On a Hamiltonian Problem For Triple Systems

Andrzej Ruciński (substituted by M. Schacht)

UAM Poznań and Emory University

joint work with

V. Rödl, M. Schacht and E. Szemerédi

Erdős Centennial Conference

Theorem (Dirac 1952)

If an n-vertex graph G with $n \ge 3$ satisfies $\delta(G) \ge n/2$, then G is Hamiltonian.

Theorem (Dirac 1952)

If an n-vertex graph G with $n \ge 3$ satisfies $\delta(G) \ge n/2$, then G is Hamiltonian.

Main Question

How to extend this result to k-uniform hypergraphs?

Theorem (Dirac 1952)

If an n-vertex graph G with $n \ge 3$ satisfies $\delta(G) \ge n/2$, then G is Hamiltonian.

Main Question

How to extend this result to k-uniform hypergraphs?

Problems:

• What is a (Hamiltonian) cycle in a hypergraph?

Theorem (Dirac 1952)

If an n-vertex graph G with $n \ge 3$ satisfies $\delta(G) \ge n/2$, then G is Hamiltonian.

Main Question

How to extend this result to k-uniform hypergraphs?

Problems:

- What is a (Hamiltonian) cycle in a hypergraph?
- What replaces minimum degree in hypergraphs?

• *k*-uniform hypergraph H = (V, E), i.e., $E \subseteq \binom{V}{k}$

• k-uniform hypergraph H = (V, E), i.e., $E \subseteq \binom{V}{k}$

• l-overlapping cycle $C_n^{(k,\ell)}$, $0 \le \ell \le k-1$, $(k-\ell)|n, |C_n^{(k,\ell)}| = \frac{n}{k-\ell}$

- *k*-uniform hypergraph H = (V, E), i.e., $E \subseteq \binom{V}{k}$
- l-overlapping cycle $C_n^{(k,\ell)}$, $0 \le \ell \le k-1$, $(k-\ell)|n, |C_n^{(k,\ell)}| = \frac{n}{k-\ell}$

■ *k*-uniform hypergraph H = (V, E), i.e., $E \subseteq \binom{V}{k}$ ■ *l*-overlapping cycle $C_n^{(k,l)}$, $0 \le l \le k-1$, (k-l)|n, $|C_n^{(k,l)}| = \frac{n}{k-l}$

■ *k*-uniform hypergraph H = (V, E), i.e., $E \subseteq \binom{V}{k}$ ■ *l*-overlapping cycle $C_n^{(k,l)}$, $0 \le l \le k-1$, (k-l)|n, $|C_n^{(k,l)}| = \frac{n}{k-l}$

• minimum vertex degree $\delta_1(H)$

- minimum vertex degree $\delta_1(H)$
- minimum pair degree $\delta_2(H)$

minimum vertex degree δ₁(H)
 minimum pair degree δ₂(H)

minimum vertex degree δ₁(H)
 minimum pair degree δ₂(H)

• triple degrees $\delta_3(H)$

. . .

Theorem (Dirac 1952)

If an n-vertex graph G satisfies $\delta(G) \ge n/2$, then G is Hamiltonian.

Theorem (Dirac 1952)

If an n-vertex graph G satisfies $\delta(G) \ge n/2$, then G is Hamiltonian.

Main question

Given integers k, ℓ , and d determine the function $h_d^{(k,\ell)}(n)$ with the property

$$\delta_d(H) \ge h_d^{(k,\ell)}(n) \implies$$
 Hamiltonian ℓ -cycle in H

for any *n*-vertex *k*-uniform hypergraph *H*.

Theorem (Dirac 1952)

If an n-vertex graph G satisfies $\delta(G) \ge n/2$, then G is Hamiltonian.

Main question

Given integers k, ℓ , and d determine the function $h_d^{(k,\ell)}(n)$ with the property

$$\delta_d(H) \ge h_d^{(k,\ell)}(n) \implies$$
 Hamiltonian ℓ -cycle in H

for any *n*-vertex *k*-uniform hypergraph *H*.

Remarks:

 $\blacksquare \ \ell = 0 \rightarrow \text{perfect matchings}$

Theorem (Dirac 1952)

If an n-vertex graph G satisfies $\delta(G) \ge n/2$, then G is Hamiltonian.

