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1

Notation: p, p′, p∗ ∈ P (the set of primes)

pn: the nth prime, but p∗i any prime
dn := pn+1 − pn the nth difference between consecutive primes
Def: An even number 2k is a Polignac number if dn = 2k infinitely
often (i.o.)
Def: n is y -smooth if p | n→ p ≤ y
Def: n is an E2-number if it has exactly two prime divisors
Def: n is a P2-number if it has at most two prime divisors

µ(n) =

{
(−1)m if n is square-free and has m prime factors
0 otherwise
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2

1. LARGE GAPS BETWEEN CONSECUTIVE PRIMES

The Prime Number Theorem (PNT) implies

π(x) :=
∑
p≤x

1∼ x
log x

(Hadamard, de la Vallée Poussin, 1896)

=⇒ 1
N

N∑
n=1

dn ∼ logN.

PROBLEM: How big are the largest gaps?

λ := lim sup
n→∞

dn

log n
≥ 1

Backlund (1929): λ ≥ 2
Brauer–Zeitz (1930): λ ≥ 4
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3 1. LARGE GAPS BETWEEN CONSECUTIVE PRIMES

Westzynthius (1931): lim sup
n→∞

dn log4 n
log n log3 n

≥ 2eγ → λ =∞,

where logν n is the ν-fold iterated logarithmic function

Erdős (1935): lim sup
n→∞

dn(log3 n)2

log n log2 n
> 0

Rankin (1938): lim sup
n→∞

dn(log3 n)2

log n log2 n log4 n
≥ C1 =

1
3

2 improvements of C1 to eγ during 40 years
Erdős: USD 10,000 to prove it for any C1 > 0
Maier–Pomerance (1990): C1 = 1.31 . . . eγ

J. Pintz (1997): C1 = 2eγ
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4

2. SMALL GAPS BETWEEN CONSECUTIVE PRIMES

TWIN PRIME CONJECTURE: dn = 2 i.o.

POLIGNAC’S CONJECTURE (1849): ∀k ∈ Z+ : dn = 2k i.o.

SMALL GAPS CONJECTURE: ∆= lim inf
n→∞

dn

log n
=0

BOUNDED GAPS CONJECTURE: ∃C dn ≤ C i.o.

REMARK: Bounded gaps conjecture ⇔ There is at least one
Polignac number ⇔ ∃k ∈ Z+: dn = 2k i.o.
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5 2. SMALL GAPS BETWEEN CONSECUTIVE PRIMES

Hardy–Littlewood (1926): GRH =⇒ ∆ ≤ 2/3.

Erdős (1940): ∃c1 > 0 (unspecified, small, but effectively
computable) such that ∆ < 1− c1
...
Bombieri–Davenport (1966): ∆ < 0.466 · · · < 1/2
(Motivation for the large sieve; Bombieri–Vinogradov theorem)
...
H. Maier (1988): ∆ < 0.2486 · · · < 1/4
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6 2. SMALL GAPS BETWEEN CONSECUTIVE PRIMES

D. Goldston – J. Pintz – C. Yıldırım (2005–2006–2009):
Small gaps conjecture is true, that is, ∆ = 0.

D. Goldston – J. Pintz – C. Yıldırım (2005–2010):

dn < C
√

log n
/

(log log n)2 i.o.

J. Pintz (2011–2013): dn < C (log n)3/7(log log n)4/7 i.o.
and this is the limit of the original GPY-method (without some sort
of improvement of the Bombieri–Vinogradov theorem) as shown by
B. Farkas – J. Pintz – Sz. Gy. Révész (2013)
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7 2. SMALL GAPS BETWEEN CONSECUTIVE PRIMES

Definition: Primes have an admissible distribution level ϑ

(1)
∑

q≤Xϑ−ε

max
a

(a,q)=1

∣∣∣∣ ∑
p

p≡a(q)
p≤X

log p − X
ϕ(q)

∣∣∣∣ ≤ C (A, ε)
X

(logX )A

holds for any A > 0, ε > 0 and X > 0
[
⇔ EH(ϑ)

]
.

Bombieri–Vinogradov Theorem (1965): ϑ = 1/2 is admissible.
Elliott–Halberstam Conjecture (1966): ϑ = 1 is admissible.
Hypothesis EH (ϑ): ϑ is an admissible level for primes.
Theorem (GPY 2005–2006–2009): If EH(ϑ) is true for some

ϑ >
1
2
, then dn ≤ C (ϑ) i.o. Furthermore C (1) = 16.
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8 2. SMALL GAPS BETWEEN CONSECUTIVE PRIMES

Dickson’s Conjecture (1904): If ain + bi are linear forms with

ai , bi ∈ Z, ai > 0,
k∏

i=1
(ain + bi ) has no fixed prime divisor, then

{ain + bi}ki=1 ∈ Pk for infinitely many n (i.o.).

