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Ramsey Theorem

Theorem (Ramsey 1930, Erdős-Szekeres 1935)
For every k, there exists n such that for all f : [n]2 → [2], there
exists a set K ⊆ [n] such that |K | = k and f (x , y) is the same for
all x < y, x , y ∈ X.

K is called monochromatic.

The least n is the Ramsey number R(k).

Eg. R(3) = 6, R(4) = 18, 102 ≤ R(6) ≤ 165; for k > 4 the values
are not known.
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Asymptotic bounds

basically
2k/2 ≤ R(k) ≤ 4k .

i.e.,
1
2
log2 R(k) ≤ k ≤ 2 log2 R(k)

Erdős 1947, Erdős-Szekeres 1935

(1 + o(1))
k√
2e

2k/2 ≤ R(k) ≤ (1 + o(1))
4k−1
√
πk
.

Spencer 1995, Conlon 2009

(1 + o(1))

√
2k
e

2k/2 ≤ R(k) ≤ k−c log k/ log log k4k

Lower bounds are non-constructive.
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Two problems

Problem (1) (Erdős, $ 250)
Determine the value

lim
k→∞

R(k)
1
k

if it exists.

If it exists, it is between
√
2 and 4.
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Problem (2) (Erdős, $ 100)
Give a constructive proof of R(k) ≥ (1 + ε)k for some ε > 0, i.e.,
give an explicit construction of a sequence of graphs on n vertices
without a monochromatic set of size k > c log n for some c.

Let n := R(k).

I nO(log n)-time deterministic algorithm to construct a graph
with k = 2 log2 n—the method of conditional probabilities

I very explicit construction for k ≤ exp(c · (log n log log n)1/2),
Frankl-Wilson 1981 (later, same bounds Alon, Grolmusz)

I very complicated polynomial time algorithm
k ≤ exp((log n)o(1)), Barak, Rao, Shaltiel, Wigderson 2006
(improving Barak, Kindler, Shaltiel, Wigderson 2005)
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Two problems in computational complexity

Problem (1’)
How difficult is to compute R(k), i.e., what it the computational
complexity of this function?

Problem (2’)
How difficult is to construct graphs from Problem 2, i.e., what is
the computational complexity of sequences of graphs on n vertices
without monochromatic sets of size k > C log n for some C?
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Two problems in proof complexity

Problem (1”)
Roughly: How difficult is it to prove that R(k) ≤ n?

More precisely: How difficult is it to prove a formalization of the
Ramsey theorem for particular parameters?

Problem (2”)
Roughly: How difficult is it to prove R(k) ≥ n?

More precisely: How difficult is it to prove that a given graph G on
n vertices does not have a monochromatic sets of size > C log n for
some C?
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Propositional proof systems

I Resolution (a.k.a. depth 1 Frege)
I Bounded depth Frege
I Frege (no superpolynomial lower bounds are known)
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Formalization of RT in the propositional calculus

Edges of a graph on n vertices are represented by variables xij for
1 ≤ i < j ≤ n.

RAM(n, k) ≡
∨
K

 ∧
i ,j∈K

xij ∨
∧

i ,j∈K

¬xij


where K are all sets K ⊆ {1, . . . , n}, |K | = k .

RAM(n, k) is a tautology iff n ≥ R(k).

The size of RAM(n, k) is nO(log n).
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Krishnamurthy proposed RAM(R(k), k) as a hard tautology in
1981.

Theorem (Krajíček 2010)
∀d∃ε > 0∀n, k if n = R(k), then depth d Frege proofs of
RAM(n, k) have size 2nε

.

Proof-idea: reduction to PHPm+1
m .

This suggests that computing R(k) precisely may be hard.
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For n = 4k (i.e., k = 1
2 log2 n) the tautologies RAM(n, k) have

quasipolynomial size proofs in bounded depth Frege systems.

Theorem (Pudlák 2011)
Resolution proofs of RAM(4k , k) have size at least 2n

1
4−o(1)

.

Open for depth 2 Frege.

Proof-idea: Random restriction and a width lower bound.
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How difficult is to prove that a graph is non-Ramsey

Definition
Call a graph on n vertices c-Ramsey if all its independent sets and
cliques have size ≤ c log n.

