PAUL ERDŐS AND THE DIFFERENCE OF PRIMES

by JÁNOS PINTZ

Rényi Mathematical Institute of the Hungarian Academy of Sciences, Budapest

Notation: $p, p^{\prime}, p^{*} \in \mathcal{P}$ (the set of primes)

Notation: $p, p^{\prime}, p^{*} \in \mathcal{P}$ (the set of primes)
p_{n} : the $n^{\text {th }}$ prime, but p_{i}^{*} any prime

Notation: $p, p^{\prime}, p^{*} \in \mathcal{P}$ (the set of primes)
p_{n} : the $n^{\text {th }}$ prime, but p_{i}^{*} any prime
$d_{n}:=p_{n+1}-p_{n}$ the $n^{\text {th }}$ difference between consecutive primes

Notation: $p, p^{\prime}, p^{*} \in \mathcal{P}$ (the set of primes) p_{n} : the $n^{\text {th }}$ prime, but p_{i}^{*} any prime
$d_{n}:=p_{n+1}-p_{n}$ the $n^{\text {th }}$ difference between consecutive primes
Def: An even number $2 k$ is a Polignac number if $d_{n}=2 k$ infinitely often (i.o.)

Notation: $p, p^{\prime}, p^{*} \in \mathcal{P}$ (the set of primes)
p_{n} : the $n^{\text {th }}$ prime, but p_{i}^{*} any prime
$d_{n}:=p_{n+1}-p_{n}$ the $n^{\text {th }}$ difference between consecutive primes
Def: An even number $2 k$ is a Polignac number if $d_{n}=2 k$ infinitely often (i.o.)
Def: n is y-smooth if $p \mid n \rightarrow p \leq y$

Notation: $p, p^{\prime}, p^{*} \in \mathcal{P}$ (the set of primes)
p_{n} : the $n^{\text {th }}$ prime, but p_{i}^{*} any prime
$d_{n}:=p_{n+1}-p_{n}$ the $n^{\text {th }}$ difference between consecutive primes
Def: An even number $2 k$ is a Polignac number if $d_{n}=2 k$ infinitely often (i.o.)
Def: n is y-smooth if $p \mid n \rightarrow p \leq y$
Def: n is an E_{2}-number if it has exactly two prime divisors

Notation: $p, p^{\prime}, p^{*} \in \mathcal{P}$ (the set of primes)
p_{n} : the $n^{\text {th }}$ prime, but p_{i}^{*} any prime
$d_{n}:=p_{n+1}-p_{n}$ the $n^{\text {th }}$ difference between consecutive primes
Def: An even number $2 k$ is a Polignac number if $d_{n}=2 k$ infinitely often (i.o.)
Def: n is y-smooth if $p \mid n \rightarrow p \leq y$
Def: n is an E_{2}-number if it has exactly two prime divisors
Def: n is a P_{2}-number if it has at most two prime divisors

Notation: $p, p^{\prime}, p^{*} \in \mathcal{P}$ (the set of primes)
p_{n} : the $n^{\text {th }}$ prime, but p_{i}^{*} any prime
$d_{n}:=p_{n+1}-p_{n}$ the $n^{\text {th }}$ difference between consecutive primes
Def: An even number $2 k$ is a Polignac number if $d_{n}=2 k$ infinitely often (i.o.)
Def: n is y-smooth if $p \mid n \rightarrow p \leq y$
Def: n is an E_{2}-number if it has exactly two prime divisors
Def: n is a P_{2}-number if it has at most two prime divisors

$$
\mu(n)= \begin{cases}(-1)^{m} & \text { if } n \text { is square-free and has } m \text { prime factors } \\ 0 & \text { otherwise }\end{cases}
$$

1. LARGE GAPS BETWEEN CONSECUTIVE PRIMES

1. LARGE GAPS BETWEEN CONSECUTIVE PRIMES

The Prime Number Theorem (PNT) implies

$$
\begin{gathered}
\pi(x):=\sum_{p \leq x} 1 \sim \frac{x}{\log x} \text { (Hadamard, de la Vallée Poussin, 1896) } \\
\Longrightarrow \frac{1}{N} \sum_{n=1}^{N} d_{n} \sim \log N
\end{gathered}
$$

1. LARGE GAPS BETWEEN CONSECUTIVE PRIMES

The Prime Number Theorem (PNT) implies

$$
\begin{gathered}
\pi(x):=\sum_{p \leq x} 1 \sim \frac{x}{\log x} \text { (Hadamard, de la Vallée Poussin, 1896) } \\
\Longrightarrow \frac{1}{N} \sum_{n=1}^{N} d_{n} \sim \log N
\end{gathered}
$$

PROBLEM: How big are the largest gaps?

$$
\lambda:=\limsup _{n \rightarrow \infty} \frac{d_{n}}{\log n} \geq 1
$$

1. LARGE GAPS BETWEEN CONSECUTIVE PRIMES

The Prime Number Theorem (PNT) implies

$$
\begin{gathered}
\pi(x):=\sum_{p \leq x} 1 \sim \frac{x}{\log x} \text { (Hadamard, de la Vallée Poussin, 1896) } \\
\Longrightarrow \frac{1}{N} \sum_{n=1}^{N} d_{n} \sim \log N
\end{gathered}
$$

PROBLEM: How big are the largest gaps?

$$
\lambda:=\limsup _{n \rightarrow \infty} \frac{d_{n}}{\log n} \geq 1
$$

Backlund (1929): $\lambda \geq 2$
Brauer-Zeitz (1930): $\lambda \geq 4$

Westzynthius (1931): $\limsup _{n \rightarrow \infty} \frac{d_{n} \log _{4} n}{\log n \log _{3} n} \geq 2 e^{\gamma} \rightarrow \lambda=\infty$,

Westzynthius (1931): $\limsup _{n \rightarrow \infty} \frac{d_{n} \log _{4} n}{\log n \log _{3} n} \geq 2 e^{\gamma} \rightarrow \lambda=\infty$, where $\log _{\nu} n$ is the ν-fold iterated logarithmic function
Erdős (1935): $\quad \limsup _{n \rightarrow \infty} \frac{d_{n}\left(\log _{3} n\right)^{2}}{\log n \log _{2} n}>0$
Rankin (1938): $\quad \limsup _{n \rightarrow \infty} \frac{d_{n}\left(\log _{3} n\right)^{2}}{\log n \log _{2} n \log _{4} n} \geq C_{1}=\frac{1}{3}$

Westzynthius (1931): $\limsup _{n \rightarrow \infty} \frac{d_{n} \log _{4} n}{\log n \log _{3} n} \geq 2 e^{\gamma} \rightarrow \lambda=\infty$, where $\log _{\nu} n$ is the ν-fold iterated logarithmic function
Erdős (1935): $\limsup _{n \rightarrow \infty} \frac{d_{n}\left(\log _{3} n\right)^{2}}{\log n \log _{2} n}>0$
Rankin (1938): $\quad \limsup _{n \rightarrow \infty} \frac{d_{n}\left(\log _{3} n\right)^{2}}{\log n \log _{2} n \log _{4} n} \geq C_{1}=\frac{1}{3}$
2 improvements of C_{1} to e^{γ} during 40 years

Westzynthius (1931): $\limsup _{n \rightarrow \infty} \frac{d_{n} \log _{4} n}{\log n \log _{3} n} \geq 2 e^{\gamma} \rightarrow \lambda=\infty$, where $\log _{\nu} n$ is the ν-fold iterated logarithmic function
Erdős (1935): $\limsup _{n \rightarrow \infty} \frac{d_{n}\left(\log _{3} n\right)^{2}}{\log n \log _{2} n}>0$
Rankin (1938): $\quad \limsup _{n \rightarrow \infty} \frac{d_{n}\left(\log _{3} n\right)^{2}}{\log n \log _{2} n \log _{4} n} \geq C_{1}=\frac{1}{3}$
2 improvements of C_{1} to e^{γ} during 40 years
Erdős: USD 10,000 to prove it for any $C_{1}>0$

Westzynthius (1931): $\limsup _{n \rightarrow \infty} \frac{d_{n} \log _{4} n}{\log n \log _{3} n} \geq 2 e^{\gamma} \rightarrow \lambda=\infty$, where $\log _{\nu} n$ is the ν-fold iterated logarithmic function
Erdős (1935): $\limsup _{n \rightarrow \infty} \frac{d_{n}\left(\log _{3} n\right)^{2}}{\log n \log _{2} n}>0$
Rankin (1938): $\limsup _{n \rightarrow \infty} \frac{d_{n}\left(\log _{3} n\right)^{2}}{\log n \log _{2} n \log _{4} n} \geq C_{1}=\frac{1}{3}$
2 improvements of C_{1} to e^{γ} during 40 years
Erdős: USD 10,000 to prove it for any $C_{1}>0$
Maier-Pomerance (1990): $C_{1}=1.31 \ldots e^{\gamma}$
J. Pintz
(1997): $\quad C_{1}=2 e^{\gamma}$

2. SMALL GAPS BETWEEN CONSECUTIVE PRIMES

TWIN PRIME CONJECTURE: $\quad d_{n}=2$ i.o.

