Asymptotic Structure of Graphs with the Minimum Number of Triangles

Oleg Pikhurko

University of Warwick

Erdős Centennial Conference

Erdős Lap Number

Erdős Lap Number

Poul Erảos with some "epritors"im 1952. Earbie Eemzer, Miriann and Debbie Golomb

Erdős Lap Number

Poul Erdös with some "epritons"in 1952. Earbie Benzer, Mirioun and Debbic Golowh

Lap Graph is Growing

Lap Graph is Growing

Lap Graph is Growing

Open Question

Open Question

Open Question (Małgorzata Bednarska, \$10):
Is there a person with
Erdős Number $=$ Erdős Lap Number $=1$?

Open Question

Open Question (Małgorzata Bednarska, \$10): Is there a person with

Erdős Number $=$ Erdős Lap Number $=1$?

Open Question

Open Question (Małgorzata Bednarska, \$10): Is there a person with

Erdős Number $=$ Erdős Lap Number $=1$?

János Pach?

Open Question

Open Question (Małgorzata Bednarska, \$10): Is there a person with

Erdős Number $=$ Erdős Lap Number $=1$?

János Pach?
It's not him on the photo!

Open Question

Open Question (Małgorzata Bednarska, \$10):
Is there a person with
Erdős Number $=$ Erdős Lap Number $=1$?

János Pach?
It's not him on the photo!
Still open...

Erdős-Rademacher Problem

Erdős-Rademacher Problem

- $g(n, m):=\min \left\{\# K_{3}(G): v(G)=n, e(G)=m\right\}$

Erdős-Rademacher Problem

- $g(n, m):=\min \left\{\# K_{3}(G): v(G)=n, e(G)=m\right\}$
- Mantel 1906, Turán'41: $\max \{m: g(n, m)=0\}=\left\lfloor\frac{n^{2}}{4}\right\rfloor$

Erdős-Rademacher Problem

- $g(n, m):=\min \left\{\# K_{3}(G): v(G)=n, e(G)=m\right\}$
- Mantel 1906, Turán'41: $\max \{m: g(n, m)=0\}=\left\lfloor\frac{n^{2}}{4}\right\rfloor$
- Rademacher'41: $g\left(n,\left\lfloor\frac{n^{2}}{4}\right\rfloor+1\right)=\left\lfloor\frac{n}{2}\right\rfloor$

Just Above the Turán Function

Just Above the Turán Function

- Erdős'55: $m \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor+3$

Just Above the Turán Function

- Erdős'55: $m \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor+3$
- Erdős'62: $m \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor+\varepsilon n$

Just Above the Turán Function

- Erdős'55: $m \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor+3$
- Erdős'62: $m \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor+\varepsilon n$
- Erdős'55: Is $g\left(n,\left\lfloor\frac{n^{2}}{4}\right\rfloor+q\right)=q \cdot\left\lfloor\frac{n}{2}\right\rfloor$ for $q<n / 2$?

Just Above the Turán Function

- Erdős'55: $m \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor+3$
- Erdős'62: $m \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor+\varepsilon n$
- Erdős'55: Is $g\left(n,\left\lfloor\frac{n^{2}}{4}\right\rfloor+q\right)=q \cdot\left\lfloor\frac{n}{2}\right\rfloor$ for $q<n / 2$?
- $K_{k, k}+q$ edges versus $K_{k+1, k-1}+(q+1)$ edges

Just Above the Turán Function

- Erdős'55: $m \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor+3$
- Erdős'62: $m \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor+\varepsilon n$
- Erdős'55: Is $g\left(n,\left\lfloor\frac{n^{2}}{4}\right\rfloor+q\right)=q \cdot\left\lfloor\frac{n}{2}\right\rfloor$ for $q<n / 2$?
- $K_{k, k}+q$ edges versus $K_{k+1, k-1}+(q+1)$ edges
- Lovász-Simonovits'75: Yes

Just Above the Turán Function

- Erdős'55: $m \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor+3$
- Erdős'62: $m \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor+\varepsilon n$
- Erdős'55: Is $g\left(n,\left\lfloor\frac{n^{2}}{4}\right\rfloor+q\right)=q \cdot\left\lfloor\frac{n}{2}\right\rfloor$ for $q<n / 2$?
- $K_{k, k}+q$ edges versus $K_{k+1, k-1}+(q+1)$ edges
- Lovász-Simonovits'75: Yes
- Lovász-Simonovits'83: $m \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor+\varepsilon n^{2}$

Asymptotic Version

Asymptotic Version

- $g(a):=\lim _{n \rightarrow \infty} \frac{g\left(n,\left(\begin{array}{l}(2)) \\ (3) \\ 3\end{array}\right)\right.}{(2)}$

Asymptotic Version

- $g(a):=\lim _{n \rightarrow \infty} \frac{g\left(n, a\binom{n}{2}\right)}{\binom{n}{3}}$
- Upper bound: complete partite graphs

Asymptotic Version

- $g(a):=\lim _{n \rightarrow \infty} \frac{g\left(n, a\binom{n}{2}\right)}{\binom{n}{3}}$
- Upper bound: complete partite graphs
- Goodman bound: $g(a) \geq 2 a^{2}-a$

Asymptotic Version

- $g(a):=\lim _{n \rightarrow \infty} \frac{g\left(n, a\binom{n}{2}\right)}{\binom{n}{3}}$
- Upper bound: complete partite graphs
- Goodman bound: $g(a) \geq 2 a^{2}-a$
- Moon-Moser'62, Nordhaus-Stewart'63, Bollobás'76...