Definition: A k-tuple Hk = {hi}ki=1, 0 ≤ h1 < h2 < · · · < hk is
admissible if it covers νp < p residue classes mod p for any prime p.
Hardy–Littlewood’s Conjecture (1923): If Hk is admissible,
then
(2)∑

n<x
{n+hi}∈Pk

1∼S(Hk)
x

logk x

(
S(Hk)=

∏
p

(
1− νp

p

)(
1− 1

p

)−k

>0

)
.

Conjecture DHL (k): If Hk is admissible, then {n + hi}ki=1 ∈ Pk

i.o.
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9 2. SMALL GAPS BETWEEN CONSECUTIVE PRIMES

Conjecture DHL (k , 2): If Hk is admissible, then n +Hk contains
at least two primes i.o.

Remark. DHL (k , 2) for any k = k0 implies the Bounded Gap
Conjecture. (Gap size ≤ hk − h1 ≈ k log k with optimal Hk).

Theorem (GPY, 2005–2006–2009): If EH(ϑ) is true, ϑ >
1
2
,

then ∃k0 = C1(ϑ) such that DHL(k , 2) is true for any k ≥ k0.

Corollary: If EH(ϑ) is true for some ϑ >
1
2
, then dn < C2(ϑ) i.o.

However, it suffices to show a conjecture weaker than EH(ϑ) for

some ϑ >
1
2
and still obtain DHL(k0, 2) and thus bounded gaps i.o.
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10 2. SMALL GAPS BETWEEN CONSECUTIVE PRIMES

Theorem: Y. Motohashi – J. Pintz, A smoothed GPY-sieve, arXiv:
math/0602599, Feb 27, 2006, Bull. London Math. Soc. 40 (2008),
no. 2, 298–310 and www.renyi.hu/∼pintz, MR2414788
(2009d:1132).

It is sufficient to prove the analogue of EH(ϑ) with some ϑ >
1
2
for

smooth moduli q (satisfying p | q → p < X b with an arbitrary fixed

b > 0) and for solutions a of the congruence
k∏

i=1
(a + hi ) ≡ 0

(mod q) as residue classes mod q.
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11 2. SMALL GAPS BETWEEN CONSECUTIVE PRIMES

Y. Zhang’s Theorem (2013, Ann. of Math., to appear). EH(ϑ) is

true for ϑ =
1
2

+
1
584

for smooth moduli and solutions of the

congruence
k∏

i=1
(a + hi ) ≡ 0(mod q).

Corollary 1: DHL(k , 2) is true for k ≥ 3.5 · 106.
Corollary 2: dn = pn+1 − pn < 7 · 107 i.o.
Remark. 70 million is being improved to a few thousands (T. Tao’s
blog and Polymath project).
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12

3. ARITHMETIC PROGRESSIONS IN DENSE SETS AND IN
THE SET OF PRIMES

Waring and Lagrange (more than 200 years ago):
How long arithmetic progressions (AP’s) are within P.

Erdős–Turán Conjecture 1 (1936): For every k we have
infinitely many k-term AP within P.
Erdős–Turán Conjecture 2: If A ⊂ Z+ has positive upper density,
then we have infinitely many k-term AP’s within A for every k.
Solutions: k = 3 K.F. Roth (1952–53)

k = 4 E. Szemerédi (1968–70)
k arbitrary: E. Szemerédi (1973–75) Abel prize 2012

H. Fürstenberg (1977) Wolf prize 2006/7
T. Gowers (1998) Fields medal 1998
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13 3. ARITHMETIC PROGRESSIONS IN DENSE SETS AND IN THE SET OF PRIMES

Van der Corput 1939 ∃ infintely many 3-term AP’s in P

(Method: Vinogradov’s method for the ternary Goldbach problem)
B. Green – T. Tao (2004–2008) ∀k ∃k-term AP in P. T. Tao
Fields medal 2006
Methods (ergodic – Fürstenberg, harmonic analysis – Gowers,
combinatorial – Szemerédi + number theoretical –
Goldston–Yıldırım)
Erdős Conjecture (USD 3000): If

∑
ai∈A

1/ai =∞, then A

contains infinitely many k-term AP’s for any k.

