On a Hamiltonian Problem For Triple Systems

Andrzej Ruciński (substituted by M. Schacht)
UAM Poznań and Emory University
joint work with
V. Rödl, M. Schacht and E. Szemerédi

Erdős Centennial Conference

Dirac-type questions

Dirac-type questions

Theorem (Dirac 1952)
If an n-vertex graph G with $n \geq 3$ satisfies $\delta(G) \geq n / 2$, then G is Hamiltonian.

Dirac-type questions

Theorem (Dirac 1952)
If an n-vertex graph G with $n \geq 3$ satisfies $\delta(G) \geq n / 2$, then G is Hamiltonian.

Main Question

How to extend this result to k-uniform hypergraphs?

Dirac-type questions

Theorem (Dirac 1952)
If an n-vertex graph G with $n \geq 3$ satisfies $\delta(G) \geq n / 2$, then G is Hamiltonian.

Main Question

How to extend this result to k-uniform hypergraphs?

Problems:
■ What is a (Hamiltonian) cycle in a hypergraph?

Dirac-type questions

Theorem (Dirac 1952)
If an n-vertex graph G with $n \geq 3$ satisfies $\delta(G) \geq n / 2$, then G is Hamiltonian.

Main Question

How to extend this result to k-uniform hypergraphs?

Problems:

- What is a (Hamiltonian) cycle in a hypergraph?
- What replaces minimum degree in hypergraphs?

Cycles in hypergraphs

Cycles in hypergraphs

- k-uniform hypergraph $H=(V, E)$, i.e., $E \subseteq\binom{V}{k}$

Cycles in hypergraphs

■ k-uniform hypergraph $H=(V, E)$, i.e., $E \subseteq\binom{V}{k}$

- ℓ-overlapping cycle $C_{n}^{(k, \ell)}, 0 \leq \ell \leq k-1,(k-\ell)\left|n,\left|C_{n}^{(k, \ell)}\right|=\frac{n}{k-\ell}\right.$

Cycles in hypergraphs

■ k-uniform hypergraph $H=(V, E)$, i.e., $E \subseteq\binom{V}{k}$
■ ℓ-overlapping cycle $C_{n}^{(k, \ell)}, 0 \leq \ell \leq k-1,(k-\ell)\left|n,\left|C_{n}^{(k, \ell)}\right|=\frac{n}{k-\ell}\right.$

Cycles in hypergraphs

■ k-uniform hypergraph $H=(V, E)$, i.e., $E \subseteq\binom{V}{k}$
■ ℓ-overlapping cycle $C_{n}^{(k, \ell)}, 0 \leq \ell \leq k-1,(k-\ell)\left|n,\left|C_{n}^{(k, \ell)}\right|=\frac{n}{k-\ell}\right.$

Cycles in hypergraphs

- k-uniform hypergraph $H=(V, E)$, i.e., $E \subseteq\binom{V}{k}$
- ℓ-overlapping cycle $C_{n}^{(k, \ell)}, 0 \leq \ell \leq k-1,(k-\ell)\left|n,\left|C_{n}^{(k, \ell)}\right|=\frac{n}{k-\ell}\right.$

Degrees in hypergraphs

■ minimum vertex degree $\delta_{1}(H)$

Degrees in hypergraphs

- minimum vertex degree $\delta_{1}(H)$
- minimum pair degree $\delta_{2}(H)$

Degrees in hypergraphs

- minimum vertex degree $\delta_{1}(H)$
- minimum pair degree $\delta_{2}(H)$

Degrees in hypergraphs

- minimum vertex degree $\delta_{1}(H)$
- minimum pair degree $\delta_{2}(H)$

- triple degrees $\delta_{3}(H)$

Main question

Theorem (Dirac 1952)
If an n-vertex graph G satisfies $\delta(G) \geq n / 2$, then G is Hamiltonian.

Main question

Theorem (Dirac 1952)
If an n-vertex graph G satisfies $\delta(G) \geq n / 2$, then G is Hamiltonian.