2. SMALL GAPS BETWEEN CONSECUTIVE PRIMES

TWIN PRIME CONJECTURE: $\quad d_{n}=2$ i.o.
POLIGNAC'S CONJECTURE (1849): $\forall k \in \mathbb{Z}^{+}: d_{n}=2 k$ i.o.

2. SMALL GAPS BETWEEN CONSECUTIVE PRIMES

TWIN PRIME CONJECTURE: $\quad d_{n}=2$ i.o.
POLIGNAC'S CONJECTURE (1849): $\forall k \in \mathbb{Z}^{+}: d_{n}=2 k$ i.o.
SMALL GAPS CONJECTURE:

$$
\Delta=\liminf _{n \rightarrow \infty} \frac{d_{n}}{\log n}=0
$$

2. SMALL GAPS BETWEEN CONSECUTIVE PRIMES

TWIN PRIME CONJECTURE: $\quad d_{n}=2$ i.o.
POLIGNAC'S CONJECTURE (1849): $\forall k \in \mathbb{Z}^{+}: d_{n}=2 k$ i.o.
SMALL GAPS CONJECTURE:
$\Delta=\liminf _{n \rightarrow \infty} \frac{d_{n}}{\log n}=0$
BOUNDED GAPS CONJECTURE: $\quad \exists C d_{n} \leq C$ i.o.
2. SMALL GAPS BETWEEN CONSECUTIVE PRIMES

TWIN PRIME CONJECTURE: $\quad d_{n}=2$ i.o.
POLIGNAC'S CONJECTURE (1849): $\forall k \in \mathbb{Z}^{+}: d_{n}=2 k$ i.o.
SMALL GAPS CONJECTURE: $\quad \Delta=\liminf _{n \rightarrow \infty} \frac{d_{n}}{\log n}=0$
BOUNDED GAPS CONJECTURE: $\quad \exists C d_{n} \leq C$ i.o.
REMARK: Bounded gaps conjecture \Leftrightarrow There is at least one Polignac number $\Leftrightarrow \exists k \in \mathbb{Z}^{+}: d_{n}=2 k$ i.o.

Hardy-Littlewood (1926): GRH $\Longrightarrow \Delta \leq 2 / 3$.

Hardy-Littlewood (1926): GRH $\Longrightarrow \Delta \leq 2 / 3$.
Erdős (1940): $\exists c_{1}>0$ (unspecified, small, but effectively computable) such that $\Delta<1-c_{1}$

Hardy-Littlewood (1926): GRH $\Longrightarrow \Delta \leq 2 / 3$.
Erdős (1940): $\exists c_{1}>0$ (unspecified, small, but effectively computable) such that $\Delta<1-c_{1}$
\vdots
Bombieri-Davenport (1966): $\Delta<0.466 \cdots<1 / 2$

Hardy-Littlewood (1926): GRH $\Longrightarrow \Delta \leq 2 / 3$.
Erdős (1940): $\exists c_{1}>0$ (unspecified, small, but effectively computable) such that $\Delta<1-c_{1}$

Bombieri-Davenport (1966): $\Delta<0.466 \cdots<1 / 2$
(Motivation for the large sieve; Bombieri-Vinogradov theorem)

Hardy-Littlewood (1926): GRH $\Longrightarrow \Delta \leq 2 / 3$.
Erdős (1940): $\exists c_{1}>0$ (unspecified, small, but effectively computable) such that $\Delta<1-c_{1}$

Bombieri-Davenport (1966): $\Delta<0.466 \cdots<1 / 2$ (Motivation for the large sieve; Bombieri-Vinogradov theorem)
H. Maier (1988): $\Delta<0.2486 \cdots<1 / 4$
D. Goldston - J. Pintz - C. Yıldırım (2005-2006-2009):

Small gaps conjecture is true, that is, $\Delta=0$.
D. Goldston - J. Pintz - C. Yıldırım (2005-2006-2009):

Small gaps conjecture is true, that is, $\Delta=0$.
D. Goldston - J. Pintz - C. Yıldırım (2005-2010):

$$
d_{n}<C \sqrt{\log n} /(\log \log n)^{2} \text { i.o. }
$$

D. Goldston - J. Pintz - C. Yıldırım (2005-2006-2009):

Small gaps conjecture is true, that is, $\Delta=0$.
D. Goldston - J. Pintz - C. Yıldırım (2005-2010):

$$
d_{n}<C \sqrt{\log n} /(\log \log n)^{2} \text { i.o. }
$$

J. Pintz (2011-2013): $\quad d_{n}<C(\log n)^{3 / 7}(\log \log n)^{4 / 7}$ i.o.
and this is the limit of the original GPY-method (without some sort of improvement of the Bombieri-Vinogradov theorem) as shown by B. Farkas - J. Pintz - Sz. Gy. Révész (2013)

Definition: Primes have an admissible distribution level ϑ
(1)

$$
\sum_{q \leq X^{\vartheta-\varepsilon}} \max _{\substack{a \\(a, q)=1}}\left|\sum_{\substack{p \\ p \equiv a(q) \\ p \leq X}} \log p-\frac{X}{\varphi(q)}\right| \leq C(A, \varepsilon) \frac{X}{(\log X)^{A}}
$$

holds for any $A>0, \varepsilon>0$ and $X>0 \quad[\Leftrightarrow E H(\vartheta)]$.

Definition: Primes have an admissible distribution level ϑ
(1)

$$
\sum_{q \leq X^{\vartheta}-\varepsilon} \max _{\substack{a \\(a, q)=1}}\left|\sum_{\substack{p \\ p \equiv a(q) \\ p \leq X}} \log p-\frac{X}{\varphi(q)}\right| \leq C(A, \varepsilon) \frac{X}{(\log X)^{A}}
$$

holds for any $A>0, \varepsilon>0$ and $X>0 \quad[\Leftrightarrow E H(\vartheta)]$.
Bombieri-Vinogradov Theorem (1965): $\vartheta=1 / 2$ is admissible.

Definition: Primes have an admissible distribution level ϑ

$$
\begin{equation*}
\sum_{q \leq X^{\vartheta-\varepsilon}} \max _{\substack{a \\(a, q)=1 \\ p \equiv a \\ p \leq X}}\left|\sum_{\substack{p \\ p \leq X}} \log p-\frac{X}{\varphi(q)}\right| \leq C(A, \varepsilon) \frac{X}{(\log X)^{A}} \tag{1}
\end{equation*}
$$

holds for any $A>0, \varepsilon>0$ and $X>0 \quad[\Leftrightarrow E H(\vartheta)]$.
Bombieri-Vinogradov Theorem (1965): $\vartheta=1 / 2$ is admissible. Elliott-Halberstam Conjecture (1966): $\vartheta=1$ is admissible.