Possible Edge/Triangle Densities (in Limit)

Possible Edge/Triangle Densities (in Limit)

Possible Edge/Triangle Densities (in Limit)

Determining $g(a)$

Determining $g(a)$

- Fisher'89: $\frac{1}{2} \leq a \leq \frac{2}{3}$

Determining $g(a)$

- Fisher'89: $\frac{1}{2} \leq a \leq \frac{2}{3}$
- Razborov'08: All a

Determining $g(a)$

- Fisher'89: $\frac{1}{2} \leq a \leq \frac{2}{3}$
- Razborov'08: All a
- Upper bound: $K_{c n, \ldots, c n,(1-t c) n}$

Determining $g(a)$

- Fisher'89: $\frac{1}{2} \leq a \leq \frac{2}{3}$
- Razborov'08: All a
- Upper bound: $K_{c n, \ldots, c n,(1-t c) n}$
- No stability

Determining $g(a)$

- Fisher'89: $\frac{1}{2} \leq a \leq \frac{2}{3}$
- Razborov'08: All a
- Upper bound: $K_{c n, \ldots, c n,(1-t c) n}$
- No stability
- H_{n}^{a} : modify the last two parts

Determining $g(a)$

- Fisher'89: $\frac{1}{2} \leq a \leq \frac{2}{3}$
- Razborov'08: All a
- Upper bound: $K_{c n, \ldots, c n,(1-t c) n}$
- No stability
- H_{n}^{a} : modify the last two parts
- P.-Razborov \geq '13:
\forall almost extremal G_{n} is $o\left(n^{2}\right)$-close to some H_{n}^{a}

Graph Limits

Graph Limits

- Subgraph density

$$
d(F, G)=\operatorname{Prob}\{G[\text { random } v(F) \text {-set }] \cong F\}
$$

Graph Limits

- Subgraph density

$$
d(F, G)=\operatorname{Prob}\{G[\text { random } v(F) \text {-set }] \cong F\}
$$

- $\mathcal{F}=\{$ finite graphs $\}$

Graph Limits

- Subgraph density

$$
d(F, G)=\operatorname{Prob}\{G[\text { random } v(F) \text {-set }] \cong F\}
$$

- $\mathcal{F}=\{$ finite graphs $\}$
- $\left(G_{n}\right)$ converges if

$$
\forall F \in \mathcal{F} \quad \exists \lim _{n \rightarrow \infty} d\left(F, G_{n}\right)
$$

Graph Limits

- Subgraph density

$$
d(F, G)=\operatorname{Prob}\{G[\text { random } v(F) \text {-set }] \cong F\}
$$

- $\mathcal{F}=\{$ finite graphs $\}$
- $\left(G_{n}\right)$ converges if

$$
\forall F \in \mathcal{F} \quad \exists \lim _{n \rightarrow \infty} d\left(F, G_{n}\right)=: \phi(F)
$$

Graph Limits

- Subgraph density

$$
d(F, G)=\operatorname{Prob}\{G[\text { random } v(F) \text {-set }] \cong F\}
$$

- $\mathcal{F}=\{$ finite graphs $\}$
- $\left(G_{n}\right)$ converges if

$$
\forall F \in \mathcal{F} \quad \exists \lim _{n \rightarrow \infty} d\left(F, G_{n}\right)=: \phi(F)
$$

- $\operatorname{LIM}=\{$ all such $\phi\}$

Graph Limits

- Subgraph density

$$
d(F, G)=\operatorname{Prob}\{G[\text { random } v(F) \text {-set }] \cong F\}
$$

- $\mathcal{F}=\{$ finite graphs $\}$
- $\left(G_{n}\right)$ converges if

$$
\forall F \in \mathcal{F} \quad \exists \lim _{n \rightarrow \infty} d\left(F, G_{n}\right)=: \phi(F)
$$

- $\operatorname{LIM}=\{$ all such $\phi\} \subseteq[0,1]^{\mathcal{F}}$

Extremal Limits

Extremal Limits

- Extremal limit: limits of almost extremal graphs

Extremal Limits

- Extremal limit: limits of almost extremal graphs
- Equivalently: $\left\{\phi \in \operatorname{LIM}: \phi\left(K_{3}\right)=g\left(\phi\left(K_{2}\right)\right)\right\}$

Extremal Limits

- Extremal limit: limits of almost extremal graphs
- Equivalently: $\left\{\phi \in \operatorname{LIM}: \phi\left(K_{3}\right)=g\left(\phi\left(K_{2}\right)\right)\right\}$
- P.-Razborov \geq '13: $\{$ extremal limits $\}=\left\{\right.$ limits of $\left.H_{n}^{a \prime s}\right\}$

Extremal Limits

- Extremal limit: limits of almost extremal graphs
- Equivalently: $\left\{\phi \in \operatorname{LIM}: \phi\left(K_{3}\right)=g\left(\phi\left(K_{2}\right)\right)\right\}$
- P.-Razborov \geq '13: $\{$ extremal limits $\}=\left\{\right.$ limits of $\left.H_{n}^{a \prime s}\right\}$
- Implies the discrete theorem

Extremal Limits

- Extremal limit: limits of almost extremal graphs
- Equivalently: $\left\{\phi \in \operatorname{LIM}: \phi\left(K_{3}\right)=g\left(\phi\left(K_{2}\right)\right)\right\}$
- P.-Razborov \geq '13: $\{$ extremal limits $\}=\left\{\right.$ limits of $\left.H_{n}^{a ’ s}\right\}$
- Implies the discrete theorem
- Cut distance

