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Fine properties of Brownian paths, following Paul Lévy and continued
by S.J. Taylor, J.F. Le Gall and many others.
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Does Brownian motion have points of increase?
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Nonincrease everywhere of the Brownian motion
process; Dvoretzky, Erdős and Kakutani (1961).

From the review by J. Lamperti:
Let X be the standard Brownian motion in one dimension. It
is well-known that, with probability 1, a path of this process
is nowhere differentiable; the present paper establishes the
more delicate fact that almost all Brownian paths have no
points of increase. The proof is quite intricate . . .

Simple proofs:
• K. Burdzy (Ann. Probab. 1990)
• Y.P. (Israel J. Math. 1996).
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Kakutani’s car

According to S. Kakutani (1990), DEK first found a ”proof” that points
of increase do exist, by a fancy version of the reflection principle . . .

Some echoes of 3AM can be found in the original paper . . .
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For more information on Brownian sample paths:
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The Cayley graph determined by a sequence S = {nk}

Define a graph GS with vertex set Z, where the pair {n,m} is an edge
iff |n −m| ∈ S.

Example: nk = kd where 2 < d ∈ N.
• GS has no triangles by FLT
• Furstenberg (1977) and Sárközy (1978) showed that ∀A ⊂ Z of
positive upper density, ∃x , y ∈ A and k ∈ N such that x − y = kd .
• Thus every independent set in GS has zero density⇒
• The chromatic number χ(GS) =∞.
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Two problems of Erdős on lacunary sequences

• The chromatic number χ(G) of a graph G is the minimal number of
colors in a proper vertex coloring (neighbors assigned distinct colors.)

Problem A (Erdős, 1987)

Fix ε > 0 and suppose S = {nj}∞j=1 is a lacunary sequence of
positive integers, where nj+1 > (1 + ε)nj for all j ≥ 1. Is the chromatic

number χ(GS) necessarily finite?

Problem B (Erdős, 1975)

Let ε > 0 and S be as in Problem A. Is there a number θ ∈ (0,1) so
that the sequence {njθ}∞j=1 is not dense modulo 1?

The relation between Problem A and Problem B was discovered by
Katznelson in 1987, and published in 2001.
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Relation between Problem A and Problem B

• Let δ > 0 and θ ∈ (0,1) be such that infj ‖θnj‖ > δ, where ‖ · ‖ is
distance to the closest integer.

• Partition T = [0,1) into k = dδ−1e disjoint intervals I1, . . . , Ik of
length 1

k ≤ δ.
• Let G be the graph from Problem A and assign the vertex n ∈ Z the
color j iff nθ ∈ Ij (mod 1).

• Any two vertices connected by an edge must have different colors.
Therefore, χ(G) ≤ k = dδ−1e.
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Previous Works

• Problem B was solved by Pollington (1979), de Mathan (1980) and
Katznelson (2001); • As noted by Moshchevitin (2010), problem B

was already raised and solved in 1926 by Khinchin, but this was
forgotten . . .

• Khinchin (1926) and Katznelson (2001) showed that there exists a θ
such that

inf
j≥1
‖θnj‖ > cε2| log ε|−1.
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Main Result

Theorem (P., Schlag; Bull. London Math. Soc. 42 (2010))

Suppose S = {nj} satisfies nj+1/nj ≥ 1 + ε, where 0 < ε < 1/4. Then
there exists θ ∈ (0,1) such that

inf
j≥1
‖θnj‖ > cε| log ε|−1 , (1)

where c > 0 is a universal constant. Therefore, the graph G = GS
described in Problem A satisfies χ(G) ≤ c−1| log ε|/ε.

• Up to the | log ε|−1 factor, (1) is optimal. Indeed, let nj = j
for j = 1,2, . . . , bε−1c and continue this as a lacunary sequence with
ratio 1 + ε. In this case χ(G) > bε−1c.
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Rotation orbits sampled along a lacunary sequence

The following quantitative result on Problem B extends the previous
theorem.