Main question

Given integers k, ℓ, and d determine the function $h_{d}^{(k, \ell)}(n)$ with the property

$$
\delta_{d}(H) \geq h_{d}^{(k, \ell)}(n) \quad \Longrightarrow \quad \text { Hamiltonian } \ell \text {-cycle in } H
$$

for any n-vertex k-uniform hypergraph H.

Main question

Theorem (Dirac 1952)
If an n-vertex graph G satisfies $\delta(G) \geq n / 2$, then G is Hamiltonian.

Main question

Given integers k, ℓ, and d determine the function $h_{d}^{(k, \ell)}(n)$ with the property

$$
\delta_{d}(H) \geq h_{d}^{(k, \ell)}(n) \quad \Longrightarrow \quad \text { Hamiltonian } \ell \text {-cycle in } H
$$

for any n-vertex k-uniform hypergraph H.
Remarks:

- $\ell=0 \rightarrow$ perfect matchings

Main question

Theorem (Dirac 1952)
If an n-vertex graph G satisfies $\delta(G) \geq n / 2$, then G is Hamiltonian.

Main question

Given integers k, ℓ, and d determine the function $h_{d}^{(k, \ell)}(n)$ with the property

$$
\delta_{d}(H) \geq h_{d}^{(k, \ell)}(n) \quad \Longrightarrow \quad \text { Hamiltonian } \ell \text {-cycle in } H
$$

for any n-vertex k-uniform hypergraph H.
Remarks:
■ $\ell=0 \rightarrow$ perfect matchings

- Bollobás, Daykin \& Erdős 1976

Main question

Theorem (Dirac 1952)
If an n-vertex graph G satisfies $\delta(G) \geq n / 2$, then G is Hamiltonian.

Main question

Given integers k, ℓ, and d determine the function $h_{d}^{(k, \ell)}(n)$ with the property

$$
\delta_{d}(H) \geq h_{d}^{(k, \ell)}(n) \quad \Longrightarrow \quad \text { Hamiltonian } \ell \text {-cycle in } H
$$

for any n-vertex k-uniform hypergraph H.
Remarks:
■ $\ell=0 \rightarrow$ perfect matchings

- Bollobás, Daykin \& Erdős 1976

Daykin \& Häggkvist 1981

Main question

Theorem (Dirac 1952)
If an n-vertex graph G satisfies $\delta(G) \geq n / 2$, then G is Hamiltonian.

Main question

Given integers k, ℓ, and d determine the function $h_{d}^{(k, \ell)}(n)$ with the property

$$
\delta_{d}(H) \geq h_{d}^{(k, \ell)}(n) \quad \Longrightarrow \quad \text { Hamiltonian } \ell \text {-cycle in } H
$$

for any n-vertex k-uniform hypergraph H.
Remarks:
■ $\ell=0 \rightarrow$ perfect matchings

- Bollobás, Daykin \& Erdős 1976

Daykin \& Häggkvist 1981

- G. Y. Katona and Kierstead 1999

$$
\begin{aligned}
& h_{1}^{(3,0)}(n) \\
& h_{2}^{(3,2)}(n)
\end{aligned}
$$

Main question

Theorem (Dirac 1952)
If an n-vertex graph G satisfies $\delta(G) \geq n / 2$, then G is Hamiltonian.

Main question

Given integers k, ℓ, and d determine the function $h_{d}^{(k, \ell)}(n)$ with the property

$$
\delta_{d}(H) \geq h_{d}^{(k, \ell)}(n) \quad \Longrightarrow \quad \text { Hamiltonian } \ell \text {-cycle in } H
$$

for any n-vertex k-uniform hypergraph H.
Remarks:
■ $\ell=0 \rightarrow$ perfect matchings
■ Bollobás, Daykin \& Erdős 1976
Daykin \& Häggkvist 1981

- G. Y. Katona and Kierstead 1999

$$
\begin{aligned}
& h_{1}^{(3,0)}(n) \\
& h_{2}^{(3,2)}(n)
\end{aligned}
$$

- Today: $k=3$ and $\ell=1$ or 2

Main question

Theorem (Dirac 1952)
If an n-vertex graph G satisfies $\delta(G) \geq n / 2$, then G is Hamiltonian.