Extremal Limits

- Extremal limit: limits of almost extremal graphs
- Equivalently: $\left\{\phi \in \operatorname{LIM}: \phi\left(K_{3}\right)=g\left(\phi\left(K_{2}\right)\right)\right\}$
- P.-Razborov \geq '13: $\{$ extremal limits $\}=\left\{\right.$ limits of $\left.H_{n}^{a \prime s}\right\}$
- Implies the discrete theorem
- Cut distance
- Frieze-Kannan'90

Extremal Limits

- Extremal limit: limits of almost extremal graphs
- Equivalently: $\left\{\phi \in \operatorname{LIM}: \phi\left(K_{3}\right)=g\left(\phi\left(K_{2}\right)\right)\right\}$
- P.-Razborov \geq ' 13 : $\{$ extremal limits $\}=\left\{\right.$ limits of $\left.H_{n}^{a \prime s}\right\}$
- Implies the discrete theorem
- Cut distance
- Frieze-Kannan'90
- Lovász-Szegedy'06, Borgs et al'08...

Extremal Limits

- Extremal limit: limits of almost extremal graphs
- Equivalently: $\left\{\phi \in \operatorname{LIM}: \phi\left(K_{3}\right)=g\left(\phi\left(K_{2}\right)\right)\right\}$
- P.-Razborov \geq '13: $\{$ extremal limits $\}=\left\{\right.$ limits of $\left.H_{n}^{a \prime s}\right\}$
- Implies the discrete theorem
- Cut distance
- Frieze-Kannan'90
- Lovász-Szegedy'06, Borgs et al’08...
- Close to H_{n}^{a} in cut-distance \Rightarrow close in edit distance

Razborov's Proof for $a \in\left[\frac{1}{2}, \frac{2}{3}\right]$

Razborov's Proof for $a \in\left[\frac{1}{2}, \frac{2}{3}\right]$

- $h(a)=$ conjectured value

Razborov's Proof for $a \in\left[\frac{1}{2}, \frac{2}{3}\right]$

- $h(a)=$ conjectured value
- $\operatorname{LIM} \subseteq[0,1]^{\mathcal{F}}$ is closed

Razborov's Proof for $a \in\left[\frac{1}{2}, \frac{2}{3}\right]$

- $h(a)=$ conjectured value
- $\operatorname{LIM} \subseteq[0,1]^{\mathcal{F}}$ is closed \Rightarrow compact

Razborov's Proof for $a \in\left[\frac{1}{2}, \frac{2}{3}\right]$

- $h(a)=$ conjectured value
- LIM $\subseteq[0,1]^{\mathcal{F}}$ is closed \Rightarrow compact
- $f(\phi):=\phi\left(K_{3}\right)-h\left(\phi\left(K_{2}\right)\right)$ is continuous

Razborov's Proof for $a \in\left[\frac{1}{2}, \frac{2}{3}\right]$

- $h(a)=$ conjectured value
- LIM $\subseteq[0,1]^{\mathcal{F}}$ is closed \Rightarrow compact
- $f(\phi):=\phi\left(K_{3}\right)-h\left(\phi\left(K_{2}\right)\right)$ is continuous
- $\exists \phi_{0}$ that minimises f on $\left\{\phi \in \operatorname{LIM}: \frac{1}{2} \leq \phi\left(K_{2}\right) \leq \frac{2}{3}\right\}$

Razborov's Proof for $a \in\left[\frac{1}{2}, \frac{2}{3}\right]$

- $h(a)=$ conjectured value
- LIM $\subseteq[0,1]^{\mathcal{F}}$ is closed \Rightarrow compact
- $f(\phi):=\phi\left(K_{3}\right)-h\left(\phi\left(K_{2}\right)\right)$ is continuous
- $\exists \phi_{0}$ that minimises f on $\left\{\phi \in \operatorname{LIM}: \frac{1}{2} \leq \phi\left(K_{2}\right) \leq \frac{2}{3}\right\}$
- $a:=\phi_{0}\left(K_{2}\right)$

Razborov's Proof for $a \in\left[\frac{1}{2}, \frac{2}{3}\right]$

- $h(a)=$ conjectured value
- LIM $\subseteq[0,1]^{\mathcal{F}}$ is closed \Rightarrow compact
- $f(\phi):=\phi\left(K_{3}\right)-h\left(\phi\left(K_{2}\right)\right)$ is continuous
- $\exists \phi_{0}$ that minimises f on $\left\{\phi \in \operatorname{LIM}: \frac{1}{2} \leq \phi\left(K_{2}\right) \leq \frac{2}{3}\right\}$
- $a:=\phi_{0}\left(K_{2}\right)$
- $c: e\left(K_{c n, c n,(1-2 c) n}\right) \approx a\binom{n}{2}$

Razborov's Proof for $a \in\left[\frac{1}{2}, \frac{2}{3}\right]$

- $h(a)=$ conjectured value
- LIM $\subseteq[0,1]^{\mathcal{F}}$ is closed \Rightarrow compact
- $f(\phi):=\phi\left(K_{3}\right)-h\left(\phi\left(K_{2}\right)\right)$ is continuous
- $\exists \phi_{0}$ that minimises f on $\left\{\phi \in \operatorname{LIM}: \frac{1}{2} \leq \phi\left(K_{2}\right) \leq \frac{2}{3}\right\}$
- $a:=\phi_{0}\left(K_{2}\right)$
- $c: e\left(K_{c n, c n,(1-2 c) n}\right) \approx a\binom{n}{2}$
- Assume $\frac{1}{2}<a<\frac{2}{3}$ (o/w done by Goodman)

