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Dirac-type questions

Theorem (Dirac 1952)

If an n-vertex graph G with n ≥ 3 satisfies δ(G ) ≥ n/2, then G is

Hamiltonian.

Main Question

How to extend this result to k-uniform hypergraphs?

Problems:

What is a (Hamiltonian) cycle in a hypergraph?

What replaces minimum degree in hypergraphs?

A. Rućınski (UAM Poznań & Emory) Hamiltonian cycles in 3-graphs July 2013



Dirac-type questions

Theorem (Dirac 1952)

If an n-vertex graph G with n ≥ 3 satisfies δ(G ) ≥ n/2, then G is

Hamiltonian.

Main Question

How to extend this result to k-uniform hypergraphs?

Problems:

What is a (Hamiltonian) cycle in a hypergraph?

What replaces minimum degree in hypergraphs?
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Cycles in hypergraphs

k-uniform hypergraph H = (V ,E ), i.e., E ⊆
(V
k

)

`-overlapping cycle C
(k,`)
n , 0 ≤ ` ≤ k − 1, (k − `)|n, |C

(k,`)
n | = n

k−`
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Hamilton cycles in k-graphs

k-uniform hypergraph (k-graph) H = (V,E)

E ⊆
(V
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l-overlapping cycle C
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Degrees in hypergraphs

minimum vertex degree δ1(H)

minimum pair degree δ2(H)

Dirac-type questions

Dirac 1952: δ(Gn) ≥ n
2 ⇒ Gn is Hamiltonian

Degrees in k-graphs
vertex degrees δ1(H)

pair degrees δ2(H)

v v
u

EXCILL2 – p. 11

triple degrees δ3(H)

. . .
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Main question

Theorem (Dirac 1952)

If an n-vertex graph G satisfies δ(G ) ≥ n/2, then G is Hamiltonian.

Main question

Given integers k , `, and d determine the function h
(k,`)
d (n) with the

property

δd(H) ≥ h
(k,`)
d (n) =⇒ Hamiltonian `-cycle in H

for any n-vertex k-uniform hypergraph H.

Remarks:

` = 0 → perfect matchings

Bollobás, Daykin & Erdős 1976

Daykin & Häggkvist 1981 h
(3,0)
1 (n)

G. Y. Katona and Kierstead 1999 h
(3,2)
2 (n)

Today: k = 3 and ` = 1 or 2 and we write h`d = h
(3,`)
d
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A. Rućınski (UAM Poznań & Emory) Hamiltonian cycles in 3-graphs July 2013



Main question

Theorem (Dirac 1952)

If an n-vertex graph G satisfies δ(G ) ≥ n/2, then G is Hamiltonian.

Main question

Given integers k , `, and d determine the function h
(k,`)
d (n) with the

property

δd(H) ≥ h
(k,`)
d (n) =⇒ Hamiltonian `-cycle in H

for any n-vertex k-uniform hypergraph H.

Remarks:

` = 0 → perfect matchings

Bollobás, Daykin & Erdős 1976
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Some known results

Theorems (d = 2, n large)

h1
2(n) ∼ n/4 Kühn and Osthus

h2
2(n) = bn/2c Rödl, R. & Szemerédi

Theorems (d = 1, n large)

h1
1(n) ∼

7
16

(n
2

)
Buß, Hàn & Schacht

h2
1(n) ≤ (1 − 5 · 10−7)

(n
2

)
Glebov, Person & Weps

h2
1(n) ≤

(
5−

√
5

3

)(n
2

)
≈ 0.92

(n
2

)
Rödl & R.

New bound (work in progress)

h2
1(n) .

4

5

(
n

2

)
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Where do we stand?

New bound (work in progress)

h2
1(n) .