Main question

Given integers k, ℓ, and d determine the function $h_{d}^{(k, \ell)}(n)$ with the property

$$
\delta_{d}(H) \geq h_{d}^{(k, \ell)}(n) \quad \Longrightarrow \quad \text { Hamiltonian } \ell \text {-cycle in } H
$$

for any n-vertex k-uniform hypergraph H.
Remarks:
■ $\ell=0 \rightarrow$ perfect matchings

- Bollobás, Daykin \& Erdős 1976 Daykin \& Häggkvist 1981
- G. Y. Katona and Kierstead 1999

$$
\begin{aligned}
& h_{1}^{(3,0)}(n) \\
& h_{2}^{(3,2)}(n)
\end{aligned}
$$

- Today: $k=3$ and $\ell=1$ or 2 and we write $h_{d}^{\ell}=h_{d}^{(3, \ell)}$

Some known results

Theorems ($d=2, n$ large $)$

Some known results

Theorems ($d=2, n$ large)

- $h_{2}^{1}(n) \sim n / 4$

Kühn and Osthus

Some known results

Theorems ($d=2, n$ large)

- $h_{2}^{1}(n) \sim n / 4$

Kühn and Osthus

- $h_{2}^{2}(n)=\lfloor n / 2\rfloor$

Rödl, R. \& Szemerédi

Some known results

Theorems ($d=2, n$ large)

- $h_{2}^{1}(n) \sim n / 4$

Kühn and Osthus

- $h_{2}^{2}(n)=\lfloor n / 2\rfloor$

Rödl, R. \& Szemerédi
Theorems ($d=1, n$ large)

Some known results

Theorems ($d=2, n$ large)

- $h_{2}^{1}(n) \sim n / 4$

Kühn and Osthus

- $h_{2}^{2}(n)=\lfloor n / 2\rfloor$

Rödl, R. \& Szemerédi
Theorems ($d=1, n$ large)

- $h_{1}^{1}(n) \sim \frac{7}{16}\binom{n}{2}$

Buß, Hàn \& Schacht

Some known results

Theorems ($d=2, n$ large)

- $h_{2}^{1}(n) \sim n / 4$
- $h_{2}^{2}(n)=\lfloor n / 2\rfloor$

Rödl, R. \& Szemerédi
Theorems ($d=1, n$ large)

- $h_{1}^{1}(n) \sim \frac{7}{16}\binom{n}{2}$

Buß, Hàn \& Schacht

- $h_{1}^{2}(n) \leq\left(1-5 \cdot 10^{-7}\right)\binom{n}{2}$

Glebov, Person \& Weps

Some known results

Theorems ($d=2, n$ large)

- $h_{2}^{1}(n) \sim n / 4$
- $h_{2}^{2}(n)=\lfloor n / 2\rfloor$ Rödl, R. \& Szemerédi

Theorems ($d=1, n$ large)

- $h_{1}^{1}(n) \sim \frac{7}{16}\binom{n}{2}$

Buß, Hàn \& Schacht

- $h_{1}^{2}(n) \leq\left(1-5 \cdot 10^{-7}\right)\binom{n}{2}$

Glebov, Person \& Weps

- $h_{1}^{2}(n) \leq\left(\frac{5-\sqrt{5}}{3}\right)\binom{n}{2} \approx 0.92\binom{n}{2}$ Rödl \& R.