Razborov's Proof for $a \in\left[\frac{1}{2}, \frac{2}{3}\right]$

- $h(a)=$ conjectured value
- LIM $\subseteq[0,1]^{\mathcal{F}}$ is closed \Rightarrow compact
- $f(\phi):=\phi\left(K_{3}\right)-h\left(\phi\left(K_{2}\right)\right)$ is continuous
- $\exists \phi_{0}$ that minimises f on $\left\{\phi \in \operatorname{LIM}: \frac{1}{2} \leq \phi\left(K_{2}\right) \leq \frac{2}{3}\right\}$
- $a:=\phi_{0}\left(K_{2}\right)$
- $c: e\left(K_{c n, c n,(1-2 c) n}\right) \approx a\binom{n}{2}$
- Assume $\frac{1}{2}<a<\frac{2}{3}$ (o/w done by Goodman)
- h is differentiable at a

Razborov's Proof for $a \in\left[\frac{1}{2}, \frac{2}{3}\right]$

- $h(a)=$ conjectured value
- LIM $\subseteq[0,1]^{\mathcal{F}}$ is closed \Rightarrow compact
- $f(\phi):=\phi\left(K_{3}\right)-h\left(\phi\left(K_{2}\right)\right)$ is continuous
- $\exists \phi_{0}$ that minimises f on $\left\{\phi \in \operatorname{LIM}: \frac{1}{2} \leq \phi\left(K_{2}\right) \leq \frac{2}{3}\right\}$
- $a:=\phi_{0}\left(K_{2}\right)$
- $c: e\left(K_{c n, c n,(1-2 c) n}\right) \approx a\binom{n}{2}$
- Assume $\frac{1}{2}<a<\frac{2}{3}$ (o/w done by Goodman)
- h is differentiable at a
- Pick $G_{n} \rightarrow \phi_{0}$

Razborov's Proof for $a \in\left[\frac{1}{2}, \frac{2}{3}\right]$

- $h(a)=$ conjectured value
- LIM $\subseteq[0,1]^{\mathcal{F}}$ is closed \Rightarrow compact
- $f(\phi):=\phi\left(K_{3}\right)-h\left(\phi\left(K_{2}\right)\right)$ is continuous
- $\exists \phi_{0}$ that minimises f on $\left\{\phi \in \operatorname{LIM}: \frac{1}{2} \leq \phi\left(K_{2}\right) \leq \frac{2}{3}\right\}$
- $a:=\phi_{0}\left(K_{2}\right)$
- $c: e\left(K_{c n, c n,(1-2 c) n}\right) \approx a\binom{n}{2}$
- Assume $\frac{1}{2}<a<\frac{2}{3}$ (o/w done by Goodman)
- h is differentiable at a
- Pick $G_{n} \rightarrow \phi_{0}$
- Rate of growth: \approx cn triangles per new edge

Razborov's Proof for $a \in\left[\frac{1}{2}, \frac{2}{3}\right]$

- $h(a)=$ conjectured value
- LIM $\subseteq[0,1]^{\mathcal{F}}$ is closed \Rightarrow compact
- $f(\phi):=\phi\left(K_{3}\right)-h\left(\phi\left(K_{2}\right)\right)$ is continuous
- $\exists \phi_{0}$ that minimises f on $\left\{\phi \in \operatorname{LIM}: \frac{1}{2} \leq \phi\left(K_{2}\right) \leq \frac{2}{3}\right\}$
- $a:=\phi_{0}\left(K_{2}\right)$
- $c: e\left(K_{c n, c n,(1-2 c) n}\right) \approx a\binom{n}{2}$
- Assume $\frac{1}{2}<a<\frac{2}{3}$ (o/w done by Goodman)
- h is differentiable at a
- Pick $G_{n} \rightarrow \phi_{0}$
- Rate of growth: \approx cn triangles per new edge
- G_{n} has $\lesssim c n$ triangles on almost every edge

At Most cn Triangles per Edge

At Most cn Triangles per Edge

- Flag algebra statement

$$
\phi_{0}^{E}\left(K_{3}^{E}\right) \leq c \quad \text { a.s. }
$$

At Most cn Triangles per Edge

- Flag algebra statement

$$
\phi_{0}^{E}\left(K_{3}^{E}\right) \leq c \quad \text { a.s. }
$$

- Informal explanation:

At Most cn Triangles per Edge

- Flag algebra statement

$$
\phi_{0}^{E}\left(K_{3}^{E}\right) \leq c \quad \text { a.s. }
$$

- Informal explanation:
- $G_{n} \rightarrow \phi_{0}$

At Most $c n$ Triangles per Edge

- Flag algebra statement

$$
\phi_{0}^{E}\left(K_{3}^{E}\right) \leq c \quad \text { a.s. }
$$

- Informal explanation:
- $G_{n} \rightarrow \phi_{0}$
- ϕ_{0}^{E} : Two random adjacent roots $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$ in G_{n}

At Most $c n$ Triangles per Edge

- Flag algebra statement

$$
\phi_{0}^{E}\left(K_{3}^{E}\right) \leq c \quad \text { a.s. }
$$

- Informal explanation:
- $G_{n} \rightarrow \phi_{0}$
- ϕ_{0}^{E} : Two random adjacent roots $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$ in G_{n}
- K_{3}^{E} : Density of rooted triangles

Vertex Removal

Vertex Removal

- Remove $x \in V\left(G_{n}\right)$:

Vertex Removal

- Remove $x \in V\left(G_{n}\right)$:
- $\partial d\left(K_{2}, G_{n}\right)$:

Vertex Removal

- Remove $x \in V\left(G_{n}\right)$:
- $\partial d\left(K_{2}, G_{n}\right)$:
- Remove edges: $-d(x) /\binom{n}{2}$