Main question

Given integers k, ℓ , and d determine the function $h_d^{(k,\ell)}(n)$ with the property

$$\delta_d(H) \ge h_d^{(k,\ell)}(n) \implies$$
 Hamiltonian ℓ -cycle in H

for any *n*-vertex *k*-uniform hypergraph *H*.

Remarks:

- $\ell = 0 \rightarrow \text{perfect matchings}$
- Bollobás, Daykin & Erdős 1976

Theorem (Dirac 1952)

If an n-vertex graph G satisfies $\delta(G) \ge n/2$, then G is Hamiltonian.

Main question

Given integers k, ℓ , and d determine the function $h_d^{(k,\ell)}(n)$ with the property

$$\delta_d(H) \ge h_d^{(k,\ell)}(n) \implies$$
 Hamiltonian ℓ -cycle in H

for any *n*-vertex *k*-uniform hypergraph *H*.

Remarks:

- $\blacksquare \ \ell = 0 \rightarrow perfect matchings$
- Bollobás, Daykin & Erdős 1976
 Daykin & Häggkvist 1981

 $h_1^{(3,0)}(n)$

Theorem (Dirac 1952)

If an n-vertex graph G satisfies $\delta(G) \ge n/2$, then G is Hamiltonian.

Main question

Given integers k, ℓ , and d determine the function $h_d^{(k,\ell)}(n)$ with the property

 $\delta_d(H) \ge h_d^{(k,\ell)}(n) \implies$ Hamiltonian ℓ -cycle in H

for any *n*-vertex *k*-uniform hypergraph *H*.

Remarks:

- $\blacksquare \ \ell = 0 \rightarrow \text{perfect matchings}$
- Bollobás, Daykin & Erdős 1976
 Daykin & Häggkvist 1981
- G. Y. Katona and Kierstead 1999

$$h_1^{(3,0)}(n) \ h_2^{(3,2)}(n)$$

Theorem (Dirac 1952)

If an n-vertex graph G satisfies $\delta(G) \ge n/2$, then G is Hamiltonian.

Main question

Given integers k, ℓ , and d determine the function $h_d^{(k,\ell)}(n)$ with the property

 $\delta_d(H) \ge h_d^{(k,\ell)}(n) \implies$ Hamiltonian ℓ -cycle in H

for any *n*-vertex *k*-uniform hypergraph *H*.

Remarks:

- $\blacksquare \ \ell = 0 \rightarrow \text{perfect matchings}$
- Bollobás, Daykin & Erdős 1976
 Daykin & Häggkvist 1981
- G. Y. Katona and Kierstead 1999

• Today:
$$k = 3$$
 and $\ell = 1$ or 2

$$h_1^{(3,0)}(n) \ h_2^{(3,2)}(n)$$

Theorem (Dirac 1952)

If an n-vertex graph G satisfies $\delta(G) \ge n/2$, then G is Hamiltonian.

Main question

Given integers k, ℓ , and d determine the function $h_d^{(k,\ell)}(n)$ with the property

 $\delta_d(H) \ge h_d^{(k,\ell)}(n) \implies$ Hamiltonian ℓ -cycle in H

for any *n*-vertex *k*-uniform hypergraph *H*.

Remarks:

- $\blacksquare \ \ell = 0 \rightarrow \text{perfect matchings}$
- Bollobás, Daykin & Erdős 1976
 Daykin & Häggkvist 1981
- G. Y. Katona and Kierstead 1999

• Today: k = 3 and $\ell = 1$ or 2 and we write $h_d^{\ell} = h_d^{(3,\ell)}$

A. Rucínski (UAM Poznań & Emory)

$$h_1^{(3,0)}(n) \ h_2^{(3,2)}(n)$$

Theorems (d = 2, n large)

Theorems (d = 2, n large) $h_2^1(n) \sim n/4$

Kühn and Osthus

Theorems (d = 2, n large) $h_2^1(n) \sim n/4$ $h_2^2(n) = \lfloor n/2 \rfloor$

Kühn and Osthus Rödl, R. & Szemerédi

Theorems (d = 2, n large) $h_2^1(n) \sim n/4$ $h_2^2(n) = \lfloor n/2 \rfloor$

Theorems (d = 1, n large)