Theorem (P., Schlag 2010)

Suppose S = {nj} satisfies nj+1/nj ≥ 1 + ε for all j . Define

Ej =

{
θ ∈ T : ‖njθ‖ <

c0ε

| log2 ε|

}
(2)

for j ≥ 1. If 240 c0 ≤ 1, then

∞⋂
j=1

Ec
j 6= ∅. (3)
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Proof ingredient: Lovász local lemma

Lemma

Let {Aj}N
j=1 be events in a probability space (Ω,F ,P) and let {xj}N

j=1
be a sequence of numbers in (0,1). Assume that for every i ≤ N,
there is an integer 0 ≤ m(i) < i so that

P
(

Ai

∣∣∣ ⋂
j<m(i)

Ac
j

)
≤ xi

i−1∏
j=m(i)

(1− xj ). (4)

Then for any integer n ∈ [1,N], we have

P
( n⋂

i=1

Ac
i

)
≥

n∏
`=1

(1− x`). (5)

The lemma is applied to Lebesgue measure in [0,1] and to sets {Aj},
where Aj is the union of all binary intervals of length

c0ε

nj | log2 ε|
that

intersect Ej .
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Further applications of the method

MR2770060 Y. Bugeaud and N. Moshchevitin (2011)
Badly approximable numbers and Littlewood-type problems.
Math. Proc. Cambridge Philos. Soc. 150, 215-226.
From Math Reviews:

The Littlewood conjecture states that, for any given pair
(α, β) of real numbers, we have infq≥1 q · ‖qα‖ · ‖qβ‖ = 0,
where ‖ · ‖ denotes the distance to the nearest integer. The
authors prove, with a method introduced by Y. Peres and W.
Schlag, that the set of pairs (α, β) ∈ R2 such that

lim
q→+∞

q · (log q)2 · ‖qα‖ · ‖qβ‖ > 0

has full Hausdorff dimension in R2.
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Kakeya sets – History

A subset S ⊆ R2 is called a Kakeya set if it contains a unit segment
in every direction.

Kakeya’s question (1917): Is the three-pointed deltoid shape a
Kakeya set of minimal area?
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Besicovitch and Schoenberg’s constructions

Besicovitch (1919) gave the first deterministic construction of a Kakeya set
of zero area.

He also constructed sets of arbitrarily small area where we can rotate a unit
segment.

Besicovitch’s construction was later simplified by Perron and Schoenberg
who gave a construction of a Kakeya set consisting of 4n triangles of area of
order 1/ log n.

n = 1 n = 2 n = 4 n = 256

(Figures due to Terry Tao)
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New connection to game theory and probability

In this talk we will see a probabilistic construction of an optimal Kakeya set
consisting of triangles.

We do so by relating these sets to a game of pursuit on the cycle Zn

introduced by Adler et al.
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A. S. Besicovitch.
On Kakeya’s problem and a similar one.
Math. Z., 27(1):312–320, 1928.

Roy O. Davies.
Some remarks on the Kakeya problem.
Proc. Cambridge Philos. Soc., 69:417–421, 1971.

Micah Adler, Harald Räcke, Naveen Sivadasan, Christian Sohler,
and Berthold Vöcking.
Randomized pursuit-evasion in graphs.
Combin. Probab. Comput., 12(3):225–244, 2003.

Yakov Babichenko, Yuval Peres, Ron Peretz, Perla Sousi, and
Peter Winkler.
Hunter, Cauchy Rabbit and Optimal Kakeya Sets.
Transactions AMS, to appear; arXiv:1207.6389
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Definition of the game Gn

Two players

Hunter Rabbit

Where?

On Zn
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Definition of the game

When?

At night – they cannot see each other....
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Definition of the game Gn

Rules

At time 0 both hunter and rabbit choose initial positions.

At each subsequent step, the hunter either moves to an adjacent node or
stays put. Simultaneously, the rabbit may leap to any node in Zn.

When does the game end?

At “capture time”, when the hunter
and the rabbit occupy the same
location in Zn at the same time.

Goals

Hunter: Minimize “capture time”
Rabbit: Maximize “capture time”

rrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
hhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhh
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The n-step game G∗n

Define a zero sum game G∗n with payoff 1 to the hunter if he captures the
rabbit in the first n steps, and payoff 0 otherwise.

G∗n is finite⇒ By the minimax theorem, ∃ optimal randomized
strategies for both players.