Vertex Removal

- Remove $x \in V\left(G_{n}\right)$:
- $\partial d\left(K_{2}, G_{n}\right)$:
- Remove edges: $-d(x) /\binom{n}{2}$
- Remove isolated $x: \times\binom{ n}{2} /\binom{n-1}{2}=1+\frac{2}{n}+\ldots$

Vertex Removal

- Remove $x \in V\left(G_{n}\right)$:
- $\partial d\left(K_{2}, G_{n}\right)$:
- Remove edges: $-d(x) /\binom{n}{2}$
- Remove isolated $x: \times\binom{ n}{2} /\binom{n-1}{2}=1+\frac{2}{n}+\ldots$
- Total change: $-K_{2}^{1}(x) /\binom{n}{2}+a_{n}^{2}+\ldots$

Vertex Removal

- Remove $x \in V\left(G_{n}\right)$:
- $\partial d\left(K_{2}, G_{n}\right)$:
- Remove edges: $-d(x) /\binom{n}{2}$
- Remove isolated $x: \times\binom{ n}{2} /\binom{n-1}{2}=1+\frac{2}{n}+\ldots$
- Total change: $-K_{2}^{1}(x) /\binom{n}{2}+a \frac{2}{n}+\ldots$
- $\partial d\left(K_{3}, G_{n}\right)=-K_{3}^{1}(x) /\binom{n}{3}+\phi_{0}\left(K_{3}\right) \frac{3}{n}+\ldots$

Vertex Removal

- Remove $x \in V\left(G_{n}\right)$:
- $\partial d\left(K_{2}, G_{n}\right)$:
- Remove edges: $-d(x) /\binom{n}{2}$
- Remove isolated $x: \times\binom{ n}{2} /\binom{n-1}{2}=1+\frac{2}{n}+\ldots$
- Total change: $-K_{2}^{1}(x) /\binom{n}{2}+a \frac{2}{n}+\ldots$
- $\partial d\left(K_{3}, G_{n}\right)=-K_{3}^{1}(x) /\binom{n}{3}+\phi_{0}\left(K_{3}\right) \frac{3}{n}+\ldots$
- Expect: $\partial d\left(K_{3}\right) \gtrsim h^{\prime}(a) \partial d\left(K_{2}\right)$

Vertex Removal

- Remove $x \in V\left(G_{n}\right)$:
- $\partial d\left(K_{2}, G_{n}\right)$:
- Remove edges: $-d(x) /\binom{n}{2}$
- Remove isolated $x: \times\binom{ n}{2} /\binom{n-1}{2}=1+\frac{2}{n}+\ldots$
- Total change: $-K_{2}^{1}(x) /\binom{n}{2}+a \frac{2}{n}+\ldots$
- $\partial d\left(K_{3}, G_{n}\right)=-K_{3}^{1}(x) /\binom{n}{3}+\phi_{0}\left(K_{3}\right) \frac{3}{n}+\ldots$
- Expect: $\partial d\left(K_{3}\right) \gtrsim h^{\prime}(a) \partial d\left(K_{2}\right)$
- Cloning x: signs change

Vertex Removal

- Remove $x \in V\left(G_{n}\right)$:
- $\partial d\left(K_{2}, G_{n}\right)$:
- Remove edges: $-d(x) /\binom{n}{2}$
- Remove isolated $x: \times\binom{ n}{2} /\binom{n-1}{2}=1+\frac{2}{n}+\ldots$
- Total change: $-K_{2}^{1}(x) /\binom{n}{2}+a \frac{2}{n}+\ldots$
- $\partial d\left(K_{3}, G_{n}\right)=-K_{3}^{1}(x) /\binom{n}{3}+\phi_{0}\left(K_{3}\right) \frac{3}{n}+\ldots$
- Expect: $\partial d\left(K_{3}\right) \gtrsim h^{\prime}(a) \partial d\left(K_{2}\right)$
- Cloning x: signs change
- Approximate equality for almost all x

Vertex Removal

- Remove $x \in V\left(G_{n}\right)$:
- $\partial d\left(K_{2}, G_{n}\right)$:
- Remove edges: $-d(x) /\binom{n}{2}$
- Remove isolated $x: \times\binom{ n}{2} /\binom{n-1}{2}=1+\frac{2}{n}+\ldots$
- Total change: $-K_{2}^{1}(x) /\binom{n}{2}+a \frac{2}{n}+\ldots$
- $\partial d\left(K_{3}, G_{n}\right)=-K_{3}^{1}(x) /\binom{n}{3}+\phi_{0}\left(K_{3}\right) \frac{3}{n}+\ldots$
- Expect: $\partial d\left(K_{3}\right) \gtrsim h^{\prime}(a) \partial d\left(K_{2}\right)$
- Cloning x: signs change
- Approximate equality for almost all x
- Flag algebra statement:

$$
-3!\phi_{0}^{1}\left(K_{3}^{1}\right)+3 \phi_{0}\left(K_{3}\right)=3 c\left(-2 \phi_{0}^{1}\left(K_{2}^{1}\right)+2 a\right) \quad \text { a.s. }
$$

Finishing line

Finishing line

- Recall: A.s.

Finishing line

- Recall: A.s.

$$
-3!\phi_{0}^{1}\left(K_{3}^{1}\right)+3 \phi_{0}\left(K_{3}\right)=3 c\left(-2 \phi_{0}^{1}\left(K_{2}^{1}\right)+2 a\right)
$$

Finishing line

- Recall: A.s.
- $-3!\phi_{0}^{1}\left(K_{3}^{1}\right)+3 \phi_{0}\left(K_{3}\right)=3 c\left(-2 \phi_{0}^{1}\left(K_{2}^{1}\right)+2 a\right)$
- $\phi_{0}^{E}\left(K_{3}^{E}\right) \leq c$

Finishing line

- Recall: A.s.
- $-3!\phi_{0}^{1}\left(K_{3}^{1}\right)+3 \phi_{0}\left(K_{3}\right)=3 c\left(-2 \phi_{0}^{1}\left(K_{2}^{1}\right)+2 a\right)$
- $\phi_{0}^{E}\left(K_{3}^{E}\right) \leq c$
- Average?