Some known results

Theorems ($d=2, n$ large $)$

- $h_{2}^{1}(n) \sim n / 4$
- $h_{2}^{2}(n)=\lfloor n / 2\rfloor$

Rödl, R. \& Szemerédi
Theorems ($d=1, n$ large)

- $h_{1}^{1}(n) \sim \frac{7}{16}\binom{n}{2}$

Buß, Hàn \& Schacht

- $h_{1}^{2}(n) \leq\left(1-5 \cdot 10^{-7}\right)\binom{n}{2}$

Glebov, Person \& Weps

- $h_{1}^{2}(n) \leq\left(\frac{5-\sqrt{5}}{3}\right)\binom{n}{2} \approx 0.92\binom{n}{2}$

Rödl \& R.

New bound (work in progress)

$$
h_{1}^{2}(n) \lesssim \frac{4}{5}\binom{n}{2}
$$

Some known results

Theorems ($d=2, n$ large $)$

- $h_{2}^{1}(n) \sim n / 4$
- $h_{2}^{2}(n)=\lfloor n / 2\rfloor$

Rödl, R. \& Szemerédi
Theorems ($d=1, n$ large)

- $h_{1}^{1}(n) \sim \frac{7}{16}\binom{n}{2}$

Buß, Hàn \& Schacht

- $h_{1}^{2}(n) \leq\left(1-5 \cdot 10^{-7}\right)\binom{n}{2}$

Glebov, Person \& Weps

- $h_{1}^{2}(n) \leq\left(\frac{5-\sqrt{5}}{3}\right)\binom{n}{2} \approx 0.92\binom{n}{2}$

Rödl \& R.

New bound (work in progress)

$$
h_{1}^{2}(n) \lesssim \frac{4}{5}\binom{n}{2}
$$

Where do we stand?

Where do we stand?

New bound (work in progress)

$$
h_{1}^{2}(n) \lesssim \frac{4}{5}\binom{n}{2}
$$

Where do we stand?

New bound (work in progress)

$$
h_{1}^{2}(n) \lesssim \frac{4}{5}\binom{n}{2}
$$

Conjecture

$$
h_{1}^{2}(n) \sim h_{1}^{0}(n) \sim \frac{5}{9}\binom{n}{2}
$$

Where do we stand?

New bound (work in progress)

$$
h_{1}^{2}(n) \lesssim \frac{4}{5}\binom{n}{2}
$$

Conjecture

$$
h_{1}^{2}(n) \sim h_{1}^{0}(n) \sim \frac{5}{9}\binom{n}{2}
$$

Some evidence:

Where do we stand?

New bound (work in progress)

$$
h_{1}^{2}(n) \lesssim \frac{4}{5}\binom{n}{2}
$$

Conjecture

$$
h_{1}^{2}(n) \sim h_{1}^{0}(n) \sim \frac{5}{9}\binom{n}{2}
$$

Some evidence:

- $h_{2}^{2}(n) \sim h_{2}^{0}(n) \sim n / 2$

Where do we stand?

New bound (work in progress)

$$
h_{1}^{2}(n) \lesssim \frac{4}{5}\binom{n}{2}
$$

Conjecture

$$
h_{1}^{2}(n) \sim h_{1}^{0}(n) \sim \frac{5}{9}\binom{n}{2}
$$

Some evidence:

- $h_{2}^{2}(n) \sim h_{2}^{0}(n) \sim n / 2$

■ $h_{2}^{1}(n) \sim n / 4 \sim$ "min. pair degree for matchings of size $n / 4$ "

Where do we stand?

New bound (work in progress)

$$
h_{1}^{2}(n) \lesssim \frac{4}{5}\binom{n}{2}
$$

Conjecture

$$
h_{1}^{2}(n) \sim h_{1}^{0}(n) \sim \frac{5}{9}\binom{n}{2}
$$

Some evidence:

- $h_{2}^{2}(n) \sim h_{2}^{0}(n) \sim n / 2$
- $h_{2}^{1}(n) \sim n / 4 \sim$ "min. pair degree for matchings of size $n / 4$ "
- $h_{1}^{1}(n) \sim \frac{7}{16}\binom{n}{2} \sim$ "min. vertex degree for matchings of size $n / 4$ "

