# Coloring a graph arising from a lacunary sequence, Diophantine approximation, and constructing a Kakeya set: Applications of the probabilistic method 

## Yuval Peres ${ }^{1}$

Based on joint works with

## Wilhelm Schlag;

Y. Babichenko, R. Peretz, P. Sousi and P. Winkler

[^0]围 A．Dvoretzky，P．Erdős and S．Kakutani， Double points of paths of Brownian motion in $n$－space， Acta Sci．Math．Szeged，12 75－81， 1950.
囯 A．Dvoretzky，P．Erdős and S．Kakutani， Multiple points of paths of Brownian motion in the plane， Bull．Res．Council Israel， 3 364－371， 1954.
R．Avoretzky，P．Erdős，S．Kakutani and S．J．Taylor， Triple points of Brownian paths in 3－space， Proc．Cambridge Philos．Soc．，53，856－862， 1957.
䍰 A．Dvoretzky，P．Erdős and S．Kakutani， Points of multiplicity $c$ of plane Brownian paths， Bull．Res．Council Israel 7，175－180， 1958.
围 A．Dvoretzky，P．Erdős and S．Kakutani， Nonincrease everywhere of the Brownian motion process， Proc．4th Berkeley Sympos．II 103－116， 1961.
Fine properties of Brownian paths，following Paul Lévy and continued by S．J．Taylor，J．F．Le Gall and many others．

## Does Brownian motion have points of increase?



## Nonincrease everywhere of the Brownian motion process; Dvoretzky, Erdős and Kakutani (1961).

From the review by J. Lamperti:
Let $X$ be the standard Brownian motion in one dimension. It is well-known that, with probability 1, a path of this process is nowhere differentiable; the present paper establishes the more delicate fact that almost all Brownian paths have no points of increase. The proof is quite intricate ...

Simple proofs:

- K. Burdzy (Ann. Probab. 1990)
- Y.P. (Israel J. Math. 1996).


## Kakutani's car

According to S. Kakutani (1990), DEK first found a "proof" that points of increase do exist, by a fancy version of the reflection principle ...


Some echoes of 3AM can be found in the original paper ...

## For more information on Brownian sample paths:

## Click to LOOK INSIDE!

|  | Mark I. Freidlin Jean-François Le Gall <br> Ecole d'Ėté de Probabilités de Saint-Flour XX - 1990 |
| :---: | :---: |
| 1527 |  |
|  | Edian P.L. Hernequa <br> Springer |



## The Cayley graph determined by a sequence $\mathcal{S}=\left\{n_{k}\right\}$

Define a graph $\mathcal{G}_{\mathcal{S}}$ with vertex set $\mathbb{Z}$, where the pair $\{n, m\}$ is an edge iff $|n-m| \in \mathcal{S}$.


Example: $n_{k}=k^{d}$ where $2<d \in \mathbb{N}$.

- $\mathcal{G}_{\mathcal{S}}$ has no triangles by FLT
- Furstenberg (1977) and Sárközy (1978) showed that $\forall A \subset \mathbb{Z}$ of positive upper density, $\exists x, y \in A$ and $k \in \mathbb{N}$ such that $x-y=k^{d}$.
- Thus every independent set in $\mathcal{G}_{\mathcal{S}}$ has zero density $\Rightarrow$
- The chromatic number $\chi\left(\mathcal{G}_{\mathcal{S}}\right)=\infty$.


## Two problems of Erdős on lacunary sequences

- The chromatic number $\chi(\mathcal{G})$ of a graph $\mathcal{G}$ is the minimal number of colors in a proper vertex coloring (neighbors assigned distinct colors.)


## Problem A (Erdős, 1987)

Fix $\varepsilon>0$ and suppose $\mathcal{S}=\left\{n_{j}\right\}_{j=1}^{\infty}$ is a lacunary sequence of positive integers, where $n_{j+1}>(1+\varepsilon) n_{j}$ for all $j \geq 1$. Is the chromatic number $\chi\left(\mathcal{G}_{\mathcal{S}}\right)$ necessarily finite?

## Problem B (Erdős, 1975)

Let $\varepsilon>0$ and $\mathcal{S}$ be as in Problem A. Is there a number $\theta \in(0,1)$ so that the sequence $\left\{n_{j} \theta\right\}_{j=1}^{\infty}$ is not dense modulo 1?

The relation between Problem A and Problem B was discovered by Katznelson in 1987, and published in 2001.

## Relation between Problem A and Problem B

- Let $\delta>0$ and $\theta \in(0,1)$ be such that $\inf _{j}\left\|\theta n_{j}\right\|>\delta$, where $\|\cdot\|$ is distance to the closest integer.
- Partition $\mathbb{T}=[0,1)$ into $k=\left\lceil\delta^{-1}\right\rceil$ disjoint intervals $I_{1}, \ldots, I_{k}$ of length $\frac{1}{k} \leq \delta$.
- Let $\mathcal{G}$ be the graph from Problem A and assign the vertex $n \in \mathbb{Z}$ the color $j$ iff $n \theta \in I_{j}(\bmod 1)$.
- Any two vertices connected by an edge must have different colors.

Therefore, $\chi(\mathcal{G}) \leq k=\left\lceil\delta^{-1}\right\rceil$.

- Problem B was solved by Pollington (1979), de Mathan (1980) and Katznelson (2001); • As noted by Moshchevitin (2010), problem B was already raised and solved in 1926 by Khinchin, but this was forgotten...
- Khinchin (1926) and Katznelson (2001) showed that there exists a $\theta$ such that

$$
\inf _{j \geq 1}\left\|\theta n_{j}\right\|>c \varepsilon^{2}|\log \varepsilon|^{-1}
$$

## Main Result

## Theorem (P., Schlag; Bull. London Math. Soc. 42 (2010))

Suppose $\mathcal{S}=\left\{n_{j}\right\}$ satisfies $n_{j+1} / n_{j} \geq 1+\varepsilon$, where $0<\varepsilon<1 / 4$. Then there exists $\theta \in(0,1)$ such that

$$
\begin{equation*}
\inf _{j \geq 1}\left\|\theta n_{j}\right\|>c \varepsilon|\log \varepsilon|^{-1} \tag{1}
\end{equation*}
$$

where $c>0$ is a universal constant. Therefore, the graph $\mathcal{G}=\mathcal{G}_{\mathcal{S}}$ described in Problem A satisfies $\chi(\mathcal{G}) \leq c^{-1}|\log \varepsilon| / \varepsilon$.

- Up to the $|\log \varepsilon|^{-1}$ factor, (1) is optimal. Indeed, let $n_{j}=j$ for $j=1,2, \ldots,\left\lfloor\varepsilon^{-1}\right\rfloor$ and continue this as a lacunary sequence with ratio $1+\varepsilon$. In this case $\chi(\mathcal{G})>\left\lfloor\varepsilon^{-1}\right\rfloor$.


## Rotation orbits sampled along a lacunary sequence

The following quantitative result on Problem B extends the previous theorem.

