
On the digits of prime numbers
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Prime Number Theorem and Möbius Randomness Principle

p is always a prime number.

Von Mangoldt function: Λ(n) = log p if n = pk, Λ(n) = 0 otherwise.

Prime Number Theorem (Hadamard, de la Vallée Poussin, 1896, indep.):
∑
n6x

Λ(n) = x+o(x).

Möbius function: µ(n) = (−1)r if n = p1 · · · pr (distinct), µ(n) = 0 if ∃p, p2 | n.

Given a “reasonable” f , we say that f satisfies a PNT if we can get an assymptotic formula for∑
n6x

Λ(n)f(n) while we say that f satisfies the MRP if
∑
n6x

µ(n)f(n) is “small”.

These concepts are strongly related with Sarnak’s conjecture if f is produced by a zero topological
entropy dynamical system.

For f = 1 these properties are equivalent:
∑
n6x

µ(n) = o(x).

For more general f the MRP might be (slightly) less difficult to show than the PNT.
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Gelfond’s paper

In base q > 2 any n ∈ N can be written n =
∑
j>0

εj(n) qj where εj(n) ∈ {0, . . . , q − 1}.

Theorem A (Gelfond, 1968) The sum of digits s(n) =
∑
j>0

εj(n) is well distributed in

arithmetic progressions: given m > 2 with (m, q − 1) = 1, there exists an explicit σm > 0
such that

∀m′ ∈ N∗, ∀(n′, s) ∈ Z2,
∑
n6x

n≡n′ mod m′
s(n)≡s mod m

1 =
x

mm′
+O(x1−σm).

Problem A (Gelfond, 1968)

1. Evaluate the number of prime numbers p 6 x such that s(p) ≡ a mod m.

2. Evaluate the number of integers n 6 x such that s(P (n)) ≡ a mod m, where P is a
suitable polynomial [for example P (n) = n2].
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(Not so) Old results

Fouvry–Mauduit (1996):

∑
n6x

n=p or n=p1p2
s(n)≡a mod m

1 >
C(q,m)

log logx

∑
n6x

n=p or n=p1p2

1.

Dartyge–Tenenbaum (2005): For r > 2,

∑
n6x

n=p1...pr
s(n)≡a mod m

1 >
C(q,m, r)

log logx log log logx

∑
n6x

n=p1...pr

1.

Write e(t) = exp(2iπt).

Dartyge–Tenenbaum (2005) proved the Möbius Randomness Principle for f(n) = e(αs(n)):∑
n6x

µ(n) e(αs(n)) = O

(
x

log logx

)
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Sum of digits of primes

Theorem 1 (Mauduit-Rivat, 2010) If (q − 1)α ∈ R \ Z, there exists Cq(α) > 0 and

σq(α) > 0, ∣∣∣∣∣∣
∑
p6x

e(α s(p))

∣∣∣∣∣∣ 6 Cq(α) x1−σq(α).

Corollary 1 For q > 2 the sequence (α s(pn))n>1 is equidistributed modulo 1 if and only if

α ∈ R \ Q (here (pn)n>1 denotes the sequence of prime numbers).

Corollary 2 For q > 2, m > 2 such that (m, q − 1) = 1 and a ∈ Z,∑
p6x

s(p)≡a mod m

1 ∼
1

m

∑
p6x

1 (x→ +∞).

Theorem 2 (Drmota-Mauduit-Rivat, 2009) local result: s(p) = k for k“central”.
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Sum of digits of squares and polynomials

Theorem 3 (Mauduit-Rivat,2009) If (q − 1)α ∈ R \ Z, there exist Cq(α) > 0 and

σq(α) > 0, ∣∣∣∣∣∣
∑
n6x

e(α s(n2))

∣∣∣∣∣∣ 6 Cq(α) x1−σq(α).

Corollary 3 For q > 2 the sequence (α s(n2))n>1 is equidistributed modulo 1 if and only if

α ∈ R \ Q.

Corollary 4 For q > 2, m > 2 such that (m, q − 1) = 1 and a ∈ Z,∑
n6x

s(n2)≡a mod m

1 ∼
x

m
(x→ +∞).

Theorem 4 (Drmota-Mauduit-Rivat,2011) Idem for s(P (n)) where P (X) ∈ Z[X] is of

degree d > 2, such that P (N) ⊂ N and with leading coefficient ad such that (ad, q) = 1 and

q > q0(d).
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Further questions

Are we able to extend these results to more general digital functions f ?

• For f strongly q-multiplicative, Martin-Mauduit-Rivat:∣∣∣∣∣∣
∑
n6x

Λ(n)f(n) e(θn)

∣∣∣∣∣∣ 6 Cq(f) x1−σq(f)

• For block counting related functions (e.g. Rudin-Shapiro sequence)

f(n) = e

α∑
j>1

εj−1(n)εj(n)

 ?

Wait and see...
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Sum over prime numbers

By partial summation
∑
p6x

g(p) −→
∑
n6x

Λ(n) g(n) where Λ(n) is von Mangoldt’s function.