Lower bound construction

■ Suppose $3 \mid n$ and $|X|=n / 3-1$

Lower bound construction

- Suppose $3 \mid n$ and $|X|=n / 3-1$

■ $e \in E(H) \quad \Longleftrightarrow \quad e \cap X \neq \emptyset$

Lower bound construction

- Suppose $3 \mid n$ and $|X|=n / 3-1$

■ $e \in E(H) \Longleftrightarrow e \cap X \neq \emptyset$
$\Rightarrow \delta_{1}(H) \sim\binom{n}{2}-\binom{2 n / 3}{2} \sim \frac{5}{9}\binom{n}{2}$,

Lower bound construction

- Suppose $3 \mid n$ and $|X|=n / 3-1$

■ $e \in E(H) \Longleftrightarrow e \cap X \neq \emptyset$
$\Rightarrow \delta_{1}(H) \sim\binom{n}{2}-\binom{2 n / 3}{2} \sim \frac{5}{9}\binom{n}{2}$, but H contains no perfect matching

Lower bound construction with perfect matching

- Suppose $3 \mid n$ and $|X|=n / 3+1$

Lower bound construction with perfect matching

- Suppose $3 \mid n$ and $|X|=n / 3+1$

■ $e \in E(H) \quad \Longleftrightarrow \quad|e \cap Y| \neq 1$

Lower bound construction with perfect matching

- Suppose $3 \mid n$ and $|X|=n / 3+1$

■ $e \in E(H) \quad \Longleftrightarrow \quad|e \cap Y| \neq 1$
$\Rightarrow \delta_{1}(H) \sim\binom{n}{2}-\frac{n}{3} \cdot \frac{2 n}{3} \sim \frac{5}{9}\binom{n}{2}$,

Lower bound construction with perfect matching

- Suppose $3 \mid n$ and $|X|=n / 3+1$

■ $e \in E(H) \quad \Longleftrightarrow \quad|e \cap Y| \neq 1$
$\Rightarrow \delta_{1}(H) \sim\binom{n}{2}-\frac{n}{3} \cdot \frac{2 n}{3} \sim \frac{5}{9}\binom{n}{2}$,
■ every edge with two vertices in $|X|$ is contained in X

Lower bound construction with perfect matching

- Suppose $3 \mid n$ and $|X|=n / 3+1$

■ $e \in E(H) \quad \Longleftrightarrow \quad|e \cap Y| \neq 1$
$\Rightarrow \delta_{1}(H) \sim\binom{n}{2}-\frac{n}{3} \cdot \frac{2 n}{3} \sim \frac{5}{9}\binom{n}{2}$,
■ every edge with two vertices in $|X|$ is contained in X
\Rightarrow every edge of a C_{n}^{2} intersects Y in at least two vertices

Lower bound construction with perfect matching

- Suppose $3 \mid n$ and $|X|=n / 3+1$

■ $e \in E(H) \quad \Longleftrightarrow \quad|e \cap Y| \neq 1$
$\Rightarrow \delta_{1}(H) \sim\binom{n}{2}-\frac{n}{3} \cdot \frac{2 n}{3} \sim \frac{5}{9}\binom{n}{2}$,
■ every edge with two vertices in $|X|$ is contained in X
\Rightarrow every edge of a C_{n}^{2} intersects Y in at least two vertices z

Absorbing method

1 Find an absorbing path A in H with $|V(A)|=c_{1} n$:

Absorbing method

1 Find an absorbing path A in H with $|V(A)|=c_{1} n$:
$\forall U \subseteq V \backslash V(A)$ with $|U| \leq c_{2} n\left(\ll c_{1} n\right)$
\exists path A_{U} with same endpairs and $V\left(A_{U}\right)=V(A) \cup U$.

Absorbing method

1 Find an absorbing path A in H with $|V(A)|=c_{1} n$:
$\forall U \subseteq V \backslash V(A)$ with $|U| \leq c_{2} n\left(\ll c_{1} n\right)$
\exists path A_{U} with same endpairs and $V\left(A_{U}\right)=V(A) \cup U$.
2 Find almost Hamiltonian cycle C containing A.