## Theorem (P., Schlag 2010)

Suppose $\mathcal{S}=\left\{n_{j}\right\}$ satisfies $n_{j+1} / n_{j} \geq 1+\varepsilon$ for all $j$. Define

$$
\begin{equation*}
E_{j}=\left\{\theta \in \mathbb{T}:\left\|n_{j} \theta\right\|<\frac{c_{0} \varepsilon}{\left|\log _{2} \varepsilon\right|}\right\} \tag{2}
\end{equation*}
$$

for $j \geq 1$. If $240 c_{0} \leq 1$, then

$$
\begin{equation*}
\bigcap_{j=1}^{\infty} E_{j}^{c} \neq \emptyset \tag{3}
\end{equation*}
$$

## Proof ingredient: Lovász local lemma

## Lemma

Let $\left\{A_{j}\right\}_{j=1}^{N}$ be events in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $\left\{x_{j}\right\}_{j=1}^{N}$ be a sequence of numbers in $(0,1)$. Assume that for every $i \leq N$, there is an integer $0 \leq m(i)<i$ so that

$$
\begin{equation*}
\mathbb{P}\left(A_{i} \mid \bigcap_{j<m(i)} A_{j}^{c}\right) \leq x_{i} \prod_{j=m(i)}^{i-1}\left(1-x_{j}\right) . \tag{4}
\end{equation*}
$$

Then for any integer $n \in[1, N]$, we have

$$
\begin{equation*}
\mathbb{P}\left(\bigcap_{i=1}^{n} A_{i}^{c}\right) \geq \prod_{\ell=1}^{n}\left(1-x_{\ell}\right) \tag{5}
\end{equation*}
$$

The lemma is applied to Lebesgue measure in $[0,1]$ and to sets $\left\{A_{j}\right\}$, where $A_{j}$ is the union of all binary intervals of length $\frac{C_{0} \varepsilon}{n_{j}\left|\log _{2} \varepsilon\right|}$ that intersect $E_{j}$.

MR2770060 Y. Bugeaud and N. Moshchevitin (2011)
Badly approximable numbers and Littlewood-type problems.
Math. Proc. Cambridge Philos. Soc. 150, 215-226.

## From Math Reviews:

The Littlewood conjecture states that, for any given pair $(\alpha, \beta)$ of real numbers, we have $\inf _{q \geq 1} q \cdot\|q \alpha\| \cdot\|q \beta\|=0$, where $\|\cdot\|$ denotes the distance to the nearest integer. The authors prove, with a method introduced by Y. Peres and W. Schlag, that the set of pairs $(\alpha, \beta) \in \mathbb{R}^{2}$ such that

$$
\lim _{q \rightarrow+\infty} q \cdot(\log q)^{2} \cdot\|q \alpha\| \cdot\|q \beta\|>0
$$

has full Hausdorff dimension in $\mathbf{R}^{2}$.

## Kakeya sets - History

A subset $S \subseteq \mathbb{R}^{2}$ is called a Kakeya set if it contains a unit segment in every direction.

## Kakeya sets - History

A subset $S \subseteq \mathbb{R}^{2}$ is called a Kakeya set if it contains a unit segment in every direction.

Kakeya's question (1917): Is the three-pointed deltoid shape a Kakeya set of minimal area?


## Besicovitch and Schoenberg's constructions

Besicovitch (1919) gave the first deterministic construction of a Kakeya set of zero area.

## Besicovitch and Schoenberg's constructions

Besicovitch (1919) gave the first deterministic construction of a Kakeya set of zero area.

He also constructed sets of arbitrarily small area where we can rotate a unit segment.

## Besicovitch and Schoenberg's constructions

Besicovitch (1919) gave the first deterministic construction of a Kakeya set of zero area.

He also constructed sets of arbitrarily small area where we can rotate a unit segment.

Besicovitch's construction was later simplified by Perron and Schoenberg who gave a construction of a Kakeya set consisting of $4 n$ triangles of area of order $1 / \log n$.

## Besicovitch and Schoenberg's constructions

Besicovitch (1919) gave the first deterministic construction of a Kakeya set of zero area.

He also constructed sets of arbitrarily small area where we can rotate a unit segment.

Besicovitch's construction was later simplified by Perron and Schoenberg who gave a construction of a Kakeya set consisting of $4 n$ triangles of area of order $1 / \log n$.

$$
n=1
$$

## Besicovitch and Schoenberg's constructions

Besicovitch (1919) gave the first deterministic construction of a Kakeya set of zero area.

He also constructed sets of arbitrarily small area where we can rotate a unit segment.

Besicovitch's construction was later simplified by Perron and Schoenberg who gave a construction of a Kakeya set consisting of $4 n$ triangles of area of order $1 / \log n$.

$n=1$

$n=2$

## Besicovitch and Schoenberg's constructions

Besicovitch (1919) gave the first deterministic construction of a Kakeya set of zero area.

He also constructed sets of arbitrarily small area where we can rotate a unit segment.

Besicovitch's construction was later simplified by Perron and Schoenberg who gave a construction of a Kakeya set consisting of $4 n$ triangles of area of order $1 / \log n$.

$n=1$

$n=2$

$n=4$

## Besicovitch and Schoenberg's constructions

Besicovitch (1919) gave the first deterministic construction of a Kakeya set of zero area.

He also constructed sets of arbitrarily small area where we can rotate a unit segment.

Besicovitch's construction was later simplified by Perron and Schoenberg who gave a construction of a Kakeya set consisting of $4 n$ triangles of area of order $1 / \log n$.

$n=1$

$n=2$

$n=4$

$n=256$

## Besicovitch and Schoenberg's constructions

Besicovitch (1919) gave the first deterministic construction of a Kakeya set of zero area.

He also constructed sets of arbitrarily small area where we can rotate a unit segment.

Besicovitch's construction was later simplified by Perron and Schoenberg who gave a construction of a Kakeya set consisting of $4 n$ triangles of area of order $1 / \log n$.

$n=1$

$n=2$

$n=4$

$n=256$
(Figures due to Terry Tao)

## New connection to game theory and probability

In this talk we will see a probabilistic construction of an optimal Kakeya set consisting of triangles.

## New connection to game theory and probability

In this talk we will see a probabilistic construction of an optimal Kakeya set consisting of triangles.

We do so by relating these sets to a game of pursuit on the cycle $\mathbb{Z}_{n}$ introduced by Adler et al.

## New connection to game theory and probability

In this talk we will see a probabilistic construction of an optimal Kakeya set consisting of triangles.

We do so by relating these sets to a game of pursuit on the cycle $\mathbb{Z}_{n}$ introduced by Adler et al.

A. S. Besicovitch.

On Kakeya's problem and a similar one.
Math. Z., 27(1):312-320, 1928.
R Roy O. Davies.
Some remarks on the Kakeya problem.
Proc. Cambridge Philos. Soc., 69:417-421, 1971.
R Micah Adler, Harald Räcke, Naveen Sivadasan, Christian Sohler, and Berthold Vöcking.
Randomized pursuit-evasion in graphs.
Combin. Probab. Comput., 12(3):225-244, 2003.
围 Yakov Babichenko, Yuval Peres, Ron Peretz, Perla Sousi, and Peter Winkler.
Hunter, Cauchy Rabbit and Optimal Kakeya Sets.
Transactions AMS, to appear; arXiv:1207.6389

## Definition of the game $G_{n}$

## Two players

## Definition of the game $G_{n}$

## Two players



## Definition of the game $G_{n}$

## Two players



Hunter

## Definition of the game $G_{n}$

## Two players



Hunter

## Definition of the game $G_{n}$

## Two players



Hunter


Rabbit

## Definition of the game $G_{n}$

## Two players

## Where?



Hunter


Rabbit

## Definition of the game $G_{n}$

## Two players

## Where?



Rabbit


## Definition of the game

## When?

## Definition of the game

## When?



## Definition of the game

## When?



At night - they cannot see each other....