Finishing line

- Recall: A.s.
- $-3!\phi_{0}^{1}\left(K_{3}^{1}\right)+3 \phi_{0}\left(K_{3}\right)=3 c\left(-2 \phi_{0}^{1}\left(K_{2}^{1}\right)+2 a\right)$
- $\phi_{0}^{E}\left(K_{3}^{E}\right) \leq c$
- Average?
- $0=0$

Finishing line

- Recall: A.s.
- $-3!\phi_{0}^{1}\left(K_{3}^{1}\right)+3 \phi_{0}\left(K_{3}\right)=3 c\left(-2 \phi_{0}^{1}\left(K_{2}^{1}\right)+2 a\right)$
- $\phi_{0}^{E}\left(K_{3}^{E}\right) \leq c$
- Average?
- $0=0$ ©

Finishing line

- Recall: A.s.
- $-3!\phi_{0}^{1}\left(K_{3}^{1}\right)+3 \phi_{0}\left(K_{3}\right)=3 c\left(-2 \phi_{0}^{1}\left(K_{2}^{1}\right)+2 a\right)$
- $\phi_{0}^{E}\left(K_{3}^{E}\right) \leq c$
- Average?
- $0=0$ ©
- Slack

Finishing line

- Recall: A.s.
- $-3!\phi_{0}^{1}\left(K_{3}^{1}\right)+3 \phi_{0}\left(K_{3}\right)=3 c\left(-2 \phi_{0}^{1}\left(K_{2}^{1}\right)+2 a\right)$
- $\phi_{0}^{E}\left(K_{3}^{E}\right) \leq c$
- Average?
- $0=0$ ©
- Slack ${ }^{2}$

Finishing line

- Recall: A.s.
- $-3!\phi_{0}^{1}\left(K_{3}^{1}\right)+3 \phi_{0}\left(K_{3}\right)=3 c\left(-2 \phi_{0}^{1}\left(K_{2}^{1}\right)+2 a\right)$
- $\phi_{0}^{E}\left(K_{3}^{E}\right) \leq c$
- Average?
- $0=0$;
- Slack $)^{-}$
- Multiply by $K_{2}^{1} \& \bar{P}_{3}^{E}$ and then average!

Finishing line

- Recall: A.s.
- $-3!\phi_{0}^{1}\left(K_{3}^{1}\right)+3 \phi_{0}\left(K_{3}\right)=3 c\left(-2 \phi_{0}^{1}\left(K_{2}^{1}\right)+2 a\right)$
- $\phi_{0}^{E}\left(K_{3}^{E}\right) \leq c$
- Average?
- $0=0$ ©
- Slack $)^{-}$
- Multiply by $K_{2}^{1} \& \bar{P}_{3}^{E}$ and then average!
- Calculations give

Finishing line

- Recall: A.s.

$$
\begin{aligned}
& -3!\phi_{0}^{1}\left(K_{3}^{1}\right)+3 \phi_{0}\left(K_{3}\right)=3 c\left(-2 \phi_{0}^{1}\left(K_{2}^{1}\right)+2 a\right) \\
& \phi_{0}^{E}\left(K_{3}^{E}\right) \leq c
\end{aligned}
$$

- Average?
- $0=0$ ©
- Slack ${ }^{2}$
- Multiply by $K_{2}^{1} \& \bar{P}_{3}^{E}$ and then average!
- Calculations give

$$
\phi_{0}\left(K_{3}\right) \geq \frac{3 a c(2 a-1)+\phi_{0}\left(K_{4}\right)+\frac{1}{4} \phi_{0}\left(\bar{K}_{1,3}\right)}{3 c+3 a-2}
$$

Finishing line

- Recall: A.s.

$$
\begin{aligned}
& -3!\phi_{0}^{1}\left(K_{3}^{1}\right)+3 \phi_{0}\left(K_{3}\right)=3 c\left(-2 \phi_{0}^{1}\left(K_{2}^{1}\right)+2 a\right) \\
& \phi_{0}^{E}\left(K_{3}^{E}\right) \leq c
\end{aligned}
$$

- Average?
- $0=0$ ©
- Slack ${ }^{2}$
- Multiply by $K_{2}^{1} \& \bar{P}_{3}^{E}$ and then average!
- Calculations give

$$
\phi_{0}\left(K_{3}\right) \geq \frac{3 a c(2 a-1)+\phi_{0}\left(K_{4}\right)+\frac{1}{4} \phi_{0}\left(\bar{K}_{1,3}\right)}{3 c+3 a-2}
$$

- $\phi_{0}\left(K_{4}\right) \geq 0 \& \phi_{0}\left(\bar{K}_{1,3}\right) \geq 0 \Rightarrow \phi_{0}\left(K_{3}\right) \geq h(a)$

Finishing line

- Recall: A.s.

$$
\begin{aligned}
& -3!\phi_{0}^{1}\left(K_{3}^{1}\right)+3 \phi_{0}\left(K_{3}\right)=3 c\left(-2 \phi_{0}^{1}\left(K_{2}^{1}\right)+2 a\right) \\
& \phi_{0}^{E}\left(K_{3}^{E}\right) \leq c
\end{aligned}
$$