Kühn and Osthus Rödl, R. & Szemerédi

Theorems $(d = 2, n \text{ large})$
■ $h_2^1(n) \sim n/4$
• $h_2^2(n) = \lfloor n/2 \rfloor$

Theorems (d = 1, n large)

• $h_1^1(n) \sim \frac{7}{16} \binom{n}{2}$

Kühn and Osthus

Rödl, R. & Szemerédi

Buß, Hàn & Schacht

Theorems $(d = 2, n \text{ large})$	
■ $h_2^1(n) \sim n/4$	Kühn and Osthus
$\bullet h_2^2(n) = \lfloor n/2 \rfloor$	Rödl, R. & Szemerédi
Theorems $(d = 1, n \text{ large})$	
• $h_1^1(n) \sim \frac{7}{16} \binom{n}{2}$	Buß, Hàn & Schacht
■ $h_1^2(n) \le (1 - 5 \cdot 10^{-7}) \binom{n}{2}$	Glebov, Person & Weps

Theorems ($d = 2$, n large)	
■ $h_2^1(n) \sim n/4$	Kühn and Osthus
• $h_2^2(n) = \lfloor n/2 \rfloor$	Rödl, R. & Szemerédi
Theorems $(d = 1, n \text{ large})$	
• $h_1^1(n) \sim \frac{7}{16} \binom{n}{2}$	Buß, Hàn & Schacht
• $h_1^2(n) \le (1 - 5 \cdot 10^{-7}) \binom{n}{2}$	Glebov, Person & Weps
• $h_1^2(n) \le \left(\frac{5-\sqrt{5}}{3}\right)\binom{n}{2} \approx 0.92\binom{n}{2}$	Rödl & R.

Theorems ($d = 2$, n large)	
■ $h_2^1(n) \sim n/4$	Kühn and Osthus
• $h_2^2(n) = \lfloor n/2 \rfloor$	Rödl, R. & Szemerédi
Theorems ($d = 1$, n large)	
■ $h_1^1(n) \sim \frac{7}{16} \binom{n}{2}$	Buß, Hàn & Schacht
■ $h_1^2(n) \le (1 - 5 \cdot 10^{-7}) \binom{n}{2}$	Glebov, Person & Weps
• $h_1^2(n) \leq \left(\frac{5-\sqrt{5}}{3}\right)\binom{n}{2} \approx 0.92\binom{n}{2}$	Rödl & R.
New bound (work in progress)	
$h_1^2(n) \lesssim rac{4}{5} inom{n}{2}$	

A. Rucínski (UAM Poznań & Emory)

Hamiltonian cycles in 3-graphs

Theorems ($d = 2$, n large)	
■ $h_2^1(n) \sim n/4$	Kühn and Osthus
• $h_2^2(n) = \lfloor n/2 \rfloor$	Rödl, R. & Szemerédi
Theorems ($d = 1$, n large)	
■ $h_1^1(n) \sim \frac{7}{16} \binom{n}{2}$	Buß, Hàn & Schacht
■ $h_1^2(n) \le (1 - 5 \cdot 10^{-7}) \binom{n}{2}$	Glebov, Person & Weps
• $h_1^2(n) \leq \left(\frac{5-\sqrt{5}}{3}\right)\binom{n}{2} \approx 0.92\binom{n}{2}$	Rödl & R.
New bound (work in progress)	
$h_1^2(n) \lesssim rac{4}{5} inom{n}{2}$	

A. Rucínski (UAM Poznań & Emory)

Hamiltonian cycles in 3-graphs

Where do we stand?

Where do we stand?

New bound (work in progress)

$$h_1^2(n) \lesssim \frac{4}{5} \binom{n}{2}$$

Where do we stand?