## Definition of the game $G_{n}$

## Rules

## Definition of the game $G_{n}$

## Rules

At time 0 both hunter and rabbit choose initial positions.

## Definition of the game $G_{n}$

## Rules

At time 0 both hunter and rabbit choose initial positions.
At each subsequent step, the hunter either moves to an adjacent node or stays put. Simultaneously, the rabbit may leap to any node in $\mathbb{Z}_{n}$.

## Definition of the game $G_{n}$

## Rules

At time 0 both hunter and rabbit choose initial positions.
At each subsequent step, the hunter either moves to an adjacent node or stays put. Simultaneously, the rabbit may leap to any node in $\mathbb{Z}_{n}$.

When does the game end?

## Definition of the game $G_{n}$

## Rules

At time 0 both hunter and rabbit choose initial positions.
At each subsequent step, the hunter either moves to an adjacent node or stays put. Simultaneously, the rabbit may leap to any node in $\mathbb{Z}_{n}$.

## When does the game end?

At "capture time", when the hunter and the rabbit occupy the same location in $\mathbb{Z}_{n}$ at the same time.

## Definition of the game $G_{n}$

## Rules

At time 0 both hunter and rabbit choose initial positions.
At each subsequent step, the hunter either moves to an adjacent node or stays put. Simultaneously, the rabbit may leap to any node in $\mathbb{Z}_{n}$.

## When does the game end?

At "capture time", when the hunter and the rabbit occupy the same location in $\mathbb{Z}_{n}$ at the same time.


## Definition of the game $G_{n}$

## Rules

At time 0 both hunter and rabbit choose initial positions.
At each subsequent step, the hunter either moves to an adjacent node or stays put. Simultaneously, the rabbit may leap to any node in $\mathbb{Z}_{n}$.

## When does the game end?

At "capture time", when the hunter and the rabbit occupy the same location in $\mathbb{Z}_{n}$ at the same time.

## Goals



## Definition of the game $G_{n}$

## Rules

At time 0 both hunter and rabbit choose initial positions.
At each subsequent step, the hunter either moves to an adjacent node or stays put. Simultaneously, the rabbit may leap to any node in $\mathbb{Z}_{n}$.

## When does the game end?

At "capture time", when the hunter and the rabbit occupy the same location in $\mathbb{Z}_{n}$ at the same time.

## Goals

Hunter: Minimize "capture time"

## Definition of the game $G_{n}$

## Rules

At time 0 both hunter and rabbit choose initial positions.
At each subsequent step, the hunter either moves to an adjacent node or stays put. Simultaneously, the rabbit may leap to any node in $\mathbb{Z}_{n}$.

## When does the game end?

At "capture time", when the hunter and the rabbit occupy the same location in $\mathbb{Z}_{n}$ at the same time.

## Goals

Hunter: Minimize "capture time" Rabbit: Maximize "capture time"


## The $n$-step game $G_{n}^{*}$

Define a zero sum game $G_{n}^{*}$ with payoff 1 to the hunter if he captures the rabbit in the first $n$ steps, and payoff 0 otherwise.

## The $n$-step game $G_{n}^{*}$

Define a zero sum game $G_{n}^{*}$ with payoff 1 to the hunter if he captures the rabbit in the first $n$ steps, and payoff 0 otherwise.

- $G_{n}^{*}$ is finite $\Rightarrow$ By the minimax theorem, $\exists$ optimal randomized strategies for both players.


## The $n$-step game $G_{n}^{*}$

Define a zero sum game $G_{n}^{*}$ with payoff 1 to the hunter if he captures the rabbit in the first $n$ steps, and payoff 0 otherwise.

- $G_{n}^{*}$ is finite $\Rightarrow$ By the minimax theorem, $\exists$ optimal randomized strategies for both players.
- The value of $G_{n}^{*}$ is the probability $p_{n}$ of capture under optimal play.


## The $n$-step game $G_{n}^{*}$

Define a zero sum game $G_{n}^{*}$ with payoff 1 to the hunter if he captures the rabbit in the first $n$ steps, and payoff 0 otherwise.

- $G_{n}^{*}$ is finite $\Rightarrow$ By the minimax theorem, $\exists$ optimal randomized strategies for both players.
- The value of $G_{n}^{*}$ is the probability $p_{n}$ of capture under optimal play.
- Mean capture time in $G_{n}$ under optimal play is between $n / p_{n}$ and $2 n / p_{n}$.


## The $n$-step game $G_{n}^{*}$

Define a zero sum game $G_{n}^{*}$ with payoff 1 to the hunter if he captures the rabbit in the first $n$ steps, and payoff 0 otherwise.

- $G_{n}^{*}$ is finite $\Rightarrow$ By the minimax theorem, $\exists$ optimal randomized strategies for both players.
- The value of $G_{n}^{*}$ is the probability $p_{n}$ of capture under optimal play.
- Mean capture time in $G_{n}$ under optimal play is between $n / p_{n}$ and $2 n / p_{n}$.
- We will estimate $p_{n}$, and construct a Kakeya set of area $\asymp p_{n}$, that consists of $4 n$ triangles.


## Examples of strategies

- If the rabbit chooses a random node and stays there, the hunter can sweep the cycle, so expected capture time is $\leq n$.


## Examples of strategies

- If the rabbit chooses a random node and stays there, the hunter can sweep the cycle, so expected capture time is $\leq n$.
- What if the rabbit jumps to a uniform random node in each step?


## Examples of strategies

- If the rabbit chooses a random node and stays there, the hunter can sweep the cycle, so expected capture time is $\leq n$.
- What if the rabbit jumps to a uniform random node in each step?

Then, for any hunter strategy, he will capture the rabbit with probability $1 / n$ at each step, so expected capture time is $n-1$.

## Examples of strategies

- If the rabbit chooses a random node and stays there, the hunter can sweep the cycle, so expected capture time is $\leq n$.
- What if the rabbit jumps to a uniform random node in each step?

Then, for any hunter strategy, he will capture the rabbit with probability $1 / n$ at each step, so expected capture time is $n-1$.

- Zig-Zag hunter strategy: He starts in a random direction, then switches direction with probability $1 / n$ at each step.


## Examples of strategies

- If the rabbit chooses a random node and stays there, the hunter can sweep the cycle, so expected capture time is $\leq n$.
- What if the rabbit jumps to a uniform random node in each step?

Then, for any hunter strategy, he will capture the rabbit with probability $1 / n$ at each step, so expected capture time is $n-1$.