- Average?
- $0=0$ ©
- Slack ${ }^{2}$
- Multiply by $K_{2}^{1} \& \bar{P}_{3}^{E}$ and then average!
- Calculations give

$$
\phi_{0}\left(K_{3}\right) \geq \frac{3 a c(2 a-1)+\phi_{0}\left(K_{4}\right)+\frac{1}{4} \phi_{0}\left(\bar{K}_{1,3}\right)}{3 c+3 a-2}
$$

- $\phi_{0}\left(K_{4}\right) \geq 0 \& \phi_{0}\left(\bar{K}_{1,3}\right) \geq 0 \Rightarrow \phi_{0}\left(K_{3}\right) \geq h(a)$

Structure of Extremal ϕ_{0}

Structure of Extremal ϕ_{0}

- Assume $\phi_{0}\left(K_{3}\right)=h(a)$

Structure of Extremal ϕ_{0}

- Assume $\phi_{0}\left(K_{3}\right)=h(a)$
- Lovász-Simonovits'83: $a \in\left(\frac{1}{2}, \frac{2}{3}\right)$

Structure of Extremal ϕ_{0}

- Assume $\phi_{0}\left(K_{3}\right)=h(a)$
- Lovász-Simonovits'83: $a \in\left(\frac{1}{2}, \frac{2}{3}\right)$
- Density of K_{4} and $\bar{K}_{1,3}$ is 0

Structure of Extremal ϕ_{0}

- Assume $\phi_{0}\left(K_{3}\right)=h(a)$
- Lovász-Simonovits'83: $a \in\left(\frac{1}{2}, \frac{2}{3}\right)$
- Density of K_{4} and $\bar{K}_{1,3}$ is 0
- If $\phi_{0}\left(\bar{P}_{3}\right)=0$,

Structure of Extremal ϕ_{0}

- Assume $\phi_{0}\left(K_{3}\right)=h(a)$
- Lovász-Simonovits'83: $a \in\left(\frac{1}{2}, \frac{2}{3}\right)$
- Density of K_{4} and $\bar{K}_{1,3}$ is 0
- If $\phi_{0}\left(\bar{P}_{3}\right)=0$,
- Complete partite

Structure of Extremal ϕ_{0}

- Assume $\phi_{0}\left(K_{3}\right)=h(a)$
- Lovász-Simonovits'83: $a \in\left(\frac{1}{2}, \frac{2}{3}\right)$
- Density of K_{4} and $\bar{K}_{1,3}$ is 0
- If $\phi_{0}\left(\bar{P}_{3}\right)=0$,
- Complete partite
- K_{4}-free

Structure of Extremal ϕ_{0}

- Assume $\phi_{0}\left(K_{3}\right)=h(a)$
- Lovász-Simonovits'83: $a \in\left(\frac{1}{2}, \frac{2}{3}\right)$
- Density of K_{4} and $\bar{K}_{1,3}$ is 0
- If $\phi_{0}\left(\bar{P}_{3}\right)=0$,
- Complete partite
- K_{4}-free \Rightarrow at most 3 parts

Structure of Extremal ϕ_{0}

- Assume $\phi_{0}\left(K_{3}\right)=h(a)$
- Lovász-Simonovits'83: $a \in\left(\frac{1}{2}, \frac{2}{3}\right)$
- Density of K_{4} and $\bar{K}_{1,3}$ is 0
- If $\phi_{0}\left(\bar{P}_{3}\right)=0$,
- Complete partite
- K_{4}-free \Rightarrow at most 3 parts \Rightarrow done!

Case 2: $\phi_{0}\left(\bar{P}_{3}\right)>0$

Case 2: $\phi_{0}\left(\bar{P}_{3}\right)>0$

- Special graphs F_{1} and F_{2} :

Case 2: $\phi_{0}\left(\bar{P}_{3}\right)>0$

- Special graphs F_{1} and F_{2} :

- Claim: $\phi_{0}\left(F_{1}\right)=\phi_{0}\left(F_{2}\right)=0$

Case 2: $\phi_{0}\left(\bar{P}_{3}\right)>0$

- Special graphs F_{1} and F_{2} :

- Claim: $\phi_{0}\left(F_{1}\right)=\phi_{0}\left(F_{2}\right)=0$
- Claim: Exist many \bar{P}_{3} 's st

Case 2: $\phi_{0}\left(\bar{P}_{3}\right)>0$

- Special graphs F_{1} and F_{2} :

- Claim: $\phi_{0}\left(F_{1}\right)=\phi_{0}\left(F_{2}\right)=0$
- Claim: Exist many \bar{P}_{3} 's st
- $|A|=\Omega(n)$: vertices sending 3 edges to it

Case 2: $\phi_{0}\left(\bar{P}_{3}\right)>0$

- Special graphs F_{1} and F_{2} :

- Claim: $\phi_{0}\left(F_{1}\right)=\phi_{0}\left(F_{2}\right)=0$
- Claim: Exist many \bar{P}_{3} 's st
- $|A|=\Omega(n)$: vertices sending 3 edges to it
- $|B|=\Omega(n)$: vertices sending ≤ 2 edges to it

Case 2: $\phi_{0}\left(\bar{P}_{3}\right)>0$

- Special graphs F_{1} and F_{2} :

- Claim: $\phi_{0}\left(F_{1}\right)=\phi_{0}\left(F_{2}\right)=0$
- Claim: Exist many \bar{P}_{3} 's st
- $|A|=\Omega(n)$: vertices sending 3 edges to it
- $|B|=\Omega(n)$: vertices sending ≤ 2 edges to it
- Non-edge across \rightarrow a copy of F_{1}, F_{2}, or $\bar{K}_{1,3}$

