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Topological resolution of a class C
Shallow topological minors at depth t:

H G

≤ 2t

C Õ t = {H : some ≤ 2t-subdivision of H is a subgraph of some G ∈ C}.

Topological resolution:

C ⊆ C Õ 0 ⊆ C Õ 1 ⊆ . . . ⊆ C Õ t ⊆ . . . ⊆ C Õ∞

time
//



Taxonomy of Classes

A class C is nowhere dense if

∀t ∈ N : ω(C Õ t) <∞

. . . otherwise C is somewhere dense

C has bounded expansion if

∀t ∈ N : d(C Õ t) <∞

Remark: bounded expansion =⇒ nowhere dense.
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Taxonomy of Classes
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Tree-depth

Definition

The tree-depth td(G) of a graph G is
the minimum height of a rooted forest
Y s.t.

G ⊆ Closure(Y ).

td(Pn) = log2(n+ 1)



Low tree-depth decompositions

χp(G) is the minimum of colors such that every subset I of ≤ p
colors induces a subgraph GI so that td(GI) ≤ |I|.

Theorem (Nešetřil and POM; 2006, 2010)

∀p, sup
G∈C

χp(G) <∞ ⇐⇒ C has bounded expansion.

∀p, lim sup
G∈C

logχp(G)

log |G| = 0 ⇐⇒ C is nowhere dense.

(extends DeVos, Ding, Oporowski, Sanders, Reed, Seymour, Vertigan
on low tree-width decomposition of proper minor closed classes, 2004)



Distance Coloring

G]p: x and y adjacent if distG(x, y) = p.

Theorem (Nešetřil, POM; 2006)

For every bounded expansion class C and every odd integer p it
holds supG∈C χ(G

]p) <∞.

Problem
How fast does supG∈C χ(G

]p) grow?



Restricted Homomorphism Dualities

Theorem (Nešetril, POM; 2006)

Every class C with bounded expansion has all restricted
dualities (ARD): ∀F connected ∃D such that F 9 D and

∀G ∈ C, (F 9 G) ⇐⇒ (G→ D).

Example (Naserasr; 2007)

∀ planar G

−6−→ G ⇐⇒ G −→



Restricted Homomorphism Dualities

Theorem (Nešetril, POM; 2006)

Every class C with bounded expansion has all restricted
dualities (ARD): ∀F connected ∃D such that F 9 D and

∀G ∈ C, (F 9 G) ⇐⇒ (G→ D).

Example (Thomassen; 1994)

∀ toroidal G

−6−→ G ⇐⇒ G −→



Restricted Homomorphism Dualities

Theorem (Nešetril, POM; 2006)

Every class C with bounded expansion has all restricted
dualities (ARD): ∀F connected ∃D such that F 9 D and

∀G ∈ C, (F 9 G) ⇐⇒ (G→ D).

Theorem (Nešetril, POM; 2012)

• For class C of graphs closed under subdivisions:
C has ARD ⇐⇒ C has bounded expansion.

• For class C of directed graphs closed under reorientations:
C has ARD ⇐⇒ C has bounded expansion.



Model Checking

Theorem (Dvořák, Kráľ, Thomas 2009; Grohe, Kreutzer
2011)

First-order properties may be checked in
• O(n) time for G in a class with bounded expansion,
• n1+o(1) time for G in a class with locally bounded
expansion.

Problem
Can first-order properties be checked in O(nc) time for G in a
nowhere dense class?
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Limits

Dense graphs

• exchangeable random infinite graph
• graphon

Aldous–Hoover–Kallenberg, Diaconis–Janson; Lovász–Szegedy

Bounded degree graphs

• unimodular distribution
• graphing

Benjamini–Schramm; Aldous–Lyons, Elek, Gaboriau



Structural Limits

Definition
A sequence (Gn)n∈N is FO-convergent if, for every formula φ the
probability 〈φ,Gn〉 that G satisfies φ for a random assignment
of the free variables converges.

Remark
This corresponds to convergence of measures µGn associated to
the Gn’s on the Stone space of the Lindenbaum-Tarski algebra
of FO.



A Limit Object for Sparse Classes?

A modeling G is a graph on a standard probability space s.t.
every first-order definable set is measurable.

Theorem (Nešetřil, POM 2013+)

If a monotone class C has FO-limit modelings then C is nowhere
dense.

Problem
Does every nowhere dense class has FO-limit modelings?

• true for bounded degree graphs (Nešetřil, POM 2012)
• true for bounded tree-depth graphs (Nešetřil, POM 2013)



Thank you for your attention.