- Zig-Zag hunter strategy: He starts in a random direction, then switches direction with probability $1 / n$ at each step.

Rabbit counter-strategy: From a random starting node, the rabbit walks $\sqrt{n}$ steps to the right, then jumps $2 \sqrt{n}$ to the left, and repeats. The probability of capture in $n$ steps is $\asymp n^{-1 / 2}$, so mean capture time is $n^{3 / 2}$.

## Zig-Zag hunter strategy




## Hunter's optimal strategy



## Hunter's optimal strategy



It turns out the best the hunter can do is start at a random point and continue at a random speed.

## Hunter's optimal strategy



It turns out the best the hunter can do is start at a random point and continue at a random speed.

More formally....

## Hunter's optimal strategy



It turns out the best the hunter can do is start at a random point and continue at a random speed.

More formally.... Let $\mathbf{a , b}$ be independent uniform on $[0,1]$.

## Hunter's optimal strategy



It turns out the best the hunter can do is start at a random point and continue at a random speed.

More formally.... Let $\mathbf{a}, \mathbf{b}$ be independent uniform on $[0,1]$. Let the position of the hunter at time $t$ be

$$
H_{t}=\lceil a n+b t\rceil \bmod n
$$

## Hunter's optimal strategy



It turns out the best the hunter can do is start at a random point and continue at a random speed.

More formally.... Let $\mathbf{a}, \mathbf{b}$ be independent uniform on $[0,1]$. Let the position of the hunter at time $t$ be

$$
H_{t}=\lceil a n+b t\rceil \bmod n
$$

What capture time does this yield?

## Hunter's optimal strategy



It turns out the best the hunter can do is start at a random point and continue at a random speed.

More formally.... Let $\mathbf{a}, \mathbf{b}$ be independent uniform on $[0,1]$. Let the position of the hunter at time $t$ be

$$
H_{t}=\lceil a n+b t\rceil \bmod n
$$

What capture time does this yield? Let $R_{\ell}$ be the position of the rabbit at time $\ell$ and $K_{n}$ the number of collisions

## Hunter's optimal strategy



It turns out the best the hunter can do is start at a random point and continue at a random speed.

More formally.... Let $\mathbf{a}, \mathbf{b}$ be independent uniform on $[0,1]$. Let the position of the hunter at time $t$ be

$$
H_{t}=\lceil a n+b t\rceil \bmod n
$$

What capture time does this yield? Let $R_{\ell}$ be the position of the rabbit at time $\ell$ and $K_{n}$ the number of collisions, i.e.

$$
K_{n}=\sum_{i=0}^{n-1} \mathbf{I}\left(R_{i}=H_{i}\right)
$$

## Hunter's optimal strategy



It turns out the best the hunter can do is start at a random point and continue at a random speed.
More formally.... Let $\mathbf{a}, \mathbf{b}$ be independent uniform on $[0,1]$. Let the position of the hunter at time $t$ be

$$
H_{t}=\lceil a n+b t\rceil \bmod n
$$

What capture time does this yield? Let $R_{\ell}$ be the position of the rabbit at time $\ell$ and $K_{n}$ the number of collisions, i.e.

$$
K_{n}=\sum_{i=0}^{n-1} \mathbf{I}\left(R_{i}=H_{i}\right)
$$

Use second moment method - calculate first and second moments of $K_{n}$.

## Hunter's optimal strategy



## Hunter's optimal strategy

We will show that $\mathbb{P}\left(K_{n}>0\right) \gtrsim \frac{1}{\log n}$.


## Hunter's optimal strategy

We will show that $\mathbb{P}\left(K_{n}>0\right) \gtrsim \frac{1}{\log n}$. Recall $K_{n}=\sum_{i=0}^{n-1} \mathbf{I}\left(R_{i}=H_{i}\right)$


## Hunter's optimal strategy

We will show that $\mathbb{P}\left(K_{n}>0\right) \gtrsim \frac{1}{\log n}$. Recall $K_{n}=\sum_{i=0}^{n-1} \mathbf{l}\left(R_{i}=H_{i}\right)$
$H_{t}=\lceil a n+b t\rceil \bmod n$


## Hunter's optimal strategy

We will show that $\mathbb{P}\left(K_{n}>0\right) \gtrsim \frac{1}{\log n}$. Recall $K_{n}=\sum_{i=0}^{n-1} \mathbf{l}\left(R_{i}=H_{i}\right)$

$$
\begin{aligned}
& H_{t}=\lceil a n+b t\rceil \bmod n \\
& \mathbb{E}\left[K_{n}\right]=\sum_{i=0}^{n-1} \mathbb{P}\left(H_{i}=R_{i}\right)=1
\end{aligned}
$$

## Hunter's optimal strategy

We will show that $\mathbb{P}\left(K_{n}>0\right) \gtrsim \frac{1}{\log n}$.

$$
\begin{gathered}
\frac{1}{\log n} \cdot \text { Recall } K_{n}=\sum_{i=0}^{n-1} \mathbf{l}\left(R_{i}=H_{i}\right) \\
H_{t}=\lceil\text { an }+ \text { btך } \bmod n \\
\mathbb{E}\left[K_{n}\right]=\sum_{i=0}^{n-1} \mathbb{P}\left(H_{i}=R_{i}\right)=1 \\
\mathbb{E}\left[K_{n}^{2}\right]=\mathbb{E}\left[K_{n}\right]+\sum_{i \neq \ell} \mathbb{P}\left(H_{i}=R_{i}, H_{\ell}=R_{\ell}\right)
\end{gathered}
$$

## Hunter's optimal strategy

We will show that $\mathbb{P}\left(K_{n}>0\right) \gtrsim \frac{1}{\log n}$. Recall $K_{n}=\sum_{i=0}^{n-1} \mathbf{l}\left(R_{i}=H_{i}\right)$

$$
\begin{gathered}
H_{t}=\lceil\text { an }+ \text { bt }\rceil \bmod n \\
\mathbb{E}\left[K_{n}\right]=\sum_{i=0}^{n-1} \mathbb{P}\left(H_{i}=R_{i}\right)=1 \\
\mathbb{E}\left[K_{n}^{2}\right]=\mathbb{E}\left[K_{n}\right]+\sum_{i \neq \ell} \mathbb{P}\left(H_{i}=R_{i}, H_{\ell}=R_{\ell}\right)
\end{gathered}
$$

Suffices to show

$$
\mathbb{E}\left[K_{n}^{2}\right] \lesssim \log n
$$

## Hunter's optimal strategy

We will show that $\mathbb{P}\left(K_{n}>0\right) \gtrsim \frac{1}{\log n}$.

$$
\begin{gathered}
\frac{1}{\log n} \cdot \text { Recall } K_{n}=\sum_{i=0}^{n-1} \mathbf{l}\left(R_{i}=H_{i}\right) \\
H_{t}=\lceil\text { an }+ \text { bt }\rceil \bmod n \\
\mathbb{E}\left[K_{n}\right]=\sum_{i=0}^{n-1} \mathbb{P}\left(H_{i}=R_{i}\right)=1 \\
\mathbb{E}\left[K_{n}^{2}\right]=\mathbb{E}\left[K_{n}\right]+\sum_{i \neq \ell} \mathbb{P}\left(H_{i}=R_{i}, H_{\ell}=R_{\ell}\right)
\end{gathered}
$$

