Hamilton decompositions of regular expanders: proof of Kelly's conjecture for large tournaments

Deryk Osthus

University of Birmingham

July 2013

Joint work with Daniela Kühn (Birmingham)

Deryk Osthus

Hamilton decompositions of regular expanders: proof of Kelly'

Hamilton decomposition of G

= set of edge-disjoint Hamilton cycles covering all edges of G

Which graphs/digraphs have Hamilton decompositions? Very few general conditions known

Theorem (Walecki, 1892)

Complete graph K_n has a Hamilton decomposition \Leftrightarrow n odd

Construction: find Hamilton path decomposition for K_{n-1}

then add extra vertex and close paths into Hamilton cycles

Theorem (Tillson, 1980)

Complete digraph K_n has a Hamilton decomposition $\Leftrightarrow n \neq 4, 6$

tournament: orientation of a complete graph regular tournament: every vertex has same in- and outdegree

Conjecture (Kelly, 1968)

Every regular tournament has a Hamilton decomposition.

Decomposition of regular tournament into 2 Hamilton cycles

tournament: orientation of a complete graph regular tournament: every vertex has same in- and outdegree

Conjecture (Kelly, 1968)

Every regular tournament has a Hamilton decomposition.

Decomposition of regular tournament into 2 Hamilton cycles

- even finding 2 edge-disjoint Hamilton cycles is not easy (Jackson 1981, Zhang 1980)
- further partial results due to Thomassen (1979, 1982), Alspach et al. (1990), Häggkvist (1993), Häggkvist & Thomason (1997), Bang-Jensen & Yeo (2004) ...

tournament: orientation of a complete graph regular tournament: every vertex has same in- and outdegree

Conjecture (Kelly, 1968)

Every regular tournament has a Hamilton decomposition.

Decomposition of regular tournament into 2 Hamilton cycles

Theorem (Kühn, Osthus & Treglown, 2010)

Approximate version of Kelly's conjecture: set of edge-disjoint Hamilton cycles covering almost all edges

▲冊→ ▲屋→ ▲屋→

tournament: orientation of a complete graph regular tournament: every vertex has same in- and outdegree

Conjecture (Kelly, 1968)

Every regular tournament has a Hamilton decomposition.

Decomposition of regular tournament into 2 Hamilton cycles

Theorem (Kühn & Osthus, 2013)

Every large regular tournament has a Hamilton decomposition.

▲圖▶ ▲ 国▶ ▲ 国▶

Result extends far beyond tournaments:

Theorem (Kühn, Osthus 2012⁺)

Every large regular oriented graph of degree at least $\frac{3n+\varepsilon n}{8}$ has a Hamilton decomposition.

(3n/8) is a natural barrier as this degree is needed to force single Hamilton cycle

Theorem (Keevash, Kühn & Osthus, 2009)

Every large oriented graph with $\delta^+, \delta^- \geq \frac{3n-4}{8}$ has a Hamilton cycle.

(4月) イヨト イヨト

digraph G on n vertices is a (ν, τ) -robust outexpander \Leftrightarrow for every vertex set S with $\tau n \leq |S| \leq (1 - \tau)n$ there are $(1 + \nu)|S|$ vertices with νn inneighbours in S

Theorem (Kühn & Osthus 2013)

Suppose $1/n \ll \nu \ll \tau \ll \alpha$. Then every α n-regular (ν, τ)-robust outexpander on n vertices has a Hamilton decomposition.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (Kühn & Osthus 2013)

Suppose $1/n \ll \nu \ll \tau \ll \alpha$. Then every α n-regular (ν, τ) -robust outexpander on n vertices has a Hamilton decomposition.

Digraph classes which are robust outexpanders:

- (1) oriented graphs G with $\delta^+(G), \delta^-(G) \ge 3n/8 + o(n)$
- (2) digraphs G with $\delta^+(G), \delta^-(G) \ge n/2 + o(n)$
- (3) dense quasi-random digraphs
- \Rightarrow such digraphs have Hamilton decompositions if they are regular

So (3) generalizes result of Alspach, Bryant & Dyer (2012) on Hamilton decompositions of Paley graphs (for large n)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQ@

Theorem (Kühn & Osthus 2013)

Every large regular tournament has a Hamilton decomposition.

Crucial notion: *H* is robustly decomposable if: for any *H'* which is regular and sparse compared to *H* $H \cup H'$ has a Hamilton decomposition

- Far from clear whether such *H* exists!!
- Will use this in combination with approx. result

Theorem (Kühn, Osthus & Treglown, 2010)

Every regular tournament G contains a set of edge-disjoint Hamilton cycles covering almost all the edges.

(generalized to regular outexpanders by Osthus & Staden 2013)

Finding Hamilton decompositions

Remove a sparse regular robustly decomposable H to obtain G_1 .

Finding Hamilton decompositions

Find an approximate decomposition of G_1 . Call the leftover G_2 .