Definition: Primes have an admissible distribution level ϑ

$$
\begin{equation*}
\sum_{q \leq X^{\vartheta-\varepsilon}} \max _{\substack{a \\(a, q)=1}}\left|\sum_{\substack{p \\ p \equiv a(q) \\ p \leq X}} \log p-\frac{X}{\varphi(q)}\right| \leq C(A, \varepsilon) \frac{X}{(\log X)^{A}} \tag{1}
\end{equation*}
$$

holds for any $A>0, \varepsilon>0$ and $X>0 \quad[\Leftrightarrow E H(\vartheta)]$.
Bombieri-Vinogradov Theorem (1965): $\vartheta=1 / 2$ is admissible. Elliott-Halberstam Conjecture (1966): $\vartheta=1$ is admissible. Hypothesis EH (ϑ): ϑ is an admissible level for primes.

Definition: Primes have an admissible distribution level ϑ

holds for any $A>0, \varepsilon>0$ and $X>0 \quad[\Leftrightarrow E H(\vartheta)]$.
Bombieri-Vinogradov Theorem (1965): $\vartheta=1 / 2$ is admissible. Elliott-Halberstam Conjecture (1966): $\vartheta=1$ is admissible. Hypothesis EH (ϑ): ϑ is an admissible level for primes.
Theorem (GPY 2005-2006-2009): If $E H(\vartheta)$ is true for some
$\vartheta>\frac{1}{2}$, then $d_{n} \leq C(\vartheta)$ i.o. Furthermore $C(1)=16$.

Dickson's Conjecture (1904): If $a_{i} n+b_{i}$ are linear forms with $a_{i}, b_{i} \in \mathbb{Z}, a_{i}>0, \prod_{i=1}^{k}\left(a_{i} n+b_{i}\right)$ has no fixed prime divisor, then $\left\{a_{i} n+b_{i}\right\}_{i=1}^{k} \in \mathcal{P}^{k}$ for infinitely many n (i.o.).

Dickson's Conjecture (1904): If $a_{i} n+b_{i}$ are linear forms with $a_{i}, b_{i} \in \mathbb{Z}, a_{i}>0, \prod_{i=1}^{k}\left(a_{i} n+b_{i}\right)$ has no fixed prime divisor, then $\left\{a_{i} n+b_{i}\right\}_{i=1}^{k} \in \mathcal{P}^{k}$ for infinitely many n (i.o.).
Definition: A k-tuple $\mathcal{H}_{k}=\left\{h_{i}\right\}_{i=1}^{k}, 0 \leq h_{1}<h_{2}<\cdots<h_{k}$ is admissible if it covers $\nu_{p}<p$ residue classes $\bmod p$ for any prime p.

Dickson's Conjecture (1904): If $a_{i} n+b_{i}$ are linear forms with $a_{i}, b_{i} \in \mathbb{Z}, a_{i}>0, \prod_{i=1}^{k}\left(a_{i} n+b_{i}\right)$ has no fixed prime divisor, then $\left\{a_{i} n+b_{i}\right\}_{i=1}^{k} \in \mathcal{P}^{k}$ for infinitely many n (i.o.).
Definition: A k-tuple $\mathcal{H}_{k}=\left\{h_{i}\right\}_{i=1}^{k}, 0 \leq h_{1}<h_{2}<\cdots<h_{k}$ is admissible if it covers $\nu_{p}<p$ residue classes $\bmod p$ for any prime p. Hardy-Littlewood's Conjecture (1923): If \mathcal{H}_{k} is admissible, then
(2)

$$
\sum_{n<x} 1 \sim \mathfrak{S}\left(\mathcal{H}_{k}\right) \frac{x}{\log ^{k} x} \quad\left(\mathfrak{S}\left(\mathcal{H}_{k}\right)=\prod_{p}\left(1-\frac{\nu_{p}}{p}\right)\left(1-\frac{1}{p}\right)^{-k}>0\right)
$$

Dickson's Conjecture (1904): If $a_{i} n+b_{i}$ are linear forms with $a_{i}, b_{i} \in \mathbb{Z}, a_{i}>0, \prod_{i=1}^{k}\left(a_{i} n+b_{i}\right)$ has no fixed prime divisor, then $\left\{a_{i} n+b_{i}\right\}_{i=1}^{k} \in \mathcal{P}^{k}$ for infinitely many n (i.o.).
Definition: A k-tuple $\mathcal{H}_{k}=\left\{h_{i}\right\}_{i=1}^{k}, 0 \leq h_{1}<h_{2}<\cdots<h_{k}$ is admissible if it covers $\nu_{p}<p$ residue classes $\bmod p$ for any prime p. Hardy-Littlewood's Conjecture (1923): If \mathcal{H}_{k} is admissible, then
(2)

$$
\sum_{n<x} 1 \sim \mathfrak{S}\left(\mathcal{H}_{k}\right) \frac{x}{\log ^{k} x} \quad\left(\mathfrak{S}\left(\mathcal{H}_{k}\right)=\prod_{p}\left(1-\frac{\nu_{p}}{p}\right)\left(1-\frac{1}{p}\right)^{-k}>0\right)
$$

Conjecture DHL (k): If \mathcal{H}_{k} is admissible, then $\left\{n+h_{i}\right\}_{i=1}^{k} \in \mathcal{P}^{k}$ i.o.

Conjecture DHL $(k, 2)$: If \mathcal{H}_{k} is admissible, then $n+\mathcal{H}_{k}$ contains at least two primes i.o.

Conjecture DHL $(k, 2)$: If \mathcal{H}_{k} is admissible, then $n+\mathcal{H}_{k}$ contains at least two primes i.o.
Remark. DHL $(k, 2)$ for any $k=k_{0}$ implies the Bounded Gap Conjecture. (Gap size $\leq h_{k}-h_{1} \approx k \log k$ with optimal \mathcal{H}_{k}).

Conjecture DHL $(k, 2)$: If \mathcal{H}_{k} is admissible, then $n+\mathcal{H}_{k}$ contains at least two primes i.o.
Remark. DHL $(k, 2)$ for any $k=k_{0}$ implies the Bounded Gap Conjecture. (Gap size $\leq h_{k}-h_{1} \approx k \log k$ with optimal \mathcal{H}_{k}).
Theorem (GPY, 2005-2006-2009): If $E H(\vartheta)$ is true, $\vartheta>\frac{1}{2}$, then $\exists k_{0}=C_{1}(\vartheta)$ such that $\operatorname{DHL}(k, 2)$ is true for any $k \geq k_{0}$.

Conjecture DHL $(k, 2)$: If \mathcal{H}_{k} is admissible, then $n+\mathcal{H}_{k}$ contains at least two primes i.o.
Remark. DHL $(k, 2)$ for any $k=k_{0}$ implies the Bounded Gap Conjecture. (Gap size $\leq h_{k}-h_{1} \approx k \log k$ with optimal \mathcal{H}_{k}). Theorem (GPY, 2005-2006-2009): If $E H(\vartheta)$ is true, $\vartheta>\frac{1}{2}$, then $\exists k_{0}=C_{1}(\vartheta)$ such that $\operatorname{DHL}(k, 2)$ is true for any $k \geq k_{0}$. Corollary: If $E H(\vartheta)$ is true for some $\vartheta>\frac{1}{2}$, then $d_{n}<C_{2}(\vartheta)$ i.o.

Conjecture DHL $(k, 2)$: If \mathcal{H}_{k} is admissible, then $n+\mathcal{H}_{k}$ contains at least two primes i.o.
Remark. DHL $(k, 2)$ for any $k=k_{0}$ implies the Bounded Gap Conjecture. (Gap size $\leq h_{k}-h_{1} \approx k \log k$ with optimal \mathcal{H}_{k}). Theorem (GPY, 2005-2006-2009): If $E H(\vartheta)$ is true, $\vartheta>\frac{1}{2}$, then $\exists k_{0}=C_{1}(\vartheta)$ such that $\operatorname{DHL}(k, 2)$ is true for any $k \geq k_{0}$. Corollary: If $E H(\vartheta)$ is true for some $\vartheta>\frac{1}{2}$, then $d_{n}<C_{2}(\vartheta)$ i.o. However, it suffices to show a conjecture weaker than $E H(\vartheta)$ for some $\vartheta>\frac{1}{2}$ and still obtain $\operatorname{DHL}\left(k_{0}, 2\right)$ and thus bounded gaps i.o.