Advantage: convolutions !

Λ ∗ 1l = log, i.e.
∑
d |n

Λ(d) = logn.

A classical process (Vinogradov, Vaughan, Heath-Brown) remains (using some more technical

details), for some 0 < β1 < 1/3 and 1/2 < β2 < 1, to estimate uniformly the sums

SI :=
∑
m∼M

∣∣∣∣∣∣
∑
n∼N

g(mn)

∣∣∣∣∣∣ for M 6 xβ1 (type I)

where MN = x (which implies that the“easy” sum over n is long) and for all complex numbers

am, bn with |am| 6 1, |bn| 6 1 the sums

SII :=
∑
m∼M

∑
n∼N

ambn g(mn) for xβ1 < M 6 xβ2 (type II),

(which implies that both sums have a significant length).
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Sums of type I

Key idea: the sum over n is free of unknown coefficients.

The knowledge of the function g should permit to estimate the sum
∑
n∼N

g(mn).

In our case

g(mn) = f(mn) e(θmn)

where f(n) is some digital function like f(n) = e(α s(n)).

Some arguments from Fouvry and Mauduit (1996) can be generalized.

In particular θ easily disappears in the proof.
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Sums of type II - Smoothing the sums

By Cauchy-Schwarz:

|SII |2 6M
∑
m∼M

∣∣∣∣∣∣
∑
n∼N

bn f(mn) e(θmn)

∣∣∣∣∣∣
2

.

Expanding the square and exchanging the summations leads to a smooth sum over m, but also

two free variables n1 and n2 with no control.

Van der Corput’s inequality: for z1, . . . , zL ∈ C and R ∈ {1, . . . , L},∣∣∣∣∣∣
L∑
`=1

z`

∣∣∣∣∣∣
2

6
L+R− 1

R

 L∑
`=1

|z`|2 + 2
R−1∑
r=1

(
1−

r

R

) L−r∑
`=1

<
(
z`+rz`

)
where <(z) denotes the real part of z.

Now n1 = n+ r and n2 = n so that the size of n1−n2 = r is small. It remains to estimate∑
n∼N

bn+r bn
∑
m∼M

f(m(n+ r))f(mn) e(θmr).
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Carry propagation

If f(n) = e(α s(n)), then in the difference s(m(n+ r))− s(mn), the product mr is much

smaller that mn. Take M � qµ, N � qν and R � qρ then

mn =
µ+ν︷ ︸︸ ︷

35116790780999806546523475473462336857643565,

mr = 396576345354568797095646467570︸ ︷︷ ︸
µ+ρ

,

we see that in the summn+mr the digits after index µ+ρmay change only by carry propagation.

Proving that the number of pairs (m,n) for which the carry propagation exceeds

µ2 := µ+ 2ρ

is bounded by O(qµ+ν−ρ), we can ignore them and replace s(m(n + r)) − s(mn) by

sµ2(m(n + r)) − sµ2(mn) where sµ2 is the truncated s function which considers only the

digits of index < µ2:

sµ2(n) := s(n mod qµ2)

which is periodic of period qµ2.
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Sums of type II - Fourier analysis

We are now working modulo qµ2. For fµ2(n) = e(α sµ2(n)) and its Discrete Fourier Transform

f̂µ2(t) =
1

qµ2

∑
06u<qµ2

fµ2(u) e

(
−
ut

qµ2

)
.

By Fourier inversion formula and exchanges of summations we must show that the quantity

∑
06h<qµ2

∑
06k<qµ2

∣∣∣f̂µ2(h)f̂µ2(−k)
∣∣∣ ∑
n∼N

∣∣∣∣∣∣
∑
m∼M

e

(
hm(n+ r) + kmn

qµ2
+ θmr

)∣∣∣∣∣∣
is estimated by O(qµ+ν−ρ).

The geometric sum over m and the summation over n can be handled by classical arguments from
analytic number theory. This can be done uniformly in θ.

The digital structure of f permits to prove the very strong L1 estimate∑
06h<qµ2

∣∣∣f̂µ2(h)
∣∣∣ = O (qηµ2) with η < 1/2.

This is sufficient to conclude for f(n) = e(α s(n)).
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The Rudin-Shapiro sequence

Let f(n) = e
(

1
2
∑
j>1 εj−1(n)εj(n)

)
= (−1)

∑
j>1 εj−1(n)εj(n)

.

f̂µ2 is a Shapiro polynomial well known to have small absolute value: ∀t ∈ R,
∣∣∣f̂µ2(t)

∣∣∣ 6 2
1−µ2

2 ,

(with our normalization).

Pál Erdős always said that every talk should contain a proof. Let us study the L1 norm of f̂µ2.

From

1 =
∑

06h<2µ2

∣∣∣f̂µ2(h)
∣∣∣2 6 2

1−µ2
2

∑
06h<2µ2

∣∣∣f̂µ2(h)
∣∣∣

we deduce ∑
06h<2µ2

∣∣∣f̂µ2(h)
∣∣∣ > 2

µ2−1
2 .