56 / 114



13 3. ARITHMETIC PROGRESSIONS IN DENSE SETS AND IN THE SET OF PRIMES

Van der Corput 1939 ∃ infintely many 3-term AP’s in P
(Method: Vinogradov’s method for the ternary Goldbach problem)

B. Green – T. Tao (2004–2008) ∀k ∃k-term AP in P. T. Tao
Fields medal 2006
Methods (ergodic – Fürstenberg, harmonic analysis – Gowers,
combinatorial – Szemerédi + number theoretical –
Goldston–Yıldırım)
Erdős Conjecture (USD 3000): If

∑
ai∈A

1/ai =∞, then A

contains infinitely many k-term AP’s for any k.

57 / 114



13 3. ARITHMETIC PROGRESSIONS IN DENSE SETS AND IN THE SET OF PRIMES

Van der Corput 1939 ∃ infintely many 3-term AP’s in P
(Method: Vinogradov’s method for the ternary Goldbach problem)
B. Green – T. Tao (2004–2008) ∀k ∃k-term AP in P. T. Tao
Fields medal 2006

Methods (ergodic – Fürstenberg, harmonic analysis – Gowers,
combinatorial – Szemerédi + number theoretical –
Goldston–Yıldırım)
Erdős Conjecture (USD 3000): If

∑
ai∈A

1/ai =∞, then A

contains infinitely many k-term AP’s for any k.

58 / 114



13 3. ARITHMETIC PROGRESSIONS IN DENSE SETS AND IN THE SET OF PRIMES

Van der Corput 1939 ∃ infintely many 3-term AP’s in P
(Method: Vinogradov’s method for the ternary Goldbach problem)
B. Green – T. Tao (2004–2008) ∀k ∃k-term AP in P. T. Tao
Fields medal 2006
Methods (ergodic – Fürstenberg, harmonic analysis – Gowers,
combinatorial – Szemerédi + number theoretical –
Goldston–Yıldırım)

Erdős Conjecture (USD 3000): If
∑
ai∈A

1/ai =∞, then A

contains infinitely many k-term AP’s for any k.

59 / 114



13 3. ARITHMETIC PROGRESSIONS IN DENSE SETS AND IN THE SET OF PRIMES

Van der Corput 1939 ∃ infintely many 3-term AP’s in P
(Method: Vinogradov’s method for the ternary Goldbach problem)
B. Green – T. Tao (2004–2008) ∀k ∃k-term AP in P. T. Tao
Fields medal 2006
Methods (ergodic – Fürstenberg, harmonic analysis – Gowers,
combinatorial – Szemerédi + number theoretical –
Goldston–Yıldırım)
Erdős Conjecture (USD 3000): If

∑
ai∈A

1/ai =∞, then A

contains infinitely many k-term AP’s for any k.

60 / 114



14

4. ARITHMETIC PROGRESSIONS OF GENERALIZED TWIN PRIMES
Theorem 1 (J. P., arXiv 2013): There exists an even d < 7000
with the following property. For every k there is a k-term AP of
primes such that for each element p of the progression p + d is also
a prime, more exactly, the prime following p.

Remark. The result is based on earlier ideas and results of
(i) Szemerédi–Furstenberg–Gowers–Green–Tao
(ii) Selberg–Heath-Brown–Bombieri–A.I.Vinogradov–Goldston–

Pintz–Yıldırım
(iii) Motohashi–Pintz
(iv) Bombieri–Friedlander–Iwaniec–Fouvry–Deligne–Birch–Weyl–

Zhang
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5. POLIGNAC NUMBERS
Def: 2k is a Polignac number if dn = 2k i.o.

Polignac’s Conjecture: Every positive even number is a Polignac
number.
Proposition Bounded Gaps Conj. ⇔ ∃ at least one Pol. number
Theorem 2 (J.P., arXiv 2013): There are infinitely many
Polignac numbers, and their lower asymptotic density is at least
10−9.
Corollary: For ∀k ∃ k-term AP of Polignac numbers.
Theorem 3 (J.P., arXiv 2013): If dn is the nth Polignac number,
then dn+1 − dn ≤ C (C ineffective).
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6. THE NORMALIZED VALUE DISTRIBUTION OF dn

(3) Prime Number Theorem ⇒ 1
N

N∑
n=1

dn

log n
= 1.

Conjecture (Erdős): dn/ log n is everywhere dense in [0,∞], i.e.