())

Finding Hamilton decompositions

- H robustly decomposable
- \Rightarrow there is a Hamilton decomposition of $G_2 \cup H$.

Theorem (Kühn & Osthus 2013)

Suppose $1/n \ll \nu \ll \tau \ll \alpha$. Then every α n-regular (ν, τ)-robust outexpander on n vertices has a Hamilton decomposition.

Many applications:

...

- conjecture of Erdős from 1981 on random tournaments
- crucial ingredient for proof of the 1-factorization conjecture (1950's) and Hamilton decomposition conjecture (1970)
- conjecture of Nash-Williams from 1970's
- solves a problem on domination ratio for TSP tours by Glover & Punnen as well as Alon, Gutin & Krivelevich
- solves dense case of a conjecture of Frieze and Krivelevich on packing Hamilton cycles in random graphs

(日) (同) (E) (E) (E)

Conjecture (Erdős, 1981)

Let T be a random tournament. Then a.a.s. T contains $\min\{\delta^+(T), \delta^-(T)\}$ edge-disjoint Hamilton cycles.

Note a random tournament is likely to be almost (but not completely!) regular.

Proof of conjecture:

- Let $c = \min\{\delta^+(T), \delta^-(T)\}$. Then a.a.s. $c \sim n/2$.
- Can show T contains a c-regular oriented graph T'. (Find T' using the Max-flow-Min-cut theorem)
- \Rightarrow T' is a robust outexpander
- ullet \Rightarrow T' has a Hamilton decomposition

(本部) (本語) (本語) (語)

Can deduce a version of main result for undirected graphs:

graph G on n vertices is a (ν, τ) -robust expander \Leftrightarrow for every vertex set S with $\tau n \leq |S| \leq (1 - \tau)n$ there are $(1 + \nu)|S|$ vertices with νn neighbours in S

Theorem (Kühn & Osthus 2013)

Every large even-regular robust expander G of linear degree has a Hamilton decomposition.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Kühn & Osthus 2013)

Every large even-regular robust expander G of linear degree has a Hamilton decomposition.

Proof strategy:

• Find orientation G_{orient} of G so that G_{orient} is a regular robust outexpander. Do this by choosing a random orientation and change directions of some edges to make it regular.

• Can apply main result on digraphs to obtain (directed) Hamilton decomposition of G_{orient} , which corresponds to (undirected) Hamilton decomposition of G.

1-factor (or perfect matching) of G= set of disjoint edges covering all vertices of G1-factorization of G

= set of edge-disjoint 1-factors covering all edges of G

D-regular graph G has 1-factorization $\iff G$ has an edge-colouring with D colours

A 1-factorization of the complete graph K_8 on 8 vertices

1-factorization conjecture

1-factorization conjecture (Dirac 1950's)

Every D-regular graph G on an even number n of vertices with $D \ge 2\lceil n/4 \rceil - 1$ has a 1-factorization.

Explicitly,

$$D \ge \begin{cases} n/2 - 1 & \text{if } n = 0 \pmod{4}, \\ n/2 & \text{if } n = 2 \pmod{4}. \end{cases}$$

Extremal examples

Odd component contains no 1-factor.

Deryk Osthus

Hamilton decompositions of regular expanders: proof of Kelly

1-factorization conjecture

1-factorization conjecture (Dirac 1950's)

Every D-regular graph G on an even number n of vertices with $D \ge 2\lceil n/4 \rceil - 1$ has a 1-factorization.

- True for D = n 1, i.e. complete graphs.
- Chetwynd and Hilton (1989), and independently Niessen and Volkmann (1990), for $D \ge (\sqrt{7} 1)n/2 \approx 0.82n$.
- Perkovic and Reed (1997) for $D \ge (1/2 + \varepsilon)n$ with $\varepsilon > 0$.
- Vaughan (2013) : an approximate multigraph version.

▲圖 ▶ ★ 国 ▶ ★ 国 ▶

1-factorization conjecture

1-factorization conjecture (Dirac 1950's)

Every D-regular graph G on an even number n of vertices with $D \ge 2\lceil n/4 \rceil - 1$ has a 1-factorization.

- True for D = n 1, i.e. complete graphs.
- Chetwynd and Hilton (1989), and independently Niessen and Volkmann (1990), for $D \ge (\sqrt{7} 1)n/2 \approx 0.82n$.
- Perkovic and Reed (1997) for $D \ge (1/2 + \varepsilon)n$ with $\varepsilon > 0$.
- Vaughan (2013) : an approximate multigraph version.

Theorem (Csaba, Kühn, Lo, Osthus, Treglown 2013⁺)

1-factorization conjecture holds for sufficiently large n.

Hamilton decomposition conjecture (Nash-Williams 1970)

Every D-regular graph on n vertices with $D \ge \lfloor n/2 \rfloor$ has a decomposition into Hamilton cycles and at most one perfect matching.

Extremal examples

No disconnected graph contains a Hamilton cycle.