Suffices to show

$$
\mathbb{E}\left[K_{n}^{2}\right] \lesssim \log n
$$

Then by Cauchy-Schwartz

$$
\mathbb{P}\left(K_{n}>0\right) \geq \frac{\mathbb{E}\left[K_{n}\right]^{2}}{\mathbb{E}\left[K_{n}^{2}\right]} \gtrsim \frac{1}{\log n}
$$

## Hunter's optimal strategy

We will show that $\mathbb{P}\left(K_{n}>0\right) \gtrsim \frac{1}{\log n}$.

$$
\begin{gathered}
\frac{1}{\log n} \cdot \text { Recall } K_{n}=\sum_{i=0}^{n-1} \mathbf{l}\left(R_{i}=H_{i}\right) \\
H_{t}=\lceil\text { an }+ \text { bt }\rceil \bmod n \\
\mathbb{E}\left[K_{n}\right]=\sum_{i=0}^{n-1} \mathbb{P}\left(H_{i}=R_{i}\right)=1 \\
\mathbb{E}\left[K_{n}^{2}\right]=\mathbb{E}\left[K_{n}\right]+\sum_{i \neq \ell} \mathbb{P}\left(H_{i}=R_{i}, H_{\ell}=R_{\ell}\right)
\end{gathered}
$$

Suffices to show

$$
\mathbb{E}\left[K_{n}^{2}\right] \lesssim \log n
$$

Then by Cauchy-Schwartz

$$
\mathbb{P}\left(K_{n}>0\right) \geq \frac{\mathbb{E}\left[K_{n}\right]^{2}}{\mathbb{E}\left[K_{n}^{2}\right]} \gtrsim \frac{1}{\log n}
$$

Enough to prove

$$
\mathbb{P}\left(H_{i}=R_{i}, H_{i+j}=R_{i+j}\right) \lesssim \frac{1}{j n}
$$

## Hunter's optimal strategy



## Hunter's optimal strategy



Need to prove

$$
\mathbb{P}\left(H_{i}=R_{i}, H_{i+j}=R_{i+j}\right) \lesssim \frac{1}{j n} .
$$

## Hunter's optimal strategy



Need to prove

$$
\mathbb{P}\left(H_{i}=R_{i}, H_{i+j}=R_{i+j}\right) \lesssim \frac{1}{j n} .
$$

Recall $a, b \sim U[0,1]$

## Hunter's optimal strategy



Need to prove

$$
\mathbb{P}\left(H_{i}=R_{i}, H_{i+j}=R_{i+j}\right) \lesssim \frac{1}{j n} .
$$

This is equivalent to showing that for $r$, s fixed
Recall $a, b \sim U[0,1]$

## Hunter's optimal strategy



Need to prove

$$
\mathbb{P}\left(H_{i}=R_{i}, H_{i+j}=R_{i+j}\right) \lesssim \frac{1}{j n} .
$$

This is equivalent to showing that for $r$, s fixed
Recall $a, b \sim U[0,1]$

$$
\mathbb{P}(a n+b i \in(r-1, r], n a+b(i+j) \in(s-1, s]) \lesssim \frac{1}{j n}
$$

## Hunter's optimal strategy



Need to prove

$$
\mathbb{P}\left(H_{i}=R_{i}, H_{i+j}=R_{i+j}\right) \lesssim \frac{1}{j n} .
$$

This is equivalent to showing that for $r$, s fixed
Recall $a, b \sim U[0,1]$

$$
\mathbb{P}(a n+b i \in(r-1, r], n a+b(i+j) \in(s-1, s]) \lesssim \frac{1}{j n}
$$

Subtract the two constraints to get $b j \in[s-r-1, s-r+1]-$ this has measure at most $2 / j$.

## Hunter's optimal strategy



Need to prove

$$
\mathbb{P}\left(H_{i}=R_{i}, H_{i+j}=R_{i+j}\right) \lesssim \frac{1}{j n} .
$$

This is equivalent to showing that for $r$, s fixed
Recall $a, b \sim U[0,1]$

$$
\mathbb{P}(a n+b i \in(r-1, r], n a+b(i+j) \in(s-1, s]) \lesssim \frac{1}{j n}
$$

Subtract the two constraints to get $b j \in[s-r-1, s-r+1]-$ this has measure at most $2 / j$.

After fixing $b$, the choices for a have measure $1 / n$.

## Hunter's optimal strategy



Need to prove

$$
\mathbb{P}\left(H_{i}=R_{i}, H_{i+j}=R_{i+j}\right) \lesssim \frac{1}{j n} .
$$

This is equivalent to showing that for $r$, s fixed
Recall $a, b \sim U[0,1]$

$$
\mathbb{P}(a n+b i \in(r-1, r], n a+b(i+j) \in(s-1, s]) \lesssim \frac{1}{j n}
$$

Subtract the two constraints to get $b j \in[s-r-1, s-r+1]-$ this has measure at most $2 / j$.

After fixing $b$, the choices for a have measure $1 / n$.

## Rabbit’s optimal strategy



## Rabbit's optimal strategy

$$
\text { Recall } K_{n}=\sum_{i=0}^{n-1} \mathbf{l}\left(H_{i}=R_{i}\right)
$$

## Rabbit's optimal strategy

With the hunter's strategy above

$$
\text { Recall } K_{n}=\sum_{i=0}^{n-1} \mathbf{l}\left(H_{i}=R_{i}\right)
$$



## Rabbit's optimal strategy

With the hunter's strategy above


$$
\text { Recall } K_{n}=\sum_{i=0}^{n-1} \mathbf{l}\left(H_{i}=R_{i}\right)
$$

$$
\mathbb{P}\left(K_{n}>0\right) \gtrsim \frac{1}{\log n} .
$$

## Rabbit's optimal strategy

With the hunter's strategy above

$$
\text { Recall } K_{n}=\sum_{i=0}^{n-1} \mathbf{l}\left(H_{i}=R_{i}\right)
$$

$$
\mathbb{P}\left(K_{n}>0\right) \gtrsim \frac{1}{\log n} .
$$

This gave expected capture time at most $n \log n$.

## Rabbit's optimal strategy

With the hunter's strategy above

$$
\begin{gathered}
\text { Recall } K_{n}=\sum_{i=0}^{n-1} \mathbf{l}\left(H_{i}=R_{i}\right) \\
\mathbb{P}\left(K_{n}>0\right) \gtrsim \frac{1}{\log n} .
\end{gathered}
$$

This gave expected capture time at most $n \log n$.
What about the rabbit?

## Rabbit's optimal strategy

With the hunter's strategy above

$$
\text { Recall } K_{n}=\sum_{i=0}^{n-1} \mathbf{l}\left(H_{i}=R_{i}\right)
$$

$$
\mathbb{P}\left(K_{n}>0\right) \gtrsim \frac{1}{\log n} .
$$

This gave expected capture time at most $n \log n$.
What about the rabbit? Can he escape for time of order $n \log n$ ?