The value of G∗n is the probability pn of capture under optimal play.

Mean capture time in Gn under optimal play is between n/pn and 2n/pn.

We will estimate pn, and construct a Kakeya set of area � pn, that
consists of 4n triangles.
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Examples of strategies

If the rabbit chooses a random node and stays there, the hunter can
sweep the cycle, so expected capture time is ≤ n.

What if the rabbit jumps to a uniform random node in each step?

Then, for any hunter strategy, he will capture the rabbit with probability
1/n at each step, so expected capture time is n − 1.

Zig-Zag hunter strategy: He starts in a random direction, then
switches direction with probability 1/n at each step.

Rabbit counter-strategy: From a random starting node, the rabbit
walks

√
n steps to the right, then jumps 2

√
n to the left, and repeats.

The probability of capture in n steps is � n−1/2, so mean capture time is
n3/2.
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Zig-Zag hunter strategy
tim
e

space

tim
e

space
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Hunter’s optimal strategy

It turns out the best the hunter can do is start at a random point
and continue at a random speed.

More formally.... Let a,b be independent uniform on [0, 1]. Let the position
of the hunter at time t be

Ht = dan + bte mod n.

What capture time does this yield? Let R` be the position of the rabbit at time
` and Kn the number of collisions, i.e.

Kn =
n−1∑
i=0

1(Ri = Hi ).

Use second moment method – calculate first and second moments of Kn.
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Hunter’s optimal strategy

We will show that P(Kn > 0) & 1
log n . Recall Kn =

∑n−1
i=0 1(Ri = Hi )

hunterrabbithunterrabbithunterrrrrrrrr Ht = dan + bte mod n

E[Kn] =
n−1∑
i=0

P(Hi = Ri ) = 1

E
[
K 2

n

]
= E[Kn] +

∑
i 6=`

P(Hi = Ri ,H` = R`)

Suffices to show E
[
K 2

n
]
. log n

Then by Cauchy-Schwartz

P(Kn > 0) ≥ E[Kn]2

E
[
K 2

n
] &

1
log n

.

Enough to prove P(Hi = Ri ,Hi+j = Ri+j ) . 1
jn
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Hunter’s optimal strategy

Need to prove

P(Hi = Ri ,Hi+j = Ri+j ) .
1
jn
.

This is equivalent to showing that for r , s fixed Recall a, b ∼ U[0, 1]

P(an + bi ∈ (r − 1, r ], na + b(i + j) ∈ (s − 1, s]) .
1
jn
.

Subtract the two constraints to get bj ∈ [s − r − 1, s − r + 1] – this has
measure at most 2/j .

After fixing b, the choices for a have measure 1/n.
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Rabbit’s optimal strategy

With the hunter’s strategy above rrr Recall Kn =
∑n−1

i=0 1(Hi = Ri )

P(Kn > 0) &
1

log n
.

This gave expected capture time at most n log n.
What about the rabbit? Can he escape for time of order n log n?
Looking for a rabbit strategy with

P(Kn > 0) .
1

log n
.

Extend the strategies until time 2n and define K2n analogously. Obviously

P(Kn > 0) ≤ E[K2n]

E[K2n | Kn > 0]
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Rabbit’s optimal strategy

If the rabbit starts at a uniform point and the jumps are independent, then

E[K2n] = 2 rrrrrr Recall K2n =
2n−1∑
i=0

1(Hi = Ri )

Idea: Need to make E[K2n | Kn > 0] “big” so P(Kn > 0) ≤ (log n)−1.

This means that given the rabbit and hunter collided, we want them to
collide “a lot”. The hunter can only move to neighbours or stay put.

So the rabbit should also choose a distribution for the jumps that favors short
distances, yet grows linearly in time. This suggests a Cauchy random walk.
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Cauchy Rabbit

By time i the hunter can only be in the set {−i mod n, . . . , i mod n}. We are
looking for a distribution for the rabbit so that

P(Ri = `) &
1
i

for ` ∈ {−i mod n, . . . , i mod n}.

Then by the Markov property

E[K2n | Kn > 0] ≥
n−1∑
i=0

P0(Hi = Ri ) & log n.