(4) J =

{
dn

log n

}′
= [0,∞].

Theorem (Ricci 1954, Erdős 1955): J has a positive (Lebesgue)
measure.
However, no finite limit point was known till 2005.
Theorem (Goldston–Pintz–Yıldırım, 2005–9): 0 ∈ J.
Theorem 4 (J. P., arXiv 2013): ∃c (ineffective) such that
[0, c] ⊂ J.
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7. COMPARISON OF CONSECUTIVE VALUES OF dn

Erdős (1948) lim inf
n→∞

dn+1

dn
< 1 < lim sup

dn+1

dn

Erdős (1956) “One would of course conjecture that
(5)

lim inf
dn+1

dn
= 0 and lim sup

n→∞

dn+1

dn
=∞

(
⇔ lim inf

n→∞

dn

dn+1
= 0
)

but these conjectures seem very difficult to prove.”
Theorem 5 (J. P., arXiv 2013): Erdős’s conjecture (5) is true,
we have even

(6) lim inf
n→∞

dn+1 log n
dn

<∞, lim sup
n→∞

dn+1

dn log n
> 0

(7) lim sup
n→∞

min(dn−1, dn+1)

dn(log n)c =∞ with c = 10−3
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but these conjectures seem very difficult to prove.”
Theorem 5 (J. P., arXiv 2013): Erdős’s conjecture (5) is true,
we have even

(6) lim inf
n→∞

dn+1 log n
dn

<∞, lim sup
n→∞

dn+1

dn log n
> 0

(7) lim sup
n→∞

min(dn−1, dn+1)

dn(log n)c =∞ with c = 10−3
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18

8. CONJECTURES OF ERDŐS AND ERDŐS–MIRSKY ON
CONSECUTIVE VALUES OF ARITHMETIC FUNCTIONS

Conjecture A: d(n) = d(n + 1) i.o. (Erdős–Mirsky 1952)

Conjecture B: Ω(n) = Ω(n + 1) i.o. (Erdős)
Conjecture C: ω(n) = ω(n + 1) i.o. (Erdős)
Def: Ω(n) and ω(n) denote the number of prime divisors of n with
(Ω(n)) or without (ω(n)) multiplicity.
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19 8. CONJ.-S OF ERDŐS, ERDŐS–MIRSKY ON CONSECUTIVE VALUES OF ARITHMETIC FUNCTIONS

Remark (J. R. Chen 1966). 2p + 1 ∈ P or 2p + 1 = p1p2 i.o.

We conjecture that 2p + 1 = p1p2 i.o. Then for these primes
(8)
d(2p) = d(2p+1) = 4, ω(2p) = ω(2p+1) = Ω(2p) = Ω(2p+1) = 2

Parity phenomenon (Selberg) sieve methods (alone) can not
distinguish between numbers with an odd or even number of prime
factors.
Erdős’s conjectures were considered as difficult as the twin prime
conjecture.
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20 8. CONJ.-S OF ERDŐS, ERDŐS–MIRSKY ON CONSECUTIVE VALUES OF ARITHMETIC FUNCTIONS

C. Spiro (1981) d(n) = d(n + 5040) i.o.

Heath-Brown (1984) d(n) = d(n + 1) i.o. and Ω(n) = Ω(n + 1)
i.o.
J. C. Schlage-Puchta (2001–2005) ω(n) = ω(n + 1) i.o.
In joint work with S. W. Graham, D. Goldston, C. Yıldırım
Theorem 6 (GGPY 2009): Let qn denote the sequence of E2
numbers which have exactly two prime divisors. Then
qn+1 − qn ≤ 6 i.o.
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21 8. CONJ.-S OF ERDŐS, ERDŐS–MIRSKY ON CONSECUTIVE VALUES OF ARITHMETIC FUNCTIONS

Theorem 7 (GGPY): For every B ≥ 0 (B ∈ Z+) ∃ inf. many n’s
with

(9)
ω(n) = ω(n + 1) = 4 + B, Ω(n) = Ω(n + 1) = 5 + B,

d(n) = d(n + 1) = 24 · 2B

Theorem 8 (GGPY 2011, GGPY 2011):

(10) ω(n) = ω(n + 1) = 3 i.o.,

(11) Ω(n) = Ω(n + 1) = 4 i.o.