## Rabbit's optimal strategy

With the hunter's strategy above

$$
\text { Recall } K_{n}=\sum_{i=0}^{n-1} \mathbf{l}\left(H_{i}=R_{i}\right)
$$



$$
\mathbb{P}\left(K_{n}>0\right) \gtrsim \frac{1}{\log n} .
$$

This gave expected capture time at most $n \log n$.
What about the rabbit? Can he escape for time of order $n \log n$ ?
Looking for a rabbit strategy with

$$
\mathbb{P}\left(K_{n}>0\right) \lesssim \frac{1}{\log n} .
$$

## Rabbit's optimal strategy

With the hunter's strategy above

$$
\text { Recall } K_{n}=\sum_{i=0}^{n-1} \mathbf{l}\left(H_{i}=R_{i}\right)
$$



$$
\mathbb{P}\left(K_{n}>0\right) \gtrsim \frac{1}{\log n} .
$$

This gave expected capture time at most $n \log n$.
What about the rabbit? Can he escape for time of order $n \log n$ ?
Looking for a rabbit strategy with

$$
\mathbb{P}\left(K_{n}>0\right) \lesssim \frac{1}{\log n} .
$$

Extend the strategies until time $2 n$ and define $K_{2 n}$ analogously.

## Rabbit's optimal strategy

With the hunter's strategy above

$$
\text { Recall } K_{n}=\sum_{i=0}^{n-1} \mathbf{l}\left(H_{i}=R_{i}\right)
$$



$$
\mathbb{P}\left(K_{n}>0\right) \gtrsim \frac{1}{\log n} .
$$

This gave expected capture time at most $n \log n$.
What about the rabbit? Can he escape for time of order $n \log n$ ?
Looking for a rabbit strategy with

$$
\mathbb{P}\left(K_{n}>0\right) \lesssim \frac{1}{\log n} .
$$

Extend the strategies until time $2 n$ and define $K_{2 n}$ analogously. Obviously

$$
\mathbb{P}\left(K_{n}>0\right) \leq \frac{\mathbb{E}\left[K_{2 n}\right]}{\mathbb{E}\left[K_{2 n} \mid K_{n}>0\right]}
$$

## Rabbit's optimal strategy

## Rabbit's optimal strategy

If the rabbit starts at a uniform point and the jumps are independent, then

## Rabbit's optimal strategy

If the rabbit starts at a uniform point and the jumps are independent, then

$$
\mathbb{E}\left[K_{2 n}\right]=2 \quad \text { Recall } K_{2 n}=\sum_{i=0}^{2 n-1} \mathbf{l}\left(H_{i}=R_{i}\right)
$$

## Rabbit's optimal strategy

If the rabbit starts at a uniform point and the jumps are independent, then


$$
\text { Recall } K_{2 n}=\sum_{i=0}^{2 n-1} \mathbf{I}\left(H_{i}=R_{i}\right)
$$

Idea: Need to make $\mathbb{E}\left[K_{2 n} \mid K_{n}>0\right]$ "big" so $\mathbb{P}\left(K_{n}>0\right) \leq(\log n)^{-1}$.

## Rabbit's optimal strategy

If the rabbit starts at a uniform point and the jumps are independent, then


$$
\text { Recall } K_{2 n}=\sum_{i=0}^{2 n-1} \mathbf{l}\left(H_{i}=R_{i}\right)
$$

Idea: Need to make $\mathbb{E}\left[K_{2 n} \mid K_{n}>0\right]$ "big" so $\mathbb{P}\left(K_{n}>0\right) \leq(\log n)^{-1}$.
This means that given the rabbit and hunter collided, we want them to collide "a lot". The hunter can only move to neighbours or stay put.

## Rabbit's optimal strategy

If the rabbit starts at a uniform point and the jumps are independent, then


$$
\mathbb{E}\left[K_{2 n}\right]=2 \quad \text { Recall } K_{2 n}=\sum_{i=0}^{2 n-1} \mathbf{l}\left(H_{i}=R_{i}\right)
$$

Idea: Need to make $\mathbb{E}\left[K_{2 n} \mid K_{n}>0\right]$ "big" so $\mathbb{P}\left(K_{n}>0\right) \leq(\log n)^{-1}$.
This means that given the rabbit and hunter collided, we want them to collide "a lot". The hunter can only move to neighbours or stay put.
So the rabbit should also choose a distribution for the jumps that favors short distances, yet grows linearly in time. This suggests a Cauchy random walk.

## Cauchy Rabbit



## Cauchy Rabbit

By time $i$ the hunter can only be in the set $\{-i \bmod n, \ldots, i \bmod n\}$. We are looking for a distribution for the rabbit so that

## Cauchy Rabbit

By time $i$ the hunter can only be in the set $\{-i \bmod n, \ldots, i \bmod n\}$. We are looking for a distribution for the rabbit so that

$$
\mathbb{P}\left(R_{i}=\ell\right) \gtrsim \frac{1}{i} \quad \text { for } \ell \in\{-i \bmod n, \ldots, i \bmod n\}
$$

## Cauchy Rabbit

By time $i$ the hunter can only be in the set $\{-i \bmod n, \ldots, i \bmod n\}$. We are looking for a distribution for the rabbit so that

$$
\mathbb{P}\left(R_{i}=\ell\right) \gtrsim \frac{1}{i} \quad \text { for } \ell \in\{-i \bmod n, \ldots, i \bmod n\}
$$

Then by the Markov property

$$
\mathbb{E}\left[K_{2 n} \mid K_{n}>0\right] \geq \sum_{i=0}^{n-1} \mathbb{P}_{0}\left(H_{i}=R_{i}\right) \gtrsim \log n
$$

## Cauchy Rabbit

By time $i$ the hunter can only be in the set $\{-i \bmod n, \ldots, i \bmod n\}$. We are looking for a distribution for the rabbit so that

$$
\mathbb{P}\left(R_{i}=\ell\right) \gtrsim \frac{1}{i} \quad \text { for } \ell \in\{-i \bmod n, \ldots, i \bmod n\}
$$

Then by the Markov property

$$
\mathbb{E}\left[K_{2 n} \mid K_{n}>0\right] \geq \sum_{i=0}^{n-1} \mathbb{P}_{0}\left(H_{i}=R_{i}\right) \gtrsim \log n .
$$

Intuition: If $X_{1}, \ldots$ are i.i.d. Cauchy random variables, i.e. with density $\left(\pi\left(1+x^{2}\right)\right)^{-1}$, then $X_{1}+\ldots+X_{n}$ is spread over $(-n, n)$ and with roughly uniform distribution.

## Cauchy Rabbit

By time $i$ the hunter can only be in the set $\{-i \bmod n, \ldots, i \bmod n\}$. We are looking for a distribution for the rabbit so that

$$
\mathbb{P}\left(R_{i}=\ell\right) \gtrsim \frac{1}{i} \quad \text { for } \ell \in\{-i \bmod n, \ldots, i \bmod n\}
$$

Then by the Markov property

$$
\mathbb{E}\left[K_{2 n} \mid K_{n}>0\right] \geq \sum_{i=0}^{n-1} \mathbb{P}_{0}\left(H_{i}=R_{i}\right) \gtrsim \log n .
$$

Intuition: If $X_{1}, \ldots$ are i.i.d. Cauchy random variables, i.e. with density $\left(\pi\left(1+x^{2}\right)\right)^{-1}$, then $X_{1}+\ldots+X_{n}$ is spread over $(-n, n)$ and with roughly uniform distribution.
This is what we want- But in the discrete setting...