Intuition: If X1, . . . are i.i.d. Cauchy random variables, i.e. with density

(π(1 + x2))−1, then X1 + . . .+ Xn is spread over (−n, n) and with roughly

uniform distribution.

This is what we want- But in the discrete setting...
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Cauchy Rabbit
The Cauchy distribution can be embedded in planar Brownian motion.

Let’s imitate that in the discrete setting:
Let (Xt ,Yt )t be a simple random walk in Z2.

Define hitting times

Ti = inf{t ≥ 0 : Yt = i}

and set Ri = XTi modn.

With probability 1/4, SRW exits
the square via the top side.

Of the 2i + 1 nodes on the top,
the middle node is the most
likely hitting point: subdivide all
edges, and condition on the
(even) number of horizontal
steps until height i is reached;
the horizontal displacement is
a shifted binomial, so the mode
is the mean.

Thus the hitting probability at
(0, i) is at least 1/(8i + 4).

)
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Cauchy Rabbit

Suppose 0 < k < i .
With probability 1/4, SRW exits the
square [−k , k ]2 via the right side.
Repeating the previous argument,
the hitting probability at (k , i) is at
least c/i .

tim
e

space

(k,k)

(k,ïk)

(ïk,k)

(ïk,ïk)

(0,0)

(k,i)

(k,l)
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Rabbit and Hunter construct Kakeya sets

Let (Rt )t be a rabbit strategy. Extend it to real times as a step function.

Let a be uniform in [−1, 1] and b uniform in [0, 1] and Ht = an + bt . There is
a collision at time t ∈ [0, n) if Rt = Ht .

What is the chance there is a collision in [m,m + 1)?

It is P(an + bm ≤ Rm < an + b(m + 1)), which is half the area of the triangle

Rm

n
a

b

1

1

−1
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1

−1

an+ bm = Rman+ b(m+ 1) = Rm
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Rabbit and Hunter construct Kakeya sets

Hence the probability of collision in [0, n) is half the area of the union of all
such triangles, which are translates of

T1T2Tn Tn−1

1

1
n

1
n

. . .

In these triangles we can find a unit segment in all directions that have an
angle in [0, π/4]
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Rabbit and Hunter construct Kakeya sets
If the rabbit employs the Cauchy strategy, then

P(collision in the first n steps) .
1

log n
.

Hence, this gives a set of triangles with area of order at most 1/ log n.

Simulation generated with n = 32
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The Cauchy process {Xt} can be embedded in planar
Brownian motion.

(Xt, t)

t

Xt+s − Xt has the same law as tX1 and X1 has the Cauchy distribution
(density given by (π(1 + x2))−1).
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Kakeya sets from the Cauchy process

Motivated by the Cauchy strategy, let’s see a continuum analog of the
probabilistic Kakeya construction of the hunter and rabbit.

Let (Xt )t be a Cauchy process. Set

Λ = {(a,Xt + at) : a, t ∈ [0, 1]}.

Λ is a quarter of a Kakeya set – it contains all directions from 0 up to 45◦

degrees. Take four rotated copies of Λ to obtain a Kakeya set.

Λ is an optimal Kakeya set!

Leb(Λ) = 0 and most importantly the ε-neighbourhood satisfies almost
surely

Leb(Λ(ε)) � 1
| log ε|
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Kakeya sets – Open problems

Keich in 1999 showed there is no Kakeya set which is a union of n triangles
with area of smaller order than 1/ log n. Bourgain earlier noted that the ε
neighborhood of any Kakeya set has area at least 1/|logε|.

So the random construction is optimal.

Davies in 1971 showed that Kakeya sets in the plane have Hausdorff
dimension equal to 2.

It is a major open problem whether Kakeya sets in dimensions d > 2 have
Hausdorff dimension equal to d .
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General graphs

Consider a graph on
n vertices.

Pick a spanning tree.

Depth first search yields

This is a closed path of
length 2n − 2.

The hunter can now
employ his previous
strategy on this path.
This will give O(n log n)
capture time.
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On any graph the hunter can catch the rabbit in time O(n log n).

Open Question: If the hunter and rabbit both walk on the same
graph, is the expected capture time O(n)?
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