Theorem: Y. Motohashi - J. Pintz, A smoothed GPY-sieve, arXiv: math/0602599, Feb 27, 2006, Bull. London Math. Soc. 40 (2008), no. 2, 298-310 and www.renyi.hu/~pintz, MR2414788 (2009d:1132).

Theorem: Y. Motohashi - J. Pintz, A smoothed GPY-sieve, arXiv: math/0602599, Feb 27, 2006, Bull. London Math. Soc. 40 (2008), no. 2, 298-310 and www.renyi.hu/~pintz, MR2414788 (2009d:1132).
It is sufficient to prove the analogue of $E H(\vartheta)$ with some $\vartheta>\frac{1}{2}$ for smooth moduli q (satisfying $p \mid q \rightarrow p<X^{b}$ with an arbitrary fixed $b>0)$ and for solutions a of the congruence $\prod_{i=1}^{k}\left(a+h_{i}\right) \equiv 0$ $(\bmod q)$ as residue classes $\bmod q$.
Y. Zhang's Theorem (2013, Ann. of Math., to appear). $E H(\vartheta)$ is
true for $\vartheta=\frac{1}{2}+\frac{1}{584}$ for smooth moduli and solutions of the
congruence $\prod_{i=1}^{k}\left(a+h_{i}\right) \equiv 0(\bmod q)$.
Y. Zhang's Theorem (2013, Ann. of Math., to appear). $E H(\vartheta)$ is
true for $\vartheta=\frac{1}{2}+\frac{1}{584}$ for smooth moduli and solutions of the
congruence $\prod_{i=1}^{k}\left(a+h_{i}\right) \equiv 0(\bmod q)$.
Corollary 1: $\operatorname{DHL}(k, 2)$ is true for $k \geq 3.5 \cdot 10^{6}$.
Y. Zhang's Theorem (2013, Ann. of Math., to appear). $E H(\vartheta)$ is true for $\vartheta=\frac{1}{2}+\frac{1}{584}$ for smooth moduli and solutions of the congruence $\prod_{i=1}^{k}\left(a+h_{i}\right) \equiv 0(\bmod q)$.
Corollary 1: $\operatorname{DHL}(k, 2)$ is true for $k \geq 3.5 \cdot 10^{6}$.
Corollary 2: $d_{n}=p_{n+1}-p_{n}<7 \cdot 10^{7}$ i.o.
Y. Zhang's Theorem (2013, Ann. of Math., to appear). $E H(\vartheta)$ is true for $\vartheta=\frac{1}{2}+\frac{1}{584}$ for smooth moduli and solutions of the congruence $\prod_{i=1}^{k}\left(a+h_{i}\right) \equiv 0(\bmod q)$.
Corollary 1: $\operatorname{DHL}(k, 2)$ is true for $k \geq 3.5 \cdot 10^{6}$.
Corollary 2: $d_{n}=p_{n+1}-p_{n}<7 \cdot 10^{7}$ i.o.
Remark. 70 million is being improved to a few thousands (T. Tao's blog and Polymath project).

3. ARITHMETIC PROGRESSIONS IN DENSE SETS AND IN THE SET OF PRIMES

Waring and Lagrange (more than 200 years ago):
How long arithmetic progressions (AP's) are within \mathcal{P}.

3. ARITHMETIC PROGRESSIONS IN DENSE SETS AND IN THE SET OF PRIMES

Waring and Lagrange (more than 200 years ago):
How long arithmetic progressions (AP's) are within \mathcal{P}.
Erdős-Turán Conjecture 1 (1936): For every k we have infinitely many k-term $A P$ within \mathcal{P}.

3. ARITHMETIC PROGRESSIONS IN DENSE SETS AND IN THE SET OF PRIMES

Waring and Lagrange (more than 200 years ago):
How long arithmetic progressions (AP's) are within \mathcal{P}.
Erdős-Turán Conjecture 1 (1936): For every k we have infinitely many k-term $A P$ within \mathcal{P}.
Erdős-Turán Conjecture 2: If $\mathcal{A} \subset \mathbb{Z}^{+}$has positive upper density, then we have infinitely many k-term AP's within \mathcal{A} for every k.

3. ARITHMETIC PROGRESSIONS IN DENSE SETS AND IN THE SET OF PRIMES

Waring and Lagrange (more than 200 years ago):
How long arithmetic progressions (AP's) are within \mathcal{P}.
Erdős-Turán Conjecture 1 (1936): For every k we have infinitely many k-term $A P$ within \mathcal{P}.
Erdős-Turán Conjecture 2: If $\mathcal{A} \subset \mathbb{Z}^{+}$has positive upper density, then we have infinitely many k-term AP's within \mathcal{A} for every k.
Solutions: $k=3$ K.F. Roth (1952-53)
$k=4 \quad$ E. Szemerédi (1968-70)
k arbitrary: E. Szemerédi (1973-75) Abel prize 2012
H. Fürstenberg (1977) Wolf prize 2006/7
T. Gowers (1998) Fields medal 1998

Van der Corput $1939 \exists$ infintely many 3-term AP's in \mathcal{P}

Van der Corput $1939 \exists$ infintely many 3-term AP's in \mathcal{P} (Method: Vinogradov's method for the ternary Goldbach problem)

Van der Corput $1939 \exists$ infintely many 3-term AP's in \mathcal{P} (Method: Vinogradov's method for the ternary Goldbach problem) B. Green - T. Tao (2004-2008) $\forall k \exists k$-term AP in \mathcal{P}. T. Tao Fields medal 2006

Van der Corput $1939 \exists$ infintely many 3-term AP's in \mathcal{P} (Method: Vinogradov's method for the ternary Goldbach problem) B. Green - T. Tao (2004-2008) $\forall k \exists k$-term AP in \mathcal{P}. T. Tao

Fields medal 2006
Methods (ergodic - Fürstenberg, harmonic analysis - Gowers, combinatorial - Szemerédi + number theoretical -Goldston-Yıldırım)

Van der Corput $1939 \exists$ infintely many 3-term AP's in \mathcal{P} (Method: Vinogradov's method for the ternary Goldbach problem) B. Green - T. Tao (2004-2008) $\forall k \exists k$-term AP in \mathcal{P}. T. Tao

Fields medal 2006
Methods (ergodic - Fürstenberg, harmonic analysis - Gowers, combinatorial - Szemerédi + number theoretical -Goldston-Yıldırım)
Erdős Conjecture (USD 3000): If $\sum_{a_{i} \in \mathcal{A}} 1 / a_{i}=\infty$, then \mathcal{A}
contains infinitely many k-term AP's for any k.