Absorbing method

1 Find an absorbing path A in H with $|V(A)|=c_{1} n$:
$\forall U \subseteq V \backslash V(A)$ with $|U| \leq c_{2} n\left(\ll c_{1} n\right)$
\exists path A_{U} with same endpairs and $V\left(A_{U}\right)=V(A) \cup U$.
2 Find almost Hamiltonian cycle C containing A.
3 Apply absorbing property of A to $U=V \backslash V(C)$ and obtain Hamiltonian cycle.

Absorbing method

1 Find an absorbing path A in H with $|V(A)|=c_{1} n$:
$\forall U \subseteq V \backslash V(A)$ with $|U| \leq c_{2} n\left(\ll c_{1} n\right)$
\exists path A_{U} with same endpairs and $V\left(A_{U}\right)=V(A) \cup U$.
2 Find almost Hamiltonian cycle C containing A.
3 Apply absorbing property of A to $U=V \backslash V(C)$ and obtain Hamiltonian cycle.

HAA...AM

Absorbing method

1 Find an absorbing path A in H with $|V(A)|=c_{1} n$:
$\forall U \subseteq V \backslash V(A)$ with $|U| \leq c_{2} n\left(\ll c_{1} n\right)$
\exists path A_{U} with same endpairs and $V\left(A_{U}\right)=V(A) \cup U$.
2 Find almost Hamiltonian cycle C containing A.
3 Apply absorbing property of A to $U=V \backslash V(C)$ and obtain Hamiltonian cycle.

Finding absorbers with $\delta_{2}(H) \geq(1 / 2+\varepsilon) n$

Finding absorbers with $\delta_{2}(H) \geq(1 / 2+\varepsilon) n$

Fact: For every $v \in V$ there are $\varepsilon^{2} n^{4}$ absorbers (a, b, c, d).

Absorbing path

1 Randomly select γn from all 4-tuples

Absorbing path

1 Randomly select γn from all 4-tuples
2 Select a pairwise disjoint subset of those 4-tuples forming paths \Rightarrow w.h.p. for every $v \in V$ at least $\gamma^{4} \varepsilon^{2} n$ absorber were selected

Absorbing path

1 Randomly select γn from all 4-tuples
2 Select a pairwise disjoint subset of those 4-tuples forming paths \Rightarrow w.h.p. for every $v \in V$ at least $\gamma^{4} \varepsilon^{2} n$ absorber were selected
3 Connect the selected 4-tuples P_{i} to obtain the path A

Some ideas

■ remove hyperedges from H, that contain pairs (x, y) with $\operatorname{deg}_{H}(x, y) \leq(1 / 2+\varepsilon) n$

Some ideas

■ remove hyperedges from H, that contain pairs (x, y) with $\operatorname{deg}_{H}(x, y) \leq(1 / 2+\varepsilon) n$
\leftarrow requires $\delta_{1}(H) \geq \frac{5-\sqrt{5}}{3}\binom{n}{2}$

Some ideas

- remove hyperedges from H, that contain pairs (x, y) with $\operatorname{deg}_{H}(x, y) \leq(1 / 2+\varepsilon) n$
\leftarrow requires $\delta_{1}(H) \geq \frac{5-\sqrt{5}}{3}\binom{n}{2}$
- slightly more careful, remove only hyperedges which contain no pair of high degree

Some ideas

- remove hyperedges from H, that contain pairs (x, y) with $\operatorname{deg}_{H}(x, y) \leq(1 / 2+\varepsilon) n$
\leftarrow requires $\delta_{1}(H) \geq \frac{5-\sqrt{5}}{3}\binom{n}{2}$

■ slightly more careful, remove only hyperedges which contain no pair of high degree
■ balance between "finding absorbers" and "making connections between large pairs"

Questions