Therefore (so to say) η = 1
2.

The proof for the sum of digits function cannot be adapted for the Rudin-Shapiro sequence.
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A variant of van der Corput’s inequality

(Introduced to solve Gelfond’s problem for squares)

For z1, . . . , zL ∈ C and integers k > 1, R > 1 we have∣∣∣∣∣∣
L∑
`=1

z`

∣∣∣∣∣∣
2

6
L+ kR− k

R

 L∑
`=1

|z`|2 + 2
R−1∑
r=1

(
1−

r

R

) L−kr∑
`=1

<
(
z`+krz`

) .

For k = 1 this is the classical van der Corput’s inequality.

Interest: control the indexes modulo k.

Taking k = qµ1, this may permit to remove the lower digits.
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Double truncation

Applying the classical Van der Corput inequality leads to replace f by

fµ2(n) = e

α ∑
16j<µ2

εj−1(n)εj(n)

 .

Applying the variant of Van der Corput inequality with k = qµ1 where µ1 = µ − 2ρ leads to

replace fµ2 by

fµ1,µ2(n) = fµ2(n)fµ1(n) = e

α ∑
µ16j<µ2

εj−1(n)εj(n)

 .

More generally we have proved that any digital function satisfying a carry propagation property

can be replaced here by a function depending only on the digits of indexes µ0, . . . , µ2 − 1 for

some µ0 close to µ1, at the price of an acceptable error term.

For the Rudin-Shapiro sequence, µ0 = µ1 − 1.
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Fourier analysis

After some technical steps the “digital part” and the “exponential sum part” are separated.

We need to estimate the following sum:

∑
|h0|6qµ2−µ0+2ρ

∑
|h1|6qµ2−µ0+2ρ

min

(
qµ2−µ0

π |h0|
,1

)
min

(
qµ2−µ0

π |h1|
,1

)
∑

h2<q
µ2−µ0

∑
h3<q

µ2−µ0

|ĝ(h0 − h2) ĝ(h3 − h1) ĝ(−h2) ĝ(h3)|

∑
r

∑
s

∣∣∣∣∣∑
m

∑
n

e

(
(h0 + h1)mn+ h1mr + (h2 + h3)qµ1sn

qµ2

)∣∣∣∣∣
where g is the qµ2−µ0 periodic function defined by

∀k ∈ Z, g(k) = fµ1,µ2(qµ0k).
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End of the proof

The “exponential sum part” can be handled by appropriate estimates of exponential sums and

similar tools. We need to average over all variables m,n, r, s.

For ĝ we need “only” that the L∞-norm is small.

This property is known for the sum of digits function and also for the classical Rudin-Shapiro

sequence.

For generalized Rudin-Shapiro sequences we can prove it using a well chosen matrix norm.

In general it is very difficult.
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Conclusion

We obtain a PNT and MRP for the Rudin-Shapiro sequence and its natural generalizations: count-

ing 1 ∗ · · · ∗︸ ︷︷ ︸
k

1 for any k > 0, counting (overlapping) blocks 1 · · ·1︸ ︷︷ ︸
k

for k > 2.

More generally we get a PNT and a MRP for any digital function satisfying a carry propagation

property for which we can control uniformly the Discrete Fourier Transform.

18



General result – Definitions

Let U = {z ∈ C, |z| = 1}.

Definition 1 A function f : N→ U has the carry property if, uniformly for (λ, κ, ρ) ∈ N3 with

ρ < λ, the number of integers 0 6 ` < qλ such that there exists (k1, k2) ∈ {0, . . . , qκ−1}2

with

f(`qκ + k1 + k2) f(`qκ + k1) 6= fκ+ρ(`q
κ + k1 + k2) fκ+ρ(`qκ + k1)

is at most O(qλ−ρ) where the implied constant may depend only on q and f .

Definition 2 Given a non decreasing function γ : R→ R satisfying limλ→+∞ γ(λ) = +∞
and c > 0 we denote by Fγ,c the set of functions f : N → U such that for (κ, λ) ∈ N2 with

κ 6 cλ and t ∈ R: ∣∣∣∣∣∣∣q−λ
∑

06u<qλ
f(uqκ) e (−ut)

∣∣∣∣∣∣∣ 6 q−γ(λ).
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General result

Theorem 5 Let γ : R→ R be a non decreasing function satisfying limλ→+∞ γ(λ) = +∞,

c > 10 and f : N→ U be a function satisfying Definition 1 and f ∈ Fγ,c in Definition 2. Then

for any θ ∈ R we have∣∣∣∣∣∣
∑
n6x

Λ(n)f(n) e (θn)

∣∣∣∣∣∣� c1(q)(logx)c2(q) x q−γ(2b(logx)/80 log qc)/20,

with

c1(q) = max(τ(q), log2 q)1/4 (log q)−2−1
4 max(ω(q),2)

and

c2(q) =
9

4
+

1

4
max(ω(q),2).
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