Case 2: $\phi_{0}\left(\bar{P}_{3}\right)>0$

- Special graphs F_{1} and F_{2} :

- Claim: $\phi_{0}\left(F_{1}\right)=\phi_{0}\left(F_{2}\right)=0$
- Claim: Exist many \bar{P}_{3} 's st
- $|A|=\Omega(n)$: vertices sending 3 edges to it
- $|B|=\Omega(n)$: vertices sending ≤ 2 edges to it
- Non-edge across \rightarrow a copy of F_{1}, F_{2}, or $\bar{K}_{1,3}$
- $G_{n}[A, B]$ is almost complete

Case 2: $\phi_{0}\left(\bar{P}_{3}\right)>0$

- Special graphs F_{1} and F_{2} :

- Claim: $\phi_{0}\left(F_{1}\right)=\phi_{0}\left(F_{2}\right)=0$
- Claim: Exist many \bar{P}_{3} 's st
- $|A|=\Omega(n)$: vertices sending 3 edges to it
- $|B|=\Omega(n)$: vertices sending ≤ 2 edges to it
- Non-edge across \rightarrow a copy of F_{1}, F_{2}, or $\bar{K}_{1,3}$
- $G_{n}[A, B]$ is almost complete
- Induction + calculations -

Clique Minimisation Problem

Clique Minimisation Problem

- Open: Exact result for K_{3}

Clique Minimisation Problem

- Open: Exact result for K_{3}
- Nikiforov'11: Asymptotic solution for K_{4}

Clique Minimisation Problem

- Open: Exact result for K_{3}
- Nikiforov'11: Asymptotic solution for K_{4}
- Reiher \geq '13: Asymptotic solution for K_{r}

Clique Minimisation Problem

- Open: Exact result for K_{3}
- Nikiforov'11: Asymptotic solution for K_{4}
- Reiher \geq '13: Asymptotic solution for K_{r}
- Open: Structure \& exact result

General Graphs

General Graphs

- Colour critical: $\chi(F)=r+1 \& \chi(F-e)=r$

General Graphs

- Colour critical: $\chi(F)=r+1 \& \chi(F-e)=r$
- Simonovits'68: ex $(n, F)=\operatorname{ex}\left(n, K_{r+1}\right), n \geq n_{0}$

General Graphs

- Colour critical: $\chi(F)=r+1 \& \chi(F-e)=r$
- Simonovits'68: ex $(n, F)=\operatorname{ex}\left(n, K_{r+1}\right), n \geq n_{0}$
- Mubayi' 10 : Asymptotic for $m \leq \operatorname{ex}(n, F)+\varepsilon_{F} n$

General Graphs

- Colour critical: $\chi(F)=r+1 \& \chi(F-e)=r$
- Simonovits'68: ex $(n, F)=\operatorname{ex}\left(n, K_{r+1}\right), n \geq n_{0}$
- Mubayi'10: Asymptotic for $m \leq \operatorname{ex}(n, F)+\varepsilon_{F} n$
- P.-Yilma \geq '13: Asymptotic for $m \leq \operatorname{ex}(n, F)+o\left(n^{2}\right)$

General Graphs

- Colour critical: $\chi(F)=r+1 \& \chi(F-e)=r$
- Simonovits'68: ex $(n, F)=\operatorname{ex}\left(n, K_{r+1}\right), n \geq n_{0}$
- Mubayi'10: Asymptotic for $m \leq \operatorname{ex}(n, F)+\varepsilon_{F} n$
- P.-Yilma \geq '13: Asymptotic for $m \leq e x(n, F)+o\left(n^{2}\right)$
- Bipartite F

General Graphs

- Colour critical: $\chi(F)=r+1 \& \chi(F-e)=r$
- Simonovits'68: ex $(n, F)=\operatorname{ex}\left(n, K_{r+1}\right), n \geq n_{0}$
- Mubayi'10: Asymptotic for $m \leq \operatorname{ex}(n, F)+\varepsilon_{F} n$
- P.-Yilma \geq '13: Asymptotic for $m \leq e x(n, F)+o\left(n^{2}\right)$
- Bipartite F
- Conjecture (Erdős-Simonovits'82, Sidorenko'93):

General Graphs

- Colour critical: $\chi(F)=r+1 \& \chi(F-e)=r$
- Simonovits'68: ex $(n, F)=\operatorname{ex}\left(n, K_{r+1}\right), n \geq n_{0}$
- Mubayi'10: Asymptotic for $m \leq \operatorname{ex}(n, F)+\varepsilon_{F} n$
- P.-Yilma \geq '13: Asymptotic for $m \leq e x(n, F)+o\left(n^{2}\right)$
- Bipartite F
- Conjecture (Erdős-Simonovits'82, Sidorenko'93):
- Random graphs

General Graphs

- Colour critical: $\chi(F)=r+1 \& \chi(F-e)=r$
- Simonovits'68: ex $(n, F)=\operatorname{ex}\left(n, K_{r+1}\right), n \geq n_{0}$
- Mubayi'10: Asymptotic for $m \leq \operatorname{ex}(n, F)+\varepsilon_{F} n$
- P.-Yilma \geq '13: Asymptotic for $m \leq e x(n, F)+o\left(n^{2}\right)$
- Bipartite F
- Conjecture (Erdős-Simonovits'82, Sidorenko'93):
- Random graphs
- ..., Conlon-Fox-Sudakov'10, Li-Szegedy \geq ' $13, \ldots$

Thank you!

Photos: Math PUrview, Gil Kalai's blog \& Erdős Lap Number ;)

