Low Tree-Depth Decompositions

Sparsity, Dualities, Logic, and Limits

Jaroslav Nešetřil <u>Pa</u>

Patrice Ossona de Mendez

Charles University Praha, Czech Republic

LIA STRUCO

CAMS, CNRS/EHESS Paris, France

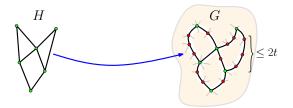
Erdős Centennial Conference — July 2013

Outline

- Taxonomy of Graph Classes
- Low Tree-depth Decompositions
- Some Applications
- Structural Limits

Topological resolution of a class ${\cal C}$

Shallow topological minors at depth t:



 $\mathcal{C} \,\widetilde{\triangledown} \, t = \{H : \text{some } \leq 2t \text{-subdivision of } H \text{ is a subgraph of some } G \in \mathcal{C}\}.$

Topological resolution:

$$\mathcal{C} \ \subseteq \ \mathcal{C} \ \widetilde{\triangledown} \ 0 \ \subseteq \ \mathcal{C} \ \widetilde{\triangledown} \ 1 \ \subseteq \ \ldots \ \subseteq \ \mathcal{C} \ \widetilde{\triangledown} \ t \ \subseteq \ \ldots \ \subseteq \ \mathcal{C} \ \widetilde{\triangledown} \ \infty$$

time

ъ

・ロト ・ 雪 ト ・ ヨ ト

Taxonomy of Classes

A class C is *nowhere dense* if

$$\forall t \in \mathbb{N}: \quad \omega(\mathcal{C} \,\widetilde{\nabla} \, t) < \infty$$

 \dots otherwise C is *somewhere dense*

 ${\mathcal C}$ has bounded expansion if

 $\forall t \in \mathbb{N} : \quad \overline{\mathrm{d}}(\mathcal{C} \,\widetilde{\nabla} \, t) < \infty$

Remark: bounded expansion \implies nowhere dense.

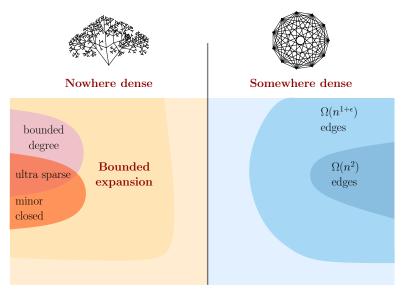
Other choices, other rooms?

	$\overline{\mathrm{d}}$	χ	ω	
Minors				
Topological minors	Bounded expansion		Nowhere dense	
Immersions				
Definition				

Other choices, other rooms?

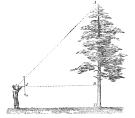
	$\overline{\mathrm{d}}$	χ	ω	
Minors	Bounded	Bounded	Nowhere	
	expansion	expansion	dense	
Topological	Bounded	Bounded	Nowhere	
minors	expansion	expansion	dense	
Immersions	Bounded	Bounded	Nowhere	
	expansion	expansion	dense	
Theorem (Nešetřil, POM 2012)				

Taxonomy of Classes



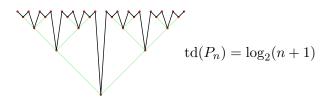
Tree-depth

Definition



The *tree-depth* td(G) of a graph G is the minimum height of a rooted forest Y s.t.

 $G \subseteq \text{Closure}(Y).$



Low tree-depth decompositions

 $\chi_p(G)$ is the minimum of colors such that every subset I of $\leq p$ colors induces a subgraph G_I so that $td(G_I) \leq |I|$.

Theorem (Nešetřil and POM; 2006, 2010)

$$\forall p, \sup_{G \in \mathcal{C}} \chi_p(G) < \infty \qquad \Longleftrightarrow \qquad \mathcal{C} \text{ has bounded expansion.}$$

$$\forall p, \limsup_{G \in \mathcal{C}} \frac{\log \chi_p(G)}{\log |G|} = 0 \quad \iff \quad \mathcal{C} \text{ is nowhere dense.}$$

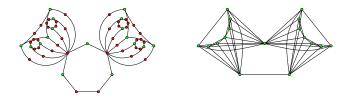
(extends DeVos, Ding, Oporowski, Sanders, Reed, Seymour, Vertigan on low tree-width decomposition of proper minor closed classes, 2004)

Distance Coloring

 $G^{\sharp p}$: x and y adjacent if $\operatorname{dist}_G(x, y) = p$.