Theorem 9 (J. P. 2011): ∀k ∃ k-term AP of natural numbers n
such that (9) is true. The same assertion holds for (10) and (11).
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22

9. SOME IDEAS OF PROOF BEHIND THEOREMS 6–8
The following Basic Theorem forms the basis for the proofs of
Theorems 6–9.
BASIC THEOREM (S.W.
Graham–Goldston–Pintz–Yıldırım): If Li (x) = aix + bi
(i = 1, 2, 3, ai , bi ∈ Z, ai > 0) are three linear forms such that
3∏

i=1
Li (x) has no fixed prime divisor, then we have at least two

indices i , j ∈ (1, 2, 3) such that for any C and infinitely many n

(12)
Li (n), Lj(n) have exactly two prime divisors,

both larger than C.

Corollary: Take {n, n + 2, n + 6} ⇒ qn+1 − qn ≤ 6 i.o.
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23 9. SOME IDEAS OF PROOF BEHIND THEOREMS 6–8

Proof of (10) of Theorem 8 from the BASIC THEOREM
Let L1(m) = 6m + 1, L2(m) = 8m + 1, L3(m) = 9m + 1.

This is clearly admissible since
3∏

i=1
Li (0) ≡ 1 (mod p). We have

4L1 = 3L2 + 1, 3L1 = 2L3 + 1, 9L2 = 8L1 + 1.
Suppose, e.g., L1(n) and L2(n) are E2-numbers i.o. If x = 3L2(n),
x + 1 = 4L1(n), n 6≡ 1(mod 3), then ω(x) = ω(x + 1) i.o.
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24

10. SOME IDEAS BEHIND THE PROOF OF ZHANG’S THEOREM
The proof relies on three theorems:
(i) GPY (2005–6–9). If ∃ϑ > 1/2 s.t. EH(ϑ) is true, i.e. for any
A, ε > 0

(13)
∑

q≤Xϑ−ε

max
a

(a,q)=1

∣∣∣∣∣ ∑
p≤X , p≡a(q)

log p − X
ϕ(q)

∣∣∣∣∣ ≤ C (A, ε)
X

(logX )A ,

then DHL(k , 2) is true for k ≥ k0 = C3(ϑ), i.e. we have for any
admissible Hk at least two primes among {n + hi}ki=1 i.o.

(ii) MOTOHASHI–PINTZ (2005–8): It is sufficient to have (13) for
smooth moduli (p | q → p > qb, b > 0 arbitrary) and a’s satisfying
k∏

i=1
(a + hi ) ≡ 0(mod q).

(iii) ZHANG (to appear): (13) is true if restricted by (ii).
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25 10. SOME IDEAS BEHIND THE PROOF OF ZHANG’S THEOREM

Ideas to prove (i) go back to Selberg and Heath-Brown. Since

n +Hk contains just
k

logN
primes if n ∼ N (n ∈ [N, 2N)) on

average, we look for an average which gives large weights an if

n +H contains many primes. Let PH(n) =
k∏

i=1
(n + hi ).

1. a1(n) =

{
1 if {n + hi}ki=1 ∈ Pk (tautology)
0 otherwise

2. a2(n) = Λk
(
PH(n)

)
=

∑
d |PH(n)

µ(d)

(
log

PH(n)

d

)k

is a reformulation of a1(n) (a2(n) = a1(n)): we cannot evaluate
S(N) =

∑
n∼N

an.
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26 10. SOME IDEAS BEHIND THE PROOF OF ZHANG’S THEOREM

3. a3(n) = Λk,R(n) =
∑

d |PH(n)
d≤R

µ(d) logk R
d

(Selberg’s idea). Problem: a3(n) may be negative.

4. a4(n) = (a3(n))2. First chanceful choice!
S(N) can be evaluated; further if

χP(n) =

{
1 if n ∈ P
0 otherwise,

then S∗(N) =
k∑

i=1

∑
n∼N

anχP(n + hi )

can be evaluated as well if R ≤ N1/4−o(1).

We obtain
S∗(N)

S(N)
=

1
2

+ ok(1) primes “on average”.
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27 10. SOME IDEAS BEHIND THE PROOF OF ZHANG’S THEOREM

5. All attempts 1–4 simulate the full DHL(k) conjecture, i.e. to
obtain k primes in a k-tuple i.o. (Dickson’s conjecture). Let’s be
more modest. We are contented if we approximate DHL(k , 2), i.e.

if we have k + ` prime factors of
k∏

i=1
(n + hi ) for some ` ≤ k − 2.

(14) a5(n) = Λ2
k+`,R(n) =

∑
d |PH(n)

d≤R

µ(d)

(
log

R
d

)k+`

, R ≤ N
1
4−ε.