4

5

(
n

2

)

Conjecture

h2
1(n) ∼ h0

1(n) ∼
5

9

(
n

2

)

Some evidence:

h2
2(n) ∼ h0

2(n) ∼ n/2

h1
2(n) ∼ n/4 ∼“min. pair degree for matchings of size n/4”

h1
1(n) ∼

7
16

(n
2

)
∼“min. vertex degree for matchings of size n/4”
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Lower bound construction

Lower bound I

2 constructions; in both V = X ∪ Y , x := |X|, y := |Y | = n − x

H1 = {e ∈
(V

3

)
: e ∩ X %= ∅} x = 'n/3( − 1

δ1(H1) =
(
n−1

2

)
−

(
y−1
2

)
∼ 5

9

(
n−1

2

)

Suppose H1 ⊇ Tn. Then X is a vertex cover of Tn and
n = |Tn| ≤ ∑

v∈X degTn(v) = 3x < n – a contradiction

EXCILL2 – p. 13

Suppose 3|n and |X | = n/3 − 1

e ∈ E (H) ⇐⇒ e ∩ X 6= ∅⇒ δ1(H) ∼
(n

2

)
−
(2n/3

2

)
∼ 5

9

(n
2

)
, but H contains no perfect matching
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Lower bound construction with perfect matching

Lower bound II

H2 = {e ∈
(V

3

)
: |e ∩ Y | #= 1} x = $(n + 1)/3%

EXCILL2 – p. 14

Suppose 3|n and |X | = n/3 + 1

e ∈ E (H) ⇐⇒ |e ∩ Y | 6= 1⇒ δ1(H) ∼
(n

2

)
− n

3 · 2n
3 ∼ 5

9

(n
2

)
,

every edge with two vertices in |X | is contained in X⇒ every edge of a C 2
n intersects Y in at least two vertices  
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Absorbing method

1 Find an absorbing path A in H with |V (A)| = c1n:

∀U ⊆ V \ V (A) with |U | ≤ c2n (� c1n)

∃ path AU with same endpairs and V (AU) = V (A) ∪ U.

2 Find almost Hamiltonian cycle C containing A.

3 Apply absorbing property of A to U = V \ V (C ) and obtain

Hamiltonian cycle.

The absorbing method

1 Build an absorbing path A in H, |A| ≤ c1n

∀U ⊂ V \ V (A), |U | ≤ c2n, ∃AU with the same endpairs
and such that V (AU ) = V (A) ∪ U

2 Build a long cycle C = Tm ⊃ A, m ≥ n − c2n

EXCILL2 – p. 15

The absorbing method

1 Build an absorbing path A in H, |A| ≤ c1n

∀U ⊂ V \ V (A), |U | ≤ c2n, ∃AU with the same endpairs
and such that V (AU ) = V (A) ∪ U

2 Build a long cycle C = Tm ⊃ A, m ≥ n − c2n

3 Apply the absorbing property of A to U = V \ V (Tm)

obtaining a Hamiltonian cycle Tn

EXCILL2 – p. 15
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Finding absorbers with δ2(H) ≥ (1/2+ ε)n

Absorbing devices

Assume first that δ2(H) ≥ (1/2 + ε)n

Fact 1 For all v ∈ V there are Ωε(n
4) 4-tuples (a, b, c, d) such

that abc, bcd, abv, bvc, vcd ∈ H

v

c da b

Proof: there are ≥ n × n/2 choices of b, c and ≥ (2εn)2

choices of a, d.

EXCILL2 – p. 16

Fact: For every v ∈ V there are ε2n4 absorbers (a, b, c , d).
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Absorbing path

1 Randomly select γn from all 4-tuples

2 Select a pairwise disjoint subset of those 4-tuples forming paths⇒ w.h.p. for every v ∈ V at least γ4ε2n absorber were selected

3 Connect the selected 4-tuples Pi to obtain the path A

Absorbing path

To build an absorbing path A, flip a coin p = γn−3 over all (n)4
4-tuples (a, b, c, d)

Select ≤ 2γ4n disjoint paths Pi = (ai, bi, ci, di) so that for all v
at least ε2γ4n of them absorb v.
Connect Pi’s together to form path A (c2 = ε2γ4)

P1 P2

d1 a2 b2a1 b1 c1 d2c2

EXCILL2 – p. 17
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Some ideas

remove hyperedges from H, that contain pairs (x , y) with

degH(x , y) ≤ (1/2 + ε)n

← requires δ1(H) ≥ 5−
√

5
3

(n
2

)

slightly more careful, remove only hyperedges which contain no pair

of high degree

balance between “finding absorbers” and “making connections

between large pairs”
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Questions
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