4. ARITHMETIC PROGRESSIONS OF GENERALIZED TWIN PRIMES

 Theorem 1 (J. P., arXiv 2013): There exists an even $d<7000$ with the following property. For every k there is a k-term AP of primes such that for each element p of the progression $p+d$ is also a prime, more exactly, the prime following p.
4. ARITHMETIC PROGRESSIONS OF GENERALIZED TWIN PRIMES

 Theorem 1 (J. P., arXiv 2013): There exists an even $d<7000$ with the following property. For every k there is a k-term AP of primes such that for each element p of the progression $p+d$ is also a prime, more exactly, the prime following p.Remark. The result is based on earlier ideas and results of
(i) Szemerédi-Furstenberg-Gowers-Green-Tao

4. ARITHMETIC PROGRESSIONS OF GENERALIZED TWIN PRIMES

 Theorem 1 (J. P., arXiv 2013): There exists an even $d<7000$ with the following property. For every k there is a k-term AP of primes such that for each element p of the progression $p+d$ is also a prime, more exactly, the prime following p.Remark. The result is based on earlier ideas and results of
(i) Szemerédi-Furstenberg-Gowers-Green-Tao
(ii) Selberg-Heath-Brown-Bombieri-A.I.Vinogradov-Goldston-Pintz-Yıldırım

4. ARITHMETIC PROGRESSIONS OF GENERALIZED TWIN PRIMES

 Theorem 1 (J. P., arXiv 2013): There exists an even $d<7000$ with the following property. For every k there is a k-term AP of primes such that for each element p of the progression $p+d$ is also a prime, more exactly, the prime following p.Remark. The result is based on earlier ideas and results of
(i) Szemerédi-Furstenberg-Gowers-Green-Tao
(ii) Selberg-Heath-Brown-Bombieri-A.I.Vinogradov-Goldston-Pintz-Yıldırım
(iii) Motohashi-Pintz

4. ARITHMETIC PROGRESSIONS OF GENERALIZED TWIN PRIMES

 Theorem 1 (J. P., arXiv 2013): There exists an even $d<7000$ with the following property. For every k there is a k-term AP of primes such that for each element p of the progression $p+d$ is also a prime, more exactly, the prime following p.Remark. The result is based on earlier ideas and results of
(i) Szemerédi-Furstenberg-Gowers-Green-Tao
(ii) Selberg-Heath-Brown-Bombieri-A.I.Vinogradov-Goldston-Pintz-Yıldırım
(iii) Motohashi-Pintz
(iv) Bombieri-Friedlander-Iwaniec-Fouvry-Deligne-Birch-WeylZhang

5. POLIGNAC NUMBERS
 Def: $2 k$ is a Polignac number if $d_{n}=2 k$ i.o.

5. POLIGNAC NUMBERS

Def: $2 k$ is a Polignac number if $d_{n}=2 k$ i.o.
Polignac's Conjecture: Every positive even number is a Polignac number.

5. POLIGNAC NUMBERS

Def: $2 k$ is a Polignac number if $d_{n}=2 k$ i.o.
Polignac's Conjecture: Every positive even number is a Polignac number.
Proposition Bounded Gaps Conj. $\Leftrightarrow \exists$ at least one Pol. number Theorem 2 (J.P., arXiv 2013): There are infinitely many Polignac numbers, and their lower asymptotic density is at least 10^{-9}.

5. POLIGNAC NUMBERS

Def: $2 k$ is a Polignac number if $d_{n}=2 k$ i.o.
Polignac's Conjecture: Every positive even number is a Polignac number.
Proposition Bounded Gaps Conj. $\Leftrightarrow \exists$ at least one Pol. number Theorem 2 (J.P., arXiv 2013): There are infinitely many Polignac numbers, and their lower asymptotic density is at least 10^{-9}.
Corollary: For $\forall k \exists k$-term AP of Polignac numbers.

5. POLIGNAC NUMBERS

Def: $2 k$ is a Polignac number if $d_{n}=2 k$ i.o.
Polignac's Conjecture: Every positive even number is a Polignac number.
Proposition Bounded Gaps Conj. $\Leftrightarrow \exists$ at least one Pol. number Theorem 2 (J.P., arXiv 2013): There are infinitely many Polignac numbers, and their lower asymptotic density is at least 10^{-9}.
Corollary: For $\forall k \exists k$-term AP of Polignac numbers. Theorem 3 (J.P., arXiv 2013): If d_{n} is the $n^{\text {th }}$ Polignac number, then $d_{n+1}-d_{n} \leq C(C$ ineffective $)$.

6. THE NORMALIZED VALUE DISTRIBUTION OF d_{n}

(3)

$$
\text { Prime Number Theorem } \Rightarrow \frac{1}{N} \sum_{n=1}^{N} \frac{d_{n}}{\log n}=1 .
$$

6. THE NORMALIZED VALUE DISTRIBUTION OF d_{n}

(3)

$$
\text { Prime Number Theorem } \Rightarrow \frac{1}{N} \sum_{n=1}^{N} \frac{d_{n}}{\log n}=1
$$

Conjecture (Erdős): $d_{n} / \log n$ is everywhere dense in $[0, \infty]$, i.e.
(4)

$$
J=\left\{\frac{d_{n}}{\log n}\right\}^{\prime}=[0, \infty]
$$

6. THE NORMALIZED VALUE DISTRIBUTION OF d_{n}
(3)

$$
\text { Prime Number Theorem } \Rightarrow \frac{1}{N} \sum_{n=1}^{N} \frac{d_{n}}{\log n}=1
$$

Conjecture (Erdős): $d_{n} / \log n$ is everywhere dense in $[0, \infty]$, i.e.

$$
\begin{equation*}
J=\left\{\frac{d_{n}}{\log n}\right\}^{\prime}=[0, \infty] \tag{4}
\end{equation*}
$$

Theorem (Ricci 1954, Erdős 1955): J has a positive (Lebesgue) measure.
6. THE NORMALIZED VALUE DISTRIBUTION OF d_{n}

$$
\begin{equation*}
\text { Prime Number Theorem } \Rightarrow \frac{1}{N} \sum_{n=1}^{N} \frac{d_{n}}{\log n}=1 \tag{3}
\end{equation*}
$$

Conjecture (Erdős): $d_{n} / \log n$ is everywhere dense in $[0, \infty]$, i.e.

$$
\begin{equation*}
J=\left\{\frac{d_{n}}{\log n}\right\}^{\prime}=[0, \infty] \tag{4}
\end{equation*}
$$

Theorem (Ricci 1954, Erdős 1955): J has a positive (Lebesgue) measure.
However, no finite limit point was known till 2005.
Theorem (Goldston-Pintz-Yıldırım, 2005-9): $0 \in J$.

6. THE NORMALIZED VALUE DISTRIBUTION OF d_{n}

$$
\begin{equation*}
\text { Prime Number Theorem } \Rightarrow \frac{1}{N} \sum_{n=1}^{N} \frac{d_{n}}{\log n}=1 \tag{3}
\end{equation*}
$$

Conjecture (Erdős): $d_{n} / \log n$ is everywhere dense in $[0, \infty]$, i.e.

$$
\begin{equation*}
J=\left\{\frac{d_{n}}{\log n}\right\}^{\prime}=[0, \infty] \tag{4}
\end{equation*}
$$

Theorem (Ricci 1954, Erdős 1955): J has a positive (Lebesgue) measure.
However, no finite limit point was known till 2005.
Theorem (Goldston-Pintz-Yıldırım, 2005-9): $0 \in J$.
Theorem 4 (J. P., arXiv 2013): $\exists c$ (ineffective) such that $[0, c] \subset J$.

7. COMPARISON OF CONSECUTIVE VALUES OF d_{n}

 Erdős (1948) $\liminf _{n \rightarrow \infty} \frac{d_{n+1}}{d_{n}}<1<\lim \sup \frac{d_{n+1}}{d_{n}}$
7. COMPARISON OF CONSECUTIVE VALUES OF d_{n}

Erdős (1948) $\liminf _{n \rightarrow \infty} \frac{d_{n+1}}{d_{n}}<1<\lim \sup \frac{d_{n+1}}{d_{n}}$
Erdős (1956) "One would of course conjecture that (5)

$$
\liminf \frac{d_{n+1}}{d_{n}}=0 \text { and } \limsup _{n \rightarrow \infty} \frac{d_{n+1}}{d_{n}}=\infty \quad\left(\Leftrightarrow \liminf _{n \rightarrow \infty} \frac{d_{n}}{d_{n+1}}=0\right)
$$

but these conjectures seem very difficult to prove."