## Cauchy Rabbit

The Cauchy distribution can be embedded in planar Brownian motion.

## Cauchy Rabbit

The Cauchy distribution can be embedded in planar Brownian motion.
Let's imitate that in the discrete setting:

## Cauchy Rabbit

The Cauchy distribution can be embedded in planar Brownian motion.
Let's imitate that in the discrete setting:
Let $\left(X_{t}, Y_{t}\right)_{t}$ be a simple random walk in $\mathbb{Z}^{2}$. Define hitting times

$$
T_{i}=\inf \left\{t \geq 0: Y_{t}=i\right\}
$$

and set $R_{i}=X_{T_{i}} \operatorname{modn}$.

## Cauchy Rabbit

The Cauchy distribution can be embedded in planar Brownian motion.
Let's imitate that in the discrete setting:
Let $\left(X_{t}, Y_{t}\right)_{t}$ be a simple random walk in $\mathbb{Z}^{2}$. Define hitting times

$$
T_{i}=\inf \left\{t \geq 0: Y_{t}=i\right\}
$$

and set $R_{i}=X_{T_{i}} \bmod n$.


## Cauchy Rabbit

The Cauchy distribution can be embedded in planar Brownian motion.
Let's imitate that in the discrete setting:
Let $\left(X_{t}, Y_{t}\right)_{t}$ be a simple random walk in $\mathbb{Z}^{2}$. Define hitting times

$$
T_{i}=\inf \left\{t \geq 0: Y_{t}=i\right\}
$$

and set $R_{i}=X_{T_{i}} \operatorname{modn}$.

- With probability $1 / 4$, SRW exits the square via the top side.



## Cauchy Rabbit

The Cauchy distribution can be embedded in planar Brownian motion.
Let's imitate that in the discrete setting:
Let $\left(X_{t}, Y_{t}\right)_{t}$ be a simple random walk in $\mathbb{Z}^{2}$. Define hitting times

$$
T_{i}=\inf \left\{t \geq 0: Y_{t}=i\right\}
$$

and set $R_{i}=X_{T_{i}} \bmod n$.

- With probability $1 / 4$, SRW exits the square via the top side.
- Of the $2 i+1$ nodes on the top, the middle node is the most likely hitting point: subdivide all edges, and condition on the (even) number of horizontal steps until height $i$ is reached; the horizontal displacement is a shifted binomial, so the mode is the mean.



## Cauchy Rabbit

The Cauchy distribution can be embedded in planar Brownian motion.
Let's imitate that in the discrete setting:
Let $\left(X_{t}, Y_{t}\right)_{t}$ be a simple random walk in $\mathbb{Z}^{2}$. Define hitting times

$$
T_{i}=\inf \left\{t \geq 0: Y_{t}=i\right\}
$$

and set $R_{i}=X_{T_{i}} \bmod n$.

- With probability $1 / 4$, SRW exits the square via the top side.
- Of the $2 i+1$ nodes on the top, the middle node is the most likely hitting point: subdivide all edges, and condition on the (even) number of horizontal steps until height $i$ is reached; the horizontal displacement is a shifted binomial, so the mode is the mean.
- Thus the hitting probability at $(0, i)$ is at least $1 /(8 i+4)$.



## Cauchy Rabbit



## Cauchy Rabbit

- Suppose $0<k<i$.



## Cauchy Rabbit

- Suppose $0<k<i$.
- With probability $1 / 4$, SRW exits the square $[-k, k]^{2}$ via the right side.



## Cauchy Rabbit

- Suppose $0<k<i$.
- With probability $1 / 4$, SRW exits the square $[-k, k]^{2}$ via the right side.
- Repeating the previous argument, the hitting probability at $(k, i)$ is at least $c / i$.



## Rabbit and Hunter construct Kakeya sets

Let $\left(R_{t}\right)_{t}$ be a rabbit strategy. Extend it to real times as a step function.

## Rabbit and Hunter construct Kakeya sets

Let $\left(R_{t}\right)_{t}$ be a rabbit strategy. Extend it to real times as a step function.
Let $a$ be uniform in $[-1,1]$ and $b$ uniform in $[0,1]$ and $H_{t}=a n+b t$. There is a collision at time $t \in[0, n)$ if $R_{t}=H_{t}$.

## Rabbit and Hunter construct Kakeya sets

Let $\left(R_{t}\right)_{t}$ be a rabbit strategy. Extend it to real times as a step function.
Let $a$ be uniform in $[-1,1]$ and $b$ uniform in $[0,1]$ and $H_{t}=a n+b t$. There is a collision at time $t \in[0, n)$ if $R_{t}=H_{t}$.

What is the chance there is a collision in $[m, m+1) ?$

## Rabbit and Hunter construct Kakeya sets

Let $\left(R_{t}\right)_{t}$ be a rabbit strategy. Extend it to real times as a step function.
Let $a$ be uniform in $[-1,1]$ and $b$ uniform in $[0,1]$ and $H_{t}=a n+b t$. There is a collision at time $t \in[0, n)$ if $R_{t}=H_{t}$.

What is the chance there is a collision in $[m, m+1) ?$
It is $\mathbb{P}\left(a n+b m \leq R_{m}<a n+b(m+1)\right)$, which is half the area of the triangle

## Rabbit and Hunter construct Kakeya sets

Let $\left(R_{t}\right)_{t}$ be a rabbit strategy. Extend it to real times as a step function.
Let $a$ be uniform in $[-1,1]$ and $b$ uniform in $[0,1]$ and $H_{t}=a n+b t$. There is a collision at time $t \in[0, n)$ if $R_{t}=H_{t}$.

What is the chance there is a collision in $[m, m+1) ?$
It is $\mathbb{P}\left(a n+b m \leq R_{m}<a n+b(m+1)\right)$, which is half the area of the triangle


## Rabbit and Hunter construct Kakeya sets

Let $\left(R_{t}\right)_{t}$ be a rabbit strategy. Extend it to real times as a step function.
Let $a$ be uniform in $[-1,1]$ and $b$ uniform in $[0,1]$ and $H_{t}=a n+b t$. There is a collision at time $t \in[0, n)$ if $R_{t}=H_{t}$.

What is the chance there is a collision in $[m, m+1) ?$
It is $\mathbb{P}\left(a n+b m \leq R_{m}<a n+b(m+1)\right)$, which is half the area of the triangle


## Rabbit and Hunter construct Kakeya sets

Hence the probability of collision in $[0, n)$ is half the area of the union of all such triangles, which are translates of


## Rabbit and Hunter construct Kakeya sets

Hence the probability of collision in $[0, n)$ is half the area of the union of all such triangles, which are translates of


In these triangles we can find a unit segment in all directions that have an angle in $[0, \pi / 4]$

## Rabbit and Hunter construct Kakeya sets

If the rabbit employs the Cauchy strategy, then

$$
\mathbb{P}(\text { collision in the first } n \text { steps }) \lesssim \frac{1}{\log n}
$$

## Rabbit and Hunter construct Kakeya sets

If the rabbit employs the Cauchy strategy, then

$$
\mathbb{P}(\text { collision in the first } n \text { steps }) \lesssim \frac{1}{\log n} \text {. }
$$

Hence, this gives a set of triangles with area of order at most $1 / \log n$.