Theorem (Nešetřil, POM; 2006)

For every bounded expansion class C and every odd integer p it holds $\sup_{G \in C} \chi(G^{\sharp p}) < \infty$.



Problem

How fast does $\sup_{G \in \mathcal{C}} \chi(G^{\sharp p})$ grow?

- 3

・ロト ・ 一下・ ・ ヨト

Restricted Homomorphism Dualities

Theorem (Nešetril, POM; 2006)

Every class C with bounded expansion has all restricted dualities (ARD): $\forall F$ connected $\exists D$ such that $F \nleftrightarrow D$ and

$$\forall G \in \mathcal{C}, \qquad (F \nrightarrow G) \iff (G \to D).$$

Example (Naserasr; 2007)

 \forall planar G

$$G \iff$$

$$G \longrightarrow$$

Restricted Homomorphism Dualities

Theorem (Nešetril, POM; 2006)

Every class C with bounded expansion has all restricted dualities (ARD): $\forall F$ connected $\exists D$ such that $F \not\rightarrow D$ and

$$\forall G \in \mathcal{C}, \qquad (F \nrightarrow G) \iff (G \to D).$$

Example (Thomassen; 1994)

 \forall toroidal G

イロト 不得 トイヨト イヨト 三日

Restricted Homomorphism Dualities

Theorem (Nešetril, POM; 2006)

Every class C with bounded expansion has all restricted dualities (ARD): $\forall F$ connected $\exists D$ such that $F \not\rightarrow D$ and

$$\forall G \in \mathcal{C}, \qquad (F \nrightarrow G) \iff (G \to D).$$

Theorem (Nešetril, POM; 2012)

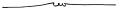
- For class C of graphs closed under subdivisions: C has ARD $\iff C$ has bounded expansion.
- For class C of directed graphs closed under reorientations: C has ARD $\iff C$ has bounded expansion.

Model Checking

Theorem (Dvořák, Kráľ, Thomas 2009; Grohe, Kreutzer 2011)

First-order properties may be checked in

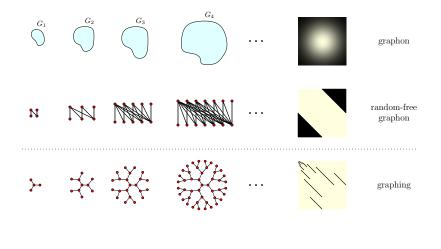
- O(n) time for G in a class with bounded expansion,
- $n^{1+o(1)}$ time for G in a class with locally bounded expansion.



Problem

Can first-order properties be checked in $O(n^c)$ time for G in a nowhere dense class?

Limits



- + ロト + 母 ト + 国 ト + 国 ト - 国 - のへで

Limits

Dense graphs

- exchangeable random infinite graph
- graphon

Aldous-Hoover-Kallenberg, Diaconis-Janson; Lovász-Szegedy

Bounded degree graphs

- unimodular distribution
- graphing

Benjamini-Schramm; Aldous-Lyons, Elek, Gaboriau

Structural Limits

Definition

A sequence $(G_n)_{n \in \mathbb{N}}$ is *FO-convergent* if, for every formula ϕ the probability $\langle \phi, G_n \rangle$ that G satisfies ϕ for a random assignment of the free variables converges.

Remark

This corresponds to convergence of measures μ_{G_n} associated to the G_n 's on the Stone space of the Lindenbaum-Tarski algebra of FO.

A Limit Object for Sparse Classes?

A *modeling* \mathbf{G} is a graph on a standard probability space s.t. every first-order definable set is measurable.

Theorem (Nešetřil, POM 2013+)

If a monotone class ${\mathcal C}$ has FO-limit modelings then ${\mathcal C}$ is nowhere dense.

Problem

Does every nowhere dense class has FO-limit modelings?

- true for bounded degree graphs (Nešetřil, POM 2012)
- true for bounded tree-depth graphs (Nešetřil, POM 2013)

Thank you for your attention.