7. COMPARISON OF CONSECUTIVE VALUES OF d_{n}

Erdős (1948) $\liminf _{n \rightarrow \infty} \frac{d_{n+1}}{d_{n}}<1<\lim \sup \frac{d_{n+1}}{d_{n}}$
Erdős (1956) "One would of course conjecture that (5)

$$
\lim \inf \frac{d_{n+1}}{d_{n}}=0 \text { and } \limsup _{n \rightarrow \infty} \frac{d_{n+1}}{d_{n}}=\infty\left(\Leftrightarrow \liminf _{n \rightarrow \infty} \frac{d_{n}}{d_{n+1}}=0\right)
$$

but these conjectures seem very difficult to prove."
Theorem 5 (J. P., arXiv 2013): Erdős's conjecture (5) is true, we have even
(6) $\quad \liminf _{n \rightarrow \infty} \frac{d_{n+1} \log n}{d_{n}}<\infty, \quad \limsup _{n \rightarrow \infty} \frac{d_{n+1}}{d_{n} \log n}>0$
(7) $\quad \limsup _{n \rightarrow \infty} \frac{\min \left(d_{n-1}, d_{n+1}\right)}{d_{n}(\log n)^{c}}=\infty$ with $c=10^{-3}$

8. CONJECTURES OF ERDŌS AND ERDỐS-MIRSKY ON CONSECUTIVE VALUES OF ARITHMETIC FUNCTIONS

Conjecture A: $d(n)=d(n+1)$ i.o. (Erdős-Mirsky 1952)

8. CONJECTURES OF ERDŐS AND ERDŐS-MIRSKY ON CONSECUTIVE VALUES OF ARITHMETIC FUNCTIONS

Conjecture A: $d(n)=d(n+1)$ i.o. (Erdős-Mirsky 1952)
Conjecture B: $\Omega(n)=\Omega(n+1)$ i.o. (Erdős)

8. CONJECTURES OF ERDŐS AND ERDŐS-MIRSKY ON CONSECUTIVE VALUES OF ARITHMETIC FUNCTIONS

Conjecture A: $d(n)=d(n+1)$ i.o. (Erdős-Mirsky 1952)
Conjecture B: $\Omega(n)=\Omega(n+1)$ i.o. (Erdős)
Conjecture C: $\omega(n)=\omega(n+1)$ i.o. (Erdős)

8. CONJECTURES OF ERDŐS AND ERDỐS-MIRSKY ON CONSECUTIVE VALUES OF ARITHMETIC FUNCTIONS

Conjecture A: $d(n)=d(n+1)$ i.o. (Erdős-Mirsky 1952)
Conjecture B: $\Omega(n)=\Omega(n+1)$ i.o. (Erdős)
Conjecture C: $\omega(n)=\omega(n+1)$ i.o. (Erdős)
Def: $\Omega(n)$ and $\omega(n)$ denote the number of prime divisors of n with $(\Omega(n))$ or without $(\omega(n))$ multiplicity.
8. CONJ.-S OF ERDÕS, ERDÕS-MIRSKY ON CONSECUTIVE VALUES OF ARITHMETIC FUNCTIONS

Remark (J. R. Chen 1966). $2 p+1 \in \mathcal{P}$ or $2 p+1=p_{1} p_{2}$ i.o.
8. CONJ.-S OF ERDÕS, ERDÕS-MIRSKY ON CONSECUTIVE VALUES OF ARITHMETIC FUNCTIONS

Remark (J. R. Chen 1966). $2 p+1 \in \mathcal{P}$ or $2 p+1=p_{1} p_{2}$ i.o. We conjecture that $2 p+1=p_{1} p_{2}$ i.o. Then for these primes (8) $d(2 p)=d(2 p+1)=4, \omega(2 p)=\omega(2 p+1)=\Omega(2 p)=\Omega(2 p+1)=2$

Remark (J. R. Chen 1966). $2 p+1 \in \mathcal{P}$ or $2 p+1=p_{1} p_{2}$ i.o. We conjecture that $2 p+1=p_{1} p_{2}$ i.o. Then for these primes (8)
$d(2 p)=d(2 p+1)=4, \omega(2 p)=\omega(2 p+1)=\Omega(2 p)=\Omega(2 p+1)=2$
Parity phenomenon (Selberg) sieve methods (alone) can not distinguish between numbers with an odd or even number of prime factors.

Remark (J. R. Chen 1966). $2 p+1 \in \mathcal{P}$ or $2 p+1=p_{1} p_{2}$ i.o. We conjecture that $2 p+1=p_{1} p_{2}$ i.o. Then for these primes (8)
$d(2 p)=d(2 p+1)=4, \omega(2 p)=\omega(2 p+1)=\Omega(2 p)=\Omega(2 p+1)=2$
Parity phenomenon (Selberg) sieve methods (alone) can not distinguish between numbers with an odd or even number of prime factors.
Erdős's conjectures were considered as difficult as the twin prime conjecture.

20 8. CONJ.-S OF ERDÕS, ERDÕS-MIRSKY ON CONSECUTIVE VALUES OF ARITHMETIC FUNCTIONS
C. Spiro (1981) $\quad d(n)=d(n+5040)$ i.o.
C. Spiro (1981) $d(n)=d(n+5040)$ i.o. Heath-Brown (1984) $d(n)=d(n+1)$ i.o. and $\Omega(n)=\Omega(n+1)$ i.o.
C. Spiro (1981) $d(n)=d(n+5040)$ i.o. Heath-Brown (1984) $d(n)=d(n+1)$ i.o. and $\Omega(n)=\Omega(n+1)$ i.o.
J. C. Schlage-Puchta (2001-2005) $\omega(n)=\omega(n+1)$ i.o.
C. Spiro (1981) $d(n)=d(n+5040)$ i.o. Heath-Brown (1984) $d(n)=d(n+1)$ i.o. and $\Omega(n)=\Omega(n+1)$ i.o.
J. C. Schlage-Puchta (2001-2005) $\omega(n)=\omega(n+1)$ i.o.

In joint work with S. W. Graham, D. Goldston, C. Yıldırım
Theorem 6 (GGPY 2009): Let q_{n} denote the sequence of E_{2} numbers which have exactly two prime divisors. Then $q_{n+1}-q_{n} \leq 6$ i.o.

21 8. CONJ.-S OF ERDỐS, ERDÕS-MIRSKY ON CONSECUTIVE VALUES OF ARITHMETIC FUNCTIONS Theorem 7 (GGPY): For every $B \geq 0\left(B \in \mathbb{Z}^{+}\right) \exists$ inf. many n 's with

$$
\begin{gather*}
\omega(n)=\omega(n+1)=4+B, \Omega(n)=\Omega(n+1)=5+B \\
d(n)=d(n+1)=24 \cdot 2^{B} \tag{9}
\end{gather*}
$$

21 8. CONJ.-S OF ERDÕS, ERDÕS-MIRSKY ON CONSECUTIVE VALUES OF ARITHMETIC FUNCTIONS Theorem 7 (GGPY): For every $B \geq 0\left(B \in \mathbb{Z}^{+}\right) \exists$ inf. many n 's with
(9)

$$
\begin{gathered}
\omega(n)=\omega(n+1)=4+B, \Omega(n)=\Omega(n+1)=5+B \\
d(n)=d(n+1)=24 \cdot 2^{B}
\end{gathered}
$$

Theorem 8 (GGPY 2011, GGPY 2011):

$$
\begin{equation*}
\omega(n)=\omega(n+1)=3 \text { i.o., } \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\Omega(n)=\Omega(n+1)=4 \text { i.o. } \tag{11}
\end{equation*}
$$

8. CONJ.-S OF ERDÕS, ERDÕS-MIRSKY ON CONSECUTIVE VALUES OF ARITHMETIC FUNCTIONS Theorem 7 (GGPY): For every $B \geq 0\left(B \in \mathbb{Z}^{+}\right) \exists$ inf. many n 's with

$$
\begin{gather*}
\omega(n)=\omega(n+1)=4+B, \Omega(n)=\Omega(n+1)=5+B \\
d(n)=d(n+1)=24 \cdot 2^{B} \tag{9}
\end{gather*}
$$

Theorem 8 (GGPY 2011, GGPY 2011):

$$
\begin{equation*}
\omega(n)=\omega(n+1)=3 \text { i.o. } \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\Omega(n)=\Omega(n+1)=4 \text { i.o. } \tag{11}
\end{equation*}
$$

Theorem 9 (J. P. 2011): $\forall k \exists k$-term AP of natural numbers n such that (9) is true. The same assertion holds for (10) and (11).
9. SOME IDEAS OF PROOF BEHIND THEOREMS 6-8

The following Basic Theorem forms the basis for the proofs of Theorems 6-9.

