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Expander sequences 

A sequence of 3-regular graphs 

 

 

forms an expander sequence if    
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Geometric reformulation 

There exists (equivalently for every) p>0 such that 
for every n vectors  

 

 

 

- p=1: the definition of expansion. 

- p=2: spectral gap. 

- Equivalence of p=1 and p=2: Cheeger’s inequality. 

- From now on in this talk: p=2.  
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Universal approximators 

Indyk (1999), Barhum-Goldreich-Shraibman (2007). 
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Metric spaces other than       ?  

A sequence of 3-regular graphs  

 
 
is an expander sequence with respect to a 
metric space (X,d) if for every  
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For every 3-regular graph 

and every metric space (X,d) we have  
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Nonlinear spectral gaps 

Definition. Let                                          be a graph 
and let (X,d) be a metric space. Then             

is the smallest                       such that for every        

                             we have                                           
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Nonlinear spectral gaps 

Definition’. Let                     be an n by n 
symmetric stochastic matrix and let (X,d) be a 
metric space. Then                    is the smallest 

                      such that for every                                            
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- If         is the normalized adjacency matrix of G 
then                                     . 

- If                                                            are the 
eigenvalues of A then  

   

where                                                             .  

 

- In general                   can be very different from 

                                   .  
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A sequence       of 3-regular graphs is an 
expander sequence with respect to (X,d) if 

 

 

If X is not a singleton then this implies that       is 
an expander in the classical sense.         

 

No constant-degree connected graph is an 
expander with respect to itself.          does not 
admit an expander sequence. 

Gn

sup
n¸1

°(Gn; d
2) <1

`1

Gn



Nonlinear spectral gaps have been first defined 
formally by Gromov (2001), but they have been 
studied implicitly in embedding theory starting 
with Enflo (1976). 
- Enflo (1976), Gromov (1983), Bourgain-Milman-Wolfson 

(1986), Pisier (1986), Linial-London-Rabinovich (1995), 
Matousek (1997). 

- Gromov (2003), Ozawa (2004), Kasparov-Yu (2006), V. 
Lafforgue (2008,2009,2010), Pisier (2010), Mendel-N. 
(2010,2012,2013). 

- Wang (1998,200), Gromov (2003), Izeki-Nayatani 
(2005), Pansu (2009), N.-Silberman (2011), Izeki-Kondo-
Nayatani (2012), Liao (2013). 

- Gromov (2001), Rabani-N. (2005), Pichot (2008).  



Normed spaces: Kasparov-Yu problem 

We saw that not all normed spaces admit 
expanders, but do uniformly convex normed spaces 
admit expanders? 
 
(Uniform convexity for a normed space X:  
 
 
 
 
                                      
                                                                                           ) 

P
nX

i=1

Pn

i=1bkblbl
RR 1
0
f(x)dx

Pn

i=1

Pn

i=1

Pn

i=1

x

y
0

x+y

2

²

1¡
°°x¡y

2

°° ¸ ±X(²)



Kasparov-Yu: does there exist a sequence of 
bounded degree graphs         that is an expander 
with respect to every uniformly convex normed 
space, i.e., for every uniformly convex normed 
space X,   

 

 

Such graphs are called super-expanders. 

 

(their hope was that such graphs do not exist) 
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Lafforgue: Super-expanders do exist! 

- Lafforgue (2008): Cayley graphs of finite 
quotients of co-compact lattices in                       
are super-expanders. 

- Liao (2013): Same for general connected 
almost simple algebraic groups with split rank 
at least 2 over non-Archimedian local field. 

- Open: Is the same true for                 ? 
(Margulis.)  
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Open: Are random regular graphs super-
expanders with positive probability? 

 

Open: Do there exist super-expanders whose 
girth is at least a constant multiple of their 
diameter? 



Mendel-N. (2010): An inductive construction of 
super-expanders, using a modified zigzag 
iteration (Reingold-Vadhan-Wigderson, 2002).   

 

A (significantly over-simplified) version of this 
iteration: 
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One of the key tools: calculus for nonlinear 
spectral gaps: 

 

 

 

In Hilbert space this holds as equivalence:    
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To prove such an inequality without using the 
algebraic (spectral) interpretation of                     , 
one needs to find a new proof even in Hilbert 
space.  

 

Our proof relies on martingale methods, 
including Pisier’s martingale cotype inequality 
for uniformly convex normed spaces in order to 
deduce K. Ball’s metric Markov cotype property.  
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Barycentric metric spaces 

Mendel-N. 2013: Nonlinear spectral calculus for 
metric spaces that are non-positively curved in 
the sense of Aleksandrov.  

 

Every (finitely supported) probability measure     
on X admits a point                        such that for 
every point                ,   
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Nonlinear martingales 

Using a barycenter map one can define 
expectations and conditional expectations. 

 

            probability space and                                 
an increasing filtration of sigma algebras. Then                                     
m                                            is a martingale if    
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Mendel-N. 2013: Pisier’s martingale cotype 
inequality extends to this notion of martingale, 
and therefore non-positively curved spaces 
satisfy calculus for nonlinear spectral gaps.  
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Question (N.-Silberman, 2004): Is true that for 
every non-positively curved metric space X, 
either every classical expander sequence is also 
an expander sequence with respect to X, or X 
does not admit any expander sequence?  



Theorem (Mendel-N., 2013). There exists a non-
positively curved metric space (X,d) that admits 
a sequence of 3-regular expanders          .  

 

Yet, if H is a uniformly random n-vertex d-regular 
graph then  
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Expanders for random graphs 

Theorem (Mendel-N., 2013). The graphs         of 
the previous theorem have the property that if 
H is a uniformly random m-vertex d-regular 
graph and          denotes the shortest-path 
metric on H then  
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Universal approximator for random 
graphs 
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The Euclidean cone 
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Berestovskii (1983): The Euclidean cone over a 
metric space (X,d) is the completion of                   
under the metric 

 

 

 

 

It turns out that the Euclidean cone over a 
random graph is close enough to a non-positively 
curved metric space to allow for the spectral 
calculus strategy to succeed.    
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A structure theorem for the Euclidean 
cone over a random graph 

Theorem (Mendel-N., 2013). There exists a non-
positively curved metric space X such that with 
probability at least                             if H is a 
uniformly random n-vertex d-regular graph then 
one can write                              and there is               
such that 
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