## Rabbit and Hunter construct Kakeya sets

If the rabbit employs the Cauchy strategy, then

$$
\mathbb{P}(\text { collision in the first } n \text { steps }) \lesssim \frac{1}{\log n}
$$

Hence, this gives a set of triangles with area of order at most $1 / \log n$.


Simulation generated with $n=32$

## The Cauchy process $\left\{X_{t}\right\}$ can be embedded in planar Brownian motion.

## The Cauchy process $\left\{X_{t}\right\}$ can be embedded in planar Brownian motion.



## The Cauchy process $\left\{X_{t}\right\}$ can be embedded in planar Brownian motion.


$X_{t+s}-X_{t}$ has the same law as $t X_{1}$ and $X_{1}$ has the Cauchy distribution (density given by $\left.\left(\pi\left(1+x^{2}\right)\right)^{-1}\right)$.

## Kakeya sets from the Cauchy process

Motivated by the Cauchy strategy, let's see a continuum analog of the probabilistic Kakeya construction of the hunter and rabbit.

## Kakeya sets from the Cauchy process

Motivated by the Cauchy strategy, let's see a continuum analog of the probabilistic Kakeya construction of the hunter and rabbit.

Let $\left(X_{t}\right)_{t}$ be a Cauchy process. Set

$$
\Lambda=\left\{\left(a, X_{t}+a t\right): a, t \in[0,1]\right\}
$$

## Kakeya sets from the Cauchy process

Motivated by the Cauchy strategy, let's see a continuum analog of the probabilistic Kakeya construction of the hunter and rabbit.

Let $\left(X_{t}\right)_{t}$ be a Cauchy process. Set

$$
\Lambda=\left\{\left(a, X_{t}+a t\right): a, t \in[0,1]\right\}
$$

$\Lambda$ is a quarter of a Kakeya set - it contains all directions from 0 up to $45^{\circ}$ degrees. Take four rotated copies of $\wedge$ to obtain a Kakeya set.

## Kakeya sets from the Cauchy process

Motivated by the Cauchy strategy, let's see a continuum analog of the probabilistic Kakeya construction of the hunter and rabbit.

Let $\left(X_{t}\right)_{t}$ be a Cauchy process. Set

$$
\Lambda=\left\{\left(a, X_{t}+a t\right): a, t \in[0,1]\right\}
$$

$\Lambda$ is a quarter of a Kakeya set - it contains all directions from 0 up to $45^{\circ}$ degrees. Take four rotated copies of $\wedge$ to obtain a Kakeya set.
$\Lambda$ is an optimal Kakeya set!

## Kakeya sets from the Cauchy process

Motivated by the Cauchy strategy, let's see a continuum analog of the probabilistic Kakeya construction of the hunter and rabbit.

Let $\left(X_{t}\right)_{t}$ be a Cauchy process. Set

$$
\Lambda=\left\{\left(a, X_{t}+a t\right): a, t \in[0,1]\right\}
$$

$\Lambda$ is a quarter of a Kakeya set - it contains all directions from 0 up to $45^{\circ}$ degrees. Take four rotated copies of $\wedge$ to obtain a Kakeya set.

## $\Lambda$ is an optimal Kakeya set!

$\operatorname{Leb}(\Lambda)=0$ and most importantly the $\varepsilon$-neighbourhood satisfies almost surely

$$
\operatorname{Leb}(\Lambda(\varepsilon)) \asymp \frac{1}{|\log \varepsilon|}
$$

## Kakeya sets - Open problems

Keich in 1999 showed there is no Kakeya set which is a union of $n$ triangles with area of smaller order than $1 / \log n$. Bourgain earlier noted that the $\varepsilon$ neighborhood of any Kakeya set has area at least $1 /|\log \varepsilon|$.

## Kakeya sets - Open problems

Keich in 1999 showed there is no Kakeya set which is a union of $n$ triangles with area of smaller order than $1 / \log n$. Bourgain earlier noted that the $\varepsilon$ neighborhood of any Kakeya set has area at least $1 /|\log \varepsilon|$.

So the random construction is optimal.

## Kakeya sets - Open problems

Keich in 1999 showed there is no Kakeya set which is a union of $n$ triangles with area of smaller order than $1 / \log n$. Bourgain earlier noted that the $\varepsilon$ neighborhood of any Kakeya set has area at least $1 /|\log \varepsilon|$.

So the random construction is optimal.
Davies in 1971 showed that Kakeya sets in the plane have Hausdorff dimension equal to 2.

## Kakeya sets - Open problems

Keich in 1999 showed there is no Kakeya set which is a union of $n$ triangles with area of smaller order than $1 / \log n$. Bourgain earlier noted that the $\varepsilon$ neighborhood of any Kakeya set has area at least $1 /|\log \varepsilon|$.

So the random construction is optimal.
Davies in 1971 showed that Kakeya sets in the plane have Hausdorff dimension equal to 2.

It is a major open problem whether Kakeya sets in dimensions $d>2$ have Hausdorff dimension equal to $d$.

## Kakeya sets - Open problems

Keich in 1999 showed there is no Kakeya set which is a union of $n$ triangles with area of smaller order than $1 / \log n$. Bourgain earlier noted that the $\varepsilon$ neighborhood of any Kakeya set has area at least $1 /|\log \varepsilon|$.

So the random construction is optimal.
Davies in 1971 showed that Kakeya sets in the plane have Hausdorff dimension equal to 2.

It is a major open problem whether Kakeya sets in dimensions $d>2$ have Hausdorff dimension equal to $d$.

## General graphs

- Consider a graph on $n$ vertices.


## General graphs

- Consider a graph on $n$ vertices.
- Pick a spanning tree.


## General graphs

- Consider a graph on $n$ vertices.
- Pick a spanning tree.



## General graphs

- Consider a graph on $n$ vertices.
- Pick a spanning tree.
- Depth first search yields



## General graphs

- Consider a graph on $n$ vertices.
- Pick a spanning tree.
- Depth first search yields



## General graphs

- Consider a graph on $n$ vertices.
- Pick a spanning tree.
- Depth first search yields
- This is a closed path of length $2 n-2$.



## General graphs

- Consider a graph on $n$ vertices.
- Pick a spanning tree.
- Depth first search yields
- This is a closed path of length $2 n-2$.
- The hunter can now employ his previous strategy on this path. This will give $O(n \log n)$ capture time.


On any graph the hunter can catch the rabbit in time $O(n \log n)$.

On any graph the hunter can catch the rabbit in time $O(n \log n)$. Open Question: If the hunter and rabbit both walk on the same graph, is the expected capture time $O(n)$ ?


[^0]:    ${ }^{1}$ Microsoft Research