BASIC THEOREM (S.W.

Graham-Goldston-Pintz-Yıldırım): If $L_{i}(x)=a_{i} x+b_{i}$
$\left(i=1,2,3, a_{i}, b_{i} \in \mathbb{Z}, a_{i}>0\right)$ are three linear forms such that 3
$\prod L_{i}(x)$ has no fixed prime divisor, then we have at least two $i=1$
indices $i, j \in(1,2,3)$ such that for any C and infinitely many n $L_{i}(n), L_{j}(n)$ have exactly two prime divisors, both larger than C.
9. SOME IDEAS OF PROOF BEHIND THEOREMS 6-8

The following Basic Theorem forms the basis for the proofs of Theorems 6-9.

BASIC THEOREM (S.W.

Graham-Goldston-Pintz-Yıldırım): If $L_{i}(x)=a_{i} x+b_{i}$
$\left(i=1,2,3, a_{i}, b_{i} \in \mathbb{Z}, a_{i}>0\right)$ are three linear forms such that $\prod^{3} L_{i}(x)$ has no fixed prime divisor, then we have at least two $i=1$
indices $i, j \in(1,2,3)$ such that for any C and infinitely many n
$L_{i}(n), L_{j}(n)$ have exactly two prime divisors, both larger than C.

Corollary: Take $\{n, n+2, n+6\} \Rightarrow q_{n+1}-q_{n} \leq 6$ i.o.

Proof of (10) of Theorem 8 from the BASIC THEOREM
Let $L_{1}(m)=6 m+1, L_{2}(m)=8 m+1, L_{3}(m)=9 m+1$.

Proof of (10) of Theorem 8 from the BASIC THEOREM
Let $L_{1}(m)=6 m+1, L_{2}(m)=8 m+1, L_{3}(m)=9 m+1$.
This is clearly admissible since $\prod_{i=1}^{3} L_{i}(0) \equiv 1(\bmod p)$. We have
$4 L_{1}=3 L_{2}+1,3 L_{1}=2 L_{3}+1,9 L_{2}=8 L_{1}+1$.
Suppose, e.g., $L_{1}(n)$ and $L_{2}(n)$ are E_{2}-numbers i.o. If $x=3 L_{2}(n)$, $x+1=4 L_{1}(n), n \not \equiv 1(\bmod 3)$, then $\omega(x)=\omega(x+1)$ i.o.
10. SOME IDEAS BEHIND THE PROOF OF ZHANG'S THEOREM

The proof relies on three theorems:
(i) GPY (2005-6-9). If $\exists \vartheta>1 / 2$ s.t. $\mathrm{EH}(\vartheta)$ is true, i.e. for any $A, \varepsilon>0$
(13) $\sum_{q \leq X^{\vartheta-\varepsilon}} \max _{\substack{a \\(a, q)=1}}\left|\sum_{p \leq X, p \equiv a(q)} \log p-\frac{X}{\varphi(q)}\right| \leq C(A, \varepsilon) \frac{X}{(\log X)^{A}}$,
then $\operatorname{DHL}(k, 2)$ is true for $k \geq k_{0}=C_{3}(\vartheta)$, i.e. we have for any admissible \mathcal{H}_{k} at least two primes among $\left\{n+h_{i}\right\}_{i=1}^{k}$ i.o.
10. SOME IDEAS BEHIND THE PROOF OF ZHANG'S THEOREM

The proof relies on three theorems:
(i) GPY (2005-6-9). If $\exists \vartheta>1 / 2$ s.t. $\mathrm{EH}(\vartheta)$ is true, i.e. for any $A, \varepsilon>0$
(13) $\sum_{q \leq X^{\vartheta-\varepsilon}} \max _{\substack{a \\(a, q)=1}}\left|\sum_{p \leq X, p \equiv a(q)} \log p-\frac{X}{\varphi(q)}\right| \leq C(A, \varepsilon) \frac{X}{(\log X)^{A}}$,
then $\operatorname{DHL}(k, 2)$ is true for $k \geq k_{0}=C_{3}(\vartheta)$, i.e. we have for any admissible \mathcal{H}_{k} at least two primes among $\left\{n+h_{i}\right\}_{i=1}^{k}$ i.o.
(ii) MOTOHASHI-PINTZ (2005-8): It is sufficient to have (13) for smooth moduli $\left(p \mid q \rightarrow p>q^{b}, b>0\right.$ arbitrary $)$ and a's satisfying $\prod_{i=1}^{k}\left(a+h_{i}\right) \equiv 0(\bmod q)$.
10. SOME IDEAS BEHIND THE PROOF OF ZHANG'S THEOREM

The proof relies on three theorems:
(i) GPY (2005-6-9). If $\exists \vartheta>1 / 2$ s.t. $\mathrm{EH}(\vartheta)$ is true, i.e. for any $A, \varepsilon>0$
(13) $\sum_{q \leq X^{\vartheta-\varepsilon}} \max _{\substack{a \\(a, q)=1}}\left|\sum_{p \leq X, p \equiv a(q)} \log p-\frac{X}{\varphi(q)}\right| \leq C(A, \varepsilon) \frac{X}{(\log X)^{A}}$,
then $\operatorname{DHL}(k, 2)$ is true for $k \geq k_{0}=C_{3}(\vartheta)$, i.e. we have for any admissible \mathcal{H}_{k} at least two primes among $\left\{n+h_{i}\right\}_{i=1}^{k}$ i.o.
(ii) MOTOHASHI-PINTZ (2005-8): It is sufficient to have (13) for smooth moduli $\left(p \mid q \rightarrow p>q^{b}, b>0\right.$ arbitrary $)$ and a's satisfying $\prod_{i=1}^{k}\left(a+h_{i}\right) \equiv 0(\bmod q)$.
$i=1$
(iii) ZHANG (to appear): (13) is true if restricted by (ii). Ideas to prove (i) go back to Selberg and Heath-Brown. Since $n+\mathcal{H}_{k}$ contains just $\frac{k}{\log N}$ primes if $n \sim N(n \in[N, 2 N))$ on average, we look for an average which gives large weights a_{n} if $n+\mathcal{H}$ contains many primes. Let $\mathcal{P}_{\mathcal{H}}(n)=\prod_{i=1}^{k}\left(n+h_{i}\right)$.

1. $a_{1}(n)= \begin{cases}1 & \text { if }\left\{n+h_{i}\right\}_{i=1}^{k} \in \mathcal{P}^{k} \text { (tautology) } \\ 0 & \text { otherwise }\end{cases}$
2. $a_{2}(n)=\Lambda_{k}\left(P_{\mathcal{H}}(n)\right)=\sum_{d \mid P_{\mathcal{H}}(n)} \mu(d)\left(\log \frac{P_{\mathcal{H}}(n)}{d}\right)^{k}$
is a reformulation of $a_{1}(n)\left(a_{2}(n)=a_{1}(n)\right)$: we cannot evaluate $S(N)=\sum_{n \sim N} a_{n}$.
3. SOME IDEAS BEHIND THE PROOF OF ZHANG'S THEOREM
4. $a_{3}(n)=\Lambda_{k, R}(n)=\sum_{\substack{d \mid P_{\mathcal{H}}(n) \\ d \leq R}} \mu(d) \log ^{k} \frac{R}{d}$
(Selberg's idea). Problem: $a_{3}(n)$ may be negative.
5. $a_{3}(n)=\Lambda_{k, R}(n)=\sum_{\substack{d \mid P_{\mathcal{H}}(n) \\ d \leq R}} \mu(d) \log ^{k} \frac{R}{d}$
(Selberg's idea). Problem: $a_{3}(n)$ may be negative.
6. $a_{4}(n)=\left(a_{3}(n)\right)^{2}$. First chanceful choice!
$S(N)$ can be evaluated; further if