New bound (work in progress)

$$h_1^2(n) \lesssim \frac{4}{5} \binom{n}{2}$$

Conjecture

$$h_1^2(n) \sim h_1^0(n) \sim \frac{5}{9} \binom{n}{2}$$

New bound (work in progress)

$$h_1^2(n) \lesssim \frac{4}{5} \binom{n}{2}$$

Conjecture

$$h_1^2(n) \sim h_1^0(n) \sim \frac{5}{9} \binom{n}{2}$$

Some evidence:

New bound (work in progress)

$$h_1^2(n) \lesssim \frac{4}{5} \binom{n}{2}$$

Conjecture

$$h_1^2(n) \sim h_1^0(n) \sim \frac{5}{9} \binom{n}{2}$$

Some evidence:

■
$$h_2^2(n) \sim h_2^0(n) \sim n/2$$

New bound (work in progress)

$$h_1^2(n) \lesssim \frac{4}{5} \binom{n}{2}$$

Conjecture

$$h_1^2(n) \sim h_1^0(n) \sim \frac{5}{9} \binom{n}{2}$$

Some evidence:

■
$$h_2^2(n) \sim h_2^0(n) \sim n/2$$

■ $h_2^1(n) \sim n/4 \sim$ "min. pair degree for matchings of size n/4"

New bound (work in progress)

$$h_1^2(n) \lesssim \frac{4}{5} \binom{n}{2}$$

Conjecture

$$h_1^2(n) \sim h_1^0(n) \sim \frac{5}{9} \binom{n}{2}$$

Some evidence:

■
$$h_2^2(n) \sim h_2^0(n) \sim n/2$$

- $h_2^1(n) \sim n/4 \sim$ "min. pair degree for matchings of size n/4"
- $h_1^1(n) \sim \frac{7}{16} {n \choose 2} \sim$ "min. vertex degree for matchings of size n/4"

• Suppose 3|n and |X| = n/3 - 1

• Suppose 3|n and |X| = n/3 - 1

 $\bullet \ e \in E(H) \quad \Longleftrightarrow \quad e \cap X \neq \emptyset$

• Suppose 3|n and |X| = n/3 - 1

$$\bullet \in E(H) \iff e \cap X \neq \emptyset$$

$$\Rightarrow \ \delta_1(H) \sim \binom{n}{2} - \binom{2n/3}{2} \sim \frac{5}{9}\binom{n}{2},$$

• Suppose 3|n and |X| = n/3 - 1

 $\bullet e \in E(H) \quad \Longleftrightarrow \quad e \cap X \neq \emptyset$

 $\Rightarrow \ \delta_1(H) \sim \binom{n}{2} - \binom{2n/3}{2} \sim \frac{5}{9}\binom{n}{2}$, but H contains no perfect matching

• Suppose 3|n and |X| = n/3 + 1

Suppose 3|n and |X| = n/3 + 1 $e \in E(H) \iff |e \cap Y| \neq 1$

Suppose 3|n and |X| = n/3 + 1 $e \in E(H) \iff |e \cap Y| \neq 1$ $\Rightarrow \delta_1(H) \sim {n \choose 2} - \frac{n}{3} \cdot \frac{2n}{3} \sim \frac{5}{9} {n \choose 2},$

• Suppose 3|n and |X| = n/3 + 1• $e \in E(H) \iff |e \cap Y| \neq 1$ $\Rightarrow \delta_1(H) \sim {n \choose 2} - \frac{n}{3} \cdot \frac{2n}{3} \sim \frac{5}{9} {n \choose 2}$, • every edge with two vertices in |X| is contained in X

Suppose 3|n and |X| = n/3 + 1
e \in E(H) \leftarrow |e \cap Y| \neq 1 $\Rightarrow \delta_1(H) \sim {n \choose 2} - \frac{n}{3} \cdot \frac{2n}{3} \sim \frac{5}{9} {n \choose 2},$ every edge with two vertices in |X| is contained in X \Rightarrow every edge of a C_n^2 intersects Y in at least two vertices

Suppose 3|n and |X| = n/3 + 1
e \in E(H) \leftarrow |e \cap Y| \neq 1
\$\overline \delta_1(H) \cap \binom{n}_2 - \frac{n}{3} \cdot \frac{2n}{3} \cap \frac{5}{9} \binom{n}_2^2\binom{n}_3

every edge with two vertices in |X| is contained in X
\$\overline\$ every edge of a \$C_n^2\$ intersects Y in at least two vertices \$\overline{\phi}\$

1 Find an absorbing path A in H with $|V(A)| = c_1 n$:

■ Find an absorbing path A in H with $|V(A)| = c_1 n$: $\forall U \subseteq V \setminus V(A)$ with $|U| \leq c_2 n \ (\ll c_1 n)$ \exists path A_U with same endpairs and $V(A_U) = V(A) \cup U$.