We obtain

(15)
S∗(N)

S(N)
= 1− O

(
`

k

)
− O

(
1
`

)
primes on average over n ∼ N (unconditionally).
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28 10. SOME IDEAS BEHIND THE PROOF OF ZHANG’S THEOREM

With some additional ideas this leads to the Small Gaps

Conjecture, i.e. ∆ = lim inf
n→∞

dn

log n
= 0. However, conditionally, if

ϑ >
1
2
, EH(ϑ) is true, then

(16)
S∗(N)

S(N)
= 2ϑ

(
1− O

(
`

k

)
− O

(
1
`

))
> 1 (i).

(ii) MOTOHASHI–PINTZ: If we can show EH(ϑ) for a ϑ > 1
2 for

smooth moduli (p | q → p > qb) and instead of the worst residue

class mod q for solutions of the congruence
k∏

i=1
(a + hi ) = 0, then

we obtain under the condition b ≥ C`/k

(17)
S∗(N)

S(N)
= 2ϑ

(
1− O

(
`

k

)
− O

(
1
`

)
+ O(e−kb/3)

)
> 1.
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29 10. SOME IDEAS BEHIND THE PROOF OF ZHANG’S THEOREM

(iii) ZHANG: It is possible to show the above mentioned restricted
improvement of the Bombieri–Vinogradov theorem using methods
of Bombieri–Friedlander–Iwaniec, Weil, Friedlander–Iwaniec (with
an appendix of Bombieri–Birch) which apply a technique based on
the theory of Kloosterman sums. It turned out later that the most
useful idea is in Fouvry–Iwaniec (1980) which proves the following
theorem. For every a ≤ X∑

q≤X 11/21

∣∣∣∣ ∑
n≡a(mod q)

n≤X
p|n→p≤z

1− Exp. Main Term
∣∣∣∣ ≤ C (A)

X
logA X

where z = X 1/883, A > 0, X > 0 arbitrary.
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30 10. SOME IDEAS BEHIND THE PROOF OF ZHANG’S THEOREM

ANALOGY: The moduli are here arbitrary (rigid) but the numbers
n are well factorable. In case of prime gaps we have a “dual”
problem. By the Motohashi–Pintz theorem we can factorise q
arbitrarily, and while the primes seem to be rigid, they might be
written in a multilinear form using Linník’s or Heath-Brown’s
identity. Crucial role is still played by Friedlander–Iwaniec (1985):
a ≤ X , d3(n) =

∑
n=n1n2n3

1,

∑
q≤X 1/2+1/230

∣∣∣∣ ∑
n≤x

n≡a(mod q)

d3(n)− Exp. Main Term
∣∣∣∣ ≤ C (A)

X
logA X

.
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31 10. SOME IDEAS BEHIND THE PROOF OF ZHANG’S THEOREM

Crucial idea behind the proof of Theorems 1–5 (apart from earlier
mentioned results)

MAIN LEMMA (J. P. 2010): The total sum of weights a5(n) for
numbers for which at least one of the numbers n + hi

(i = 1, 2, . . . , k) has a divisor < nb is negligible
(
< ε

2N∑
n=N

a5(n)

)
if

b < εc(k).

Corollary (GPY 2010): Given any η > 0 a positive proportion of
primegaps dn satisfy dn < η log n.
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Crucial idea behind the proof of Theorems 1–5 (apart from earlier
mentioned results)

MAIN LEMMA (J. P. 2010): The total sum of weights a5(n) for
numbers for which at least one of the numbers n + hi

(i = 1, 2, . . . , k) has a divisor < nb is negligible
(
< ε

2N∑
n=N

a5(n)

)
if

b < εc(k).

Corollary (GPY 2010): Given any η > 0 a positive proportion of
primegaps dn satisfy dn < η log n.
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32 10. SOME IDEAS BEHIND THE PROOF OF ZHANG’S THEOREM

Theorem 10. If k ≥ k0, H = {hi}ki=1 is an admissible k-tuple,
then for N > N0(k) the number of n ∈ [N, 2N) for which
{n + hi}ki=i contains at least two primes and almost primes in all
other components with all prime factors > nc1(k) is at least

c2(k)
N

logk N

if 0 ≤ hi � logN.
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33

“Mathematicians have tried in vain to this
day to discover some order in the sequence
of prime numbers, and we have no reason to
believe that it is a mystery into which the

mind will ever penetrate.”

Leonhard Euler
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