\right)|A|^{2} ?
$$

so precise direct counting
Bloom, Henriot, Schoen, Shkredov