Problem (2”)
Given a graph G, how difficult is it to prove that G is c-Ramsey?

For c constant, there exists a proof of size nO(log n) — “proof by
inspection”.
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Formalization Suppose c is constant (say c = 2). Given a graph on
n vertices, there is a natural formula c-Ram(G ) such that

I it has O(log2 n) variables;
I it is a disjunction of O(n2 log2 n) conjunctions, each of size

2c log n;
I it is a tautology iff G is c-Ramsey.

Theorem (Lauria, Pudlák, Rödl and Thapen 2012)
For every graph G on n vertices,1 every resolution proof of
c-Ram(G) has size at least Ω(nlog n).

1of course, the theorem is nontrivial only for c-Ramsey graphs
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Proof-idea: A width lower bound using properties of c-Ramsey
graphs.

Theorem (Erdős-Szemerédi 1972)
A non-Ramsey graph has positive density of both edges and
non-edges.

More precisely: ∀c ∃ε > 0 ∀G if G is c-Ramsey, then its density of
edges α satisfies ε < α < 1− ε.

Lemma (Prömel-Rödl 1999)
∀c∃β, δ > 0 such that for every c-Ramsey graph G
∃S ⊆ V (G ), |S | ≥ |V (G )|3/4 such that ∀A,B ⊆ S ,

|A|, |B| ≥ |S |1−β ⇒ δ ≤ |E (A,B)|
|A| · |B|

≤ 1− δ.
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A game

Adversary pretends that there is a mapping W : [k + 1]→ [n] that
defines a clique in G .

Prover wants to disprove this claim by asking about the bits
defining W . He can record and erase information.

The number of bits Prover needs to catch Adversary lying is the
width.

We define a strategy that enables Adversary to go on as long as
there is i ∈ [k + 1] for which Prover has less than ε log n bits on his
record.
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The strategy (basic idea)

Fix an S ⊆ V (G ) from the Prömel-Rödl Lemma.

Let Bt
i , for i ∈ [k + 1] be the set of vertices consistent with the

information Prover has about W (i) in time t.

Choose answers so that Bt
i ∩ S is large. If it is not possible, pick

v ∈ Bt
i and stick to it. In such a case the number of recorded bits

about v should be ε log n.

Lemma
Let X ,Y1, . . . ,Yr ⊆ S such that |X | ≥ rm1−β , Y1, . . . ,Yr ≥ m1−β .
Then there exists v ∈ X such that |E ({v},Yi )| ≥ δ|Yi | for all
i = 1, . . . , r .
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Problems and Conjectures

Problem
In which proof system can one prove c-Ram(G) tautologies by
polynomial size proofs at least for some G?

Conjecture
There exists a c, an infinite family of c-Ramsey graphs R and a
proof system P such that the tautologies c-Ram(G) have
polynomial size proofs in P for G ∈ R.
Specifically, the conjecture is believed true for R the Paley graphs.

Problem
Prove superpolynomial lower bounds on c-Ram(G) tautologies for
stronger proof systems.

17



Problems and Conjectures

Problem
In which proof system can one prove c-Ram(G) tautologies by
polynomial size proofs at least for some G?

Conjecture
There exists a c, an infinite family of c-Ramsey graphs R and a
proof system P such that the tautologies c-Ram(G) have
polynomial size proofs in P for G ∈ R.
Specifically, the conjecture is believed true for R the Paley graphs.

Problem
Prove superpolynomial lower bounds on c-Ram(G) tautologies for
stronger proof systems.

17



Problems and Conjectures

Problem
In which proof system can one prove c-Ram(G) tautologies by
polynomial size proofs at least for some G?

Conjecture
There exists a c, an infinite family of c-Ramsey graphs R and a
proof system P such that the tautologies c-Ram(G) have
polynomial size proofs in P for G ∈ R.
Specifically, the conjecture is believed true for R the Paley graphs.

Problem
Prove superpolynomial lower bounds on c-Ram(G) tautologies for
stronger proof systems.

17



What is the meaning of such results?

1. The proof systems are very weak, so it is only warming up before
proving more essential results.

2. Although weak, these system are able to capture proof methods
that are actually used (provided that we use suitable
formalizations).

3. It is possible to exclude the existence of efficient algorithms of
certain kind.
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Thank You
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