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A ⊂ Z ‘the’ set of integers

solve f (x , y , z ,w , . . . ) = 0 with x , y , z ,w , · · · ∈ A

x + y = z + w (add. quad.)

x + y = 2z (3ap)

aim: show finding solutions is ‘equally’ difficult

(inequivalent: x + y = z , x − y = 7)
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Q(A) := |{(x , y , z ,w) ∈ A4 : x + y = z + w}|

and
T (A) := |{(x , y , z) ∈ A3 : x + y = 2z}|

then

Q(A) ≤ |A|3 and T (A) ≤ |A|2

think |A| → ∞

‘many’ means positive proportion of max
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easy fact: ‘many 3aps ⇒ many add. quads.’

T (A) =
∑
z

12·A(z)
∑

x+y=z

1A(x)1A(y)

≤ |2 · A|1/2
∑

z

( ∑
x+y=z

1A(x)1A(y)

)2
1/2

= (|A|Q(A))1/2

so

T (A) ≥ δ|A|2 ⇒ Q(A) ≥ δ2|A|3.
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not polynomially equivalent (Behrend):

Q(A) ≥ δ|A|3 6⇒ T (A) ≥ δO(1)|A|2.

maybe

Q(A) ≥ δ|A|3 ⇒ T (A) ≥ exp(−O(log2 δ−1))|A|2?

hard fact: (Frĕıman, Heath-Brown, Ruzsa, Szemerédi)

Q(A) ≥ δ|A|3 ⇒ T (A) ≥ exp(−δ−O(1))|A|2
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Arguments

generalisation: Z 7→ (Abelian) group

, ‘approximate’ group

Z 7→ Fn
3: Bateman-Katz!

B approximate group → TB and QB

plan: find an ‘approximate’ group B so that QB and TB (strongly)
polynomially equivalent

(A′ := A ∩ B is large and has QB(A′)|A′| ≈ TB(A′)2)

Bourgain
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fact: (Peng, Rödl, Rucinski, Gowers) making Q and T strongly
polynomially equivalent can be exponentially expensive.

good aim

Q(A) ≥ δ|A|3 ⇒ T (A) ≥ exp(−δo(1))|A|2?

so precise direct counting
Bloom, Henriot, Schoen, Shkredov
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