・ 同 ト ・ ヨ ト ・ ヨ ト

Hamilton decomposition conjecture

Hamilton decomposition conjecture (Nash-Williams 1970)

Every D-regular graph on n vertices with $D \ge \lfloor n/2 \rfloor$ has a decomposition into Hamilton cycles and at most one perfect matching.

- Nash-Williams (1969), $D \ge \lfloor n/2 \rfloor$ guarantees Hamilton cycle.
- Jackson (1979), D/2 n/6 edge-disjoint Hamilton cycles
- Christofides, Kühn and Osthus (2012) D ≥ n/2 + εn guarantees an almost Hamilton decomposition.

- 本部 とくき とくき とうき

Hamilton decomposition conjecture

Hamilton decomposition conjecture (Nash-Williams 1970)

Every D-regular graph on n vertices with $D \ge \lfloor n/2 \rfloor$ has a decomposition into Hamilton cycles and at most one perfect matching.

- Nash-Williams (1969), $D \ge \lfloor n/2 \rfloor$ guarantees Hamilton cycle.
- Jackson (1979), D/2 n/6 edge-disjoint Hamilton cycles
- Christofides, Kühn and Osthus (2012) D ≥ n/2 + εn guarantees an almost Hamilton decomposition.

Theorem (Csaba, Kühn, Lo, Osthus, Treglown 2013⁺)

Hamilton decomposition conjecture holds for sufficiently large n.

Extremal structure

G is ε -close to H if G can be transformed to H by adding/removing at most εn^2 edges.

Lemma

Let G be a D-regular graph on n vertices and $D \ge n/2 - 1$. Then either

- (i) G is a robust expander;
- (ii) G is ε -close to complete bipartite graph $K_{n/2,n/2}$;

(iii) G is ε -close to union of two complete graphs $K_{n/2}$.

Deryk Osthus Hamilton decompositions of regular expanders: proof of Kelly

Extremal structure

G is ε -close to H if G can be transformed to H by adding/removing at most εn^2 edges.

Lemma

Let G be a D-regular graph on n vertices and $D \ge n/2 - 1$. Then either

- (i) G is a robust expander; √
- (ii) G is ε -close to complete bipartite graph $K_{n/2,n/2}$;

(iii) G is ε -close to union of two complete graphs $K_{n/2}$.

Deryk Osthus

Hamilton decompositions of regular expanders: proof of Kelly

Theorem (Dirac, 1952)

Suppose that G is a graph on $n \ge 3$ vertices with minimum vertex degree $\delta \ge n/2$. Then G has a Hamilton cycle.

Minimum degree condition is best possible.

Theorem (Nash-Williams, 1971)

Suppose that G is a graph on $n \ge 3$ vertices with minimum vertex degree $\delta \ge n/2$. Then G has a at least 5n/224 edge-disjoint Hamilton cycles.

Conjecture (Nash-Williams):

can improve this to n/4 (clearly best possible)

イロン イヨン イヨン イヨン

Theorem (Dirac, 1952)

Suppose that G is a graph on $n \ge 3$ vertices with minimum vertex degree $\delta \ge n/2$. Then G has a Hamilton cycle.

Minimum degree condition is best possible.

Theorem (Nash-Williams, 1971)

Suppose that G is a graph on $n \ge 3$ vertices with minimum vertex degree $\delta \ge n/2$. Then G has a at least 5n/224 edge-disjoint Hamilton cycles.

Conjecture (Nash-Williams):

can improve this to n/4 (clearly best possible) Babai: can't do better than $\approx n/8$

イロン イヨン イヨン イヨン

Edge-disjoint Hamilton cycles in graphs of large mindegree

Babai's construction:

Every Hamilton cycles contains at least 2 edges from $B \Rightarrow G$ has at most |B|/4 edge-disjoint Hamilton cycles $\Rightarrow G$ has $\leq (n+2)/8$ edge-disjoint Hamilton cycles

Edge-disjoint Hamilton cycles in graphs of large mindegree

Babai's construction:

Every Hamilton cycles contains at least 2 edges from B $\Rightarrow G$ has at most |B|/4 edge-disjoint Hamilton cycles $\Rightarrow G$ has $\leq (n+2)/8$ edge-disjoint Hamilton cycles

Theorem (Csaba, Kühn, Lapinskas, Lo, Osthus, Treglown 2013⁺)

If n is sufficiently large then this is the correct bound.

More generally:

determined the number of edge-disjoint Hamilton cycles which are guaranteed in a graph G of given minimum degree

extremal construction similar to Babai's example

Have seen that robust expansion arises in many settings.

- Using Szemerédi's regularity lemma, can decide in polynomial time whether *G* is a robust expander.
- Robust expansion is a generalization of quasi-randomness.
- Quasi-randomness can be characterized by eigenvalues.

Question

Is there an algebraic characterization of robust expansion?

高 とう モン・ く ヨ と