$$
\chi_{\mathcal{P}}(n)=\left\{\begin{array}{ll}
1 & \text { if } n \in \mathcal{P} \\
0 & \text { otherwise },
\end{array} \text { then } S^{*}(N)=\sum_{i=1}^{k} \sum_{n \sim N} a_{n} \chi_{\mathcal{P}}\left(n+h_{i}\right)\right.
$$

can be evaluated as well if $R \leq N^{1 / 4-o(1)}$.
3. $a_{3}(n)=\Lambda_{k, R}(n)=\sum_{\substack{d \mid P_{\mathcal{H}}(n) \\ d \leq R}} \mu(d) \log ^{k} \frac{R}{d}$
(Selberg's idea). Problem: $a_{3}(n)$ may be negative.
4. $a_{4}(n)=\left(a_{3}(n)\right)^{2}$. First chanceful choice!
$S(N)$ can be evaluated; further if

$$
\chi_{\mathcal{P}}(n)=\left\{\begin{array}{ll}
1 & \text { if } n \in \mathcal{P} \\
0 & \text { otherwise },
\end{array} \text { then } S^{*}(N)=\sum_{i=1}^{k} \sum_{n \sim N} a_{n} \chi_{\mathcal{P}}\left(n+h_{i}\right)\right.
$$

can be evaluated as well if $R \leq N^{1 / 4-o(1)}$.
We obtain $\frac{S^{*}(N)}{S(N)}=\frac{1}{2}+o_{k}(1)$ primes "on average".
5. All attempts $1-4$ simulate the full $\mathrm{DHL}(k)$ conjecture, i.e. to obtain k primes in a k-tuple i.o. (Dickson's conjecture). Let's be more modest. We are contented if we approximate $\operatorname{DHL}(k, 2)$, i.e.
if we have $k+\ell$ prime factors of $\prod_{i=1}^{k}\left(n+h_{i}\right)$ for some $\ell \leq k-2$.
(14) $a_{5}(n)=\Lambda_{k+\ell, R}^{2}(n)=\sum_{\substack{d \mid P_{\mathcal{H}}(n) \\ d \leq R}} \mu(d)\left(\log \frac{R}{d}\right)^{k+\ell}, R \leq N^{\frac{1}{4}-\varepsilon}$.
5. All attempts $1-4$ simulate the full $\mathrm{DHL}(k)$ conjecture, i.e. to obtain k primes in a k-tuple i.o. (Dickson's conjecture). Let's be more modest. We are contented if we approximate $\operatorname{DHL}(k, 2)$, i.e. if we have $k+\ell$ prime factors of $\prod_{i=1}^{k}\left(n+h_{i}\right)$ for some $\ell \leq k-2$.
(14) $a_{5}(n)=\Lambda_{k+\ell, R}^{2}(n)=\sum_{\substack{d \mid P_{\mathcal{H}}(n) \\ d \leq R}} \mu(d)\left(\log \frac{R}{d}\right)^{k+\ell}, R \leq N^{\frac{1}{4}-\varepsilon}$.

We obtain

$$
\begin{equation*}
\frac{S^{*}(N)}{S(N)}=1-O\left(\frac{\ell}{k}\right)-O\left(\frac{1}{\ell}\right) \tag{15}
\end{equation*}
$$

primes on average over $n \sim N$ (unconditionally).
10. SOME IDEAS BEHIND THE PROOF OF ZHANG'S THEOREM

With some additional ideas this leads to the Small Gaps
Conjecture, i.e. $\Delta=\liminf _{n \rightarrow \infty} \frac{d_{n}}{\log n}=0$. However, conditionally, if
$\vartheta>\frac{1}{2}, \mathrm{EH}(\vartheta)$ is true, then
(16) $\quad \frac{S^{*}(N)}{S(N)}=2 \vartheta\left(1-O\left(\frac{\ell}{k}\right)-O\left(\frac{1}{\ell}\right)\right)>1$ (i).

Conjecture, i.e. $\Delta=\liminf _{n \rightarrow \infty} \frac{d_{n}}{\log n}=0$. However, conditionally, if $\vartheta>\frac{1}{2}, \mathrm{EH}(\vartheta)$ is true, then
(16) $\frac{S^{*}(N)}{S(N)}=2 \vartheta\left(1-O\left(\frac{\ell}{k}\right)-O\left(\frac{1}{\ell}\right)\right)>1$ (i).
(ii) MOTOHASHI-PINTZ: If we can show $\mathrm{EH}(\vartheta)$ for a $\vartheta>\frac{1}{2}$ for smooth moduli ($p \mid q \rightarrow p>q^{b}$) and instead of the worst residue class $\bmod q$ for solutions of the congruence $\prod_{i=1}^{k}\left(a+h_{i}\right)=0$, then we obtain under the condition $b \geq C \ell / k$
(17) $\frac{S^{*}(N)}{S(N)}=2 \vartheta\left(1-O\left(\frac{\ell}{k}\right)-O\left(\frac{1}{\ell}\right)+O\left(e^{-k b / 3}\right)\right)>1$.
(iii) ZHANG: It is possible to show the above mentioned restricted improvement of the Bombieri-Vinogradov theorem using methods of Bombieri-Friedlander-Iwaniec, Weil, Friedlander-Iwaniec (with an appendix of Bombieri-Birch) which apply a technique based on the theory of Kloosterman sums. It turned out later that the most useful idea is in Fouvry-Iwaniec (1980) which proves the following theorem. For every $a \leq X$

$$
\sum_{q \leq X^{11 / 21}} \mid \sum_{\substack{n \equiv a(\bmod q) \\ n \leq X}} 1-\text { Exp. Main Term } \left\lvert\, \leq C(A) \frac{X}{\log ^{A} X}\right.
$$

where $z=X^{1 / 883}, A>0, X>0$ arbitrary.

ANALOGY: The moduli are here arbitrary (rigid) but the numbers n are well factorable. In case of prime gaps we have a "dual" problem. By the Motohashi-Pintz theorem we can factorise q arbitrarily, and while the primes seem to be rigid, they might be written in a multilinear form using Linník's or Heath-Brown's identity. Crucial role is still played by Friedlander-Iwaniec (1985): $a \leq X, d_{3}(n)=\sum_{n=n_{1} n_{2} n_{3}} 1$,

Crucial idea behind the proof of Theorems 1-5 (apart from earlier mentioned results)

MAIN LEMMA (J. P. 2010): The total sum of weights as(n) for numbers for which at least one of the numbers $n+h_{i}$
$(i=1,2, \ldots, k)$ has a divisor $<n^{b}$ is negligible $\left(<\varepsilon \sum_{n=N}^{2 N} a_{5}(n)\right)$ if $b<\varepsilon c(k)$.

Crucial idea behind the proof of Theorems 1-5 (apart from earlier mentioned results)

MAIN LEMMA (J. P. 2010): The total sum of weights $a_{5}(n)$ for numbers for which at least one of the numbers $n+h_{i}$
$(i=1,2, \ldots, k)$ has a divisor $<n^{b}$ is negligible $\left(<\varepsilon \sum_{n=N}^{2 N} a_{5}(n)\right)$ if $b<\varepsilon c(k)$.

Corollary (GPY 2010): Given any $\eta>0$ a positive proportion of primegaps d_{n} satisfy $d_{n}<\eta \log n$.

Theorem 10. If $k \geq k_{0}, \mathcal{H}=\left\{h_{i}\right\}_{i=1}^{k}$ is an admissible k-tuple, then for $N>N_{0}(k)$ the number of $n \in[N, 2 N)$ for which $\left\{n+h_{i}\right\}_{i=i}^{k}$ contains at least two primes and almost primes in all other components with all prime factors $>n^{c_{1}(k)}$ is at least

$$
c_{2}(k) \frac{N}{\log ^{k} N}
$$

if $0 \leq h_{i} \ll \log N$.
"Mathematicians have tried in vain to this day to discover some order in the sequence of prime numbers, and we have no reason to believe that it is a mystery into which the mind will ever penetrate."

Leonhard Euler