- Find an absorbing path A in H with $|V(A)| = c_1 n$: $\forall U \subseteq V \setminus V(A)$ with $|U| \leq c_2 n \ (\ll c_1 n)$ \exists path A_U with same endpairs and $V(A_U) = V(A) \cup U$.
- **2** Find almost Hamiltonian cycle *C* containing *A*.

- Find an absorbing path A in H with $|V(A)| = c_1 n$: $\forall U \subseteq V \setminus V(A)$ with $|U| \leq c_2 n \ (\ll c_1 n)$ \exists path A_U with same endpairs and $V(A_U) = V(A) \cup U$.
- **2** Find almost Hamiltonian cycle *C* containing *A*.
- **3** Apply absorbing property of A to $U = V \setminus V(C)$ and obtain Hamiltonian cycle.

- Find an absorbing path A in H with $|V(A)| = c_1 n$: $\forall U \subseteq V \setminus V(A)$ with $|U| \leq c_2 n \ (\ll c_1 n)$ \exists path A_U with same endpairs and $V(A_U) = V(A) \cup U$.
- **2** Find almost Hamiltonian cycle *C* containing *A*.
- **3** Apply absorbing property of A to $U = V \setminus V(C)$ and obtain Hamiltonian cycle.

HAA...AM

- Find an absorbing path A in H with $|V(A)| = c_1 n$: $\forall U \subseteq V \setminus V(A)$ with $|U| \leq c_2 n \ (\ll c_1 n)$ \exists path A_U with same endpairs and $V(A_U) = V(A) \cup U$.
- **2** Find almost Hamiltonian cycle *C* containing *A*.
- **3** Apply absorbing property of A to $U = V \setminus V(C)$ and obtain Hamiltonian cycle.

Finding absorbers with $\delta_2(H) \ge (1/2 + \varepsilon)n$

Finding absorbers with $\delta_2(H) \ge (1/2 + \varepsilon)n$

Fact: For every $v \in V$ there are $\varepsilon^2 n^4$ absorbers (a, b, c, d).

Absorbing path

1 Randomly select γn from all 4-tuples

Absorbing path

- **1** Randomly select γn from all 4-tuples
- 2 Select a pairwise disjoint subset of those 4-tuples forming paths \Rightarrow w.h.p. for every $v \in V$ at least $\gamma^4 \varepsilon^2 n$ absorber were selected

Absorbing path

- **1** Randomly select γn from all 4-tuples
- 2 Select a pairwise disjoint subset of those 4-tuples forming paths \Rightarrow w.h.p. for every $v \in V$ at least $\gamma^4 \varepsilon^2 n$ absorber were selected
- **3** Connect the selected 4-tuples P_i to obtain the path A

■ remove hyperedges from *H*, that contain pairs (x, y) with $\deg_H(x, y) \le (1/2 + \varepsilon)n$

remove hyperedges from H, that contain pairs (x, y) with deg_H(x, y) ≤ (1/2 + ε)n
 ← requires δ₁(H) ≥ 5-√5/3 (ⁿ₂)

- remove hyperedges from *H*, that contain pairs (x, y) with $\deg_H(x, y) \le (1/2 + \varepsilon)n$ \leftarrow requires $\delta_1(H) \ge \frac{5-\sqrt{5}}{3} \binom{n}{2}$
- slightly more careful, remove only hyperedges which contain no pair of high degree

- remove hyperedges from *H*, that contain pairs (x, y) with $\deg_H(x, y) \le (1/2 + \varepsilon)n$ \leftarrow requires $\delta_1(H) \ge \frac{5-\sqrt{5}}{3} \binom{n}{2}$
- slightly more careful, remove only hyperedges which contain no pair of high degree
- balance between "finding absorbers" and "making connections between large pairs"

Questions

A. Rucínski (UAM Poznań & Emory)