Intersection theorems for finite sets

Dhruv Mubayi Department of Mathematics, Statistics and Computer Science University of Illinois Chicago

Erdős Centennial Conference, Budapest, July 2013

< ∃ >

● *ax* ≤ 50

- *ax* ≤ 50
- ay ≤ 100

< □ > < @ > < 注 > < 注 > ... 注

- *ax* ≤ 50
- *ay* ≤ 100
- $bx \leq 100$

(4回) (注) (注) (注) (注)

- *ax* ≤ 50
- *ay* ≤ 100
- $bx \leq 100$
- $by \leq 100$

▲圖▶ ▲屋▶ ▲屋▶

3

- *ax* ≤ 50
- *ay* ≤ 100
- $bx \leq 100$
- $by \leq 100$

Prove that

$$ax + ay + bx + by \leq$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

æ

- *ax* ≤ 50
- *ay* ≤ 100
- $bx \leq 100$
- $by \leq 100$

Prove that

$$ax + ay + bx + by \leq 300.$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

æ

個 と く ヨ と く ヨ と …

General Problem of Extremal Set Theory: Given $\mathcal{A} \subset 2^{[n]}$ and $M \subset \{0, \dots, n\}$, what is max $|\mathcal{A}|$?

伺 と く き と く き と

General Problem of Extremal Set Theory: Given $\mathcal{A} \subset 2^{[n]}$ and $M \subset \{0, \dots, n\}$, what is max $|\mathcal{A}|$?

As *M* gets larger, max $|\mathcal{A}|$ gets larger.

向下 イヨト イヨト

General Problem of Extremal Set Theory: Given $\mathcal{A} \subset 2^{[n]}$ and $M \subset \{0, \dots, n\}$, what is max $|\mathcal{A}|$?

As *M* gets larger, max $|\mathcal{A}|$ gets larger.

What if *M* misses only one number?

向下 イヨト イヨト

Dhruy Mubayi Intersection theorems for finite sets

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶

æ

Suppose that $A \subset 2^{[n]}$ and $|A \cap B| \neq n/4$ for all $A, B, \in A$, and $n > n_0$. Then

 $|\mathcal{A}| < (1.99)^n$.

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣

Suppose that $A \subset 2^{[n]}$ and $|A \cap B| \neq n/4$ for all $A, B, \in A$, and $n > n_0$. Then

 $|\mathcal{A}| < (1.99)^n.$

Theorem (Frankl-Rödl (1987))

Let $0 < \eta < 1/4$ and $\eta n < t < (1/2 - \eta)n$. There is $\varepsilon_0 = \varepsilon_0(\eta)$ such that if $\mathcal{A} \subset 2^{[n]}$ and $|\mathcal{A} \cap B| \neq t$ for all $\mathcal{A}, B \in \mathcal{A}$, then

$$|\mathcal{A}| < (2 - \varepsilon_0)^n.$$

□● ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣

Suppose that $A \subset 2^{[n]}$ and $|A \cap B| \neq n/4$ for all $A, B, \in A$, and $n > n_0$. Then

 $|\mathcal{A}| < (1.99)^n.$

Theorem (Frankl-Rödl (1987))

Let $0 < \eta < 1/4$ and $\eta n < t < (1/2 - \eta)n$. There is $\varepsilon_0 = \varepsilon_0(\eta)$ such that if $\mathcal{A} \subset 2^{[n]}$ and $|\mathcal{A} \cap B| \neq t$ for all $\mathcal{A}, B \in \mathcal{A}$, then

$$|\mathcal{A}| < (2 - \varepsilon_0)^n.$$

How big is ε_0 (problem of Erdős)?

伺 と く ヨ と く ヨ と

Suppose that $A \subset 2^{[n]}$ and $|A \cap B| \neq n/4$ for all $A, B, \in A$, and $n > n_0$. Then

 $|\mathcal{A}| < (1.99)^n.$

Theorem (Frankl-Rödl (1987))

Let $0 < \eta < 1/4$ and $\eta n < t < (1/2 - \eta)n$. There is $\varepsilon_0 = \varepsilon_0(\eta)$ such that if $\mathcal{A} \subset 2^{[n]}$ and $|\mathcal{A} \cap B| \neq t$ for all $\mathcal{A}, B \in \mathcal{A}$, then

$$|\mathcal{A}| < (2 - \varepsilon_0)^n.$$

How big is ε_0 (problem of Erdős)? Frankl-Rödl show it is about $(t/n)^2/2$.

同 ト く ヨ ト く ヨ ト

- Combinatorics (solved Erdős-Szemerédi weak delta system conjecture)
- Geometry (solved Larman-Rogers conjecture, Borsuk problem)

- Coding Theory (improved Frankl-Blokhuis bound)
- Communication Complexity (Sgall 1999)
- Quantum Computing (Buhrman-Cleve-Wigderson 1998)
- Semidefinite Programming (Goemans-Kleinberg 1998, Hatami-Magen-Markakis 2009)

Suppose we forbid all numbers less than t + 1 as intersection sizes. Define $\mathcal{A}(n, t)$ to be

 $\{A \subset [n] : |A| \ge (n+t+1)/2\}$ if n+t is odd $\{A \subset [n] : |A \cap ([n] - \{1\})| \ge (n+t)/2\}$ if n+t is even.

(同)((注))(注)(注)

Suppose we forbid all numbers less than t + 1 as intersection sizes. Define $\mathcal{A}(n, t)$ to be

 $\{A \subset [n] : |A| \ge (n+t+1)/2\}$ if n+t is odd $\{A \subset [n] : |A \cap ([n] - \{1\})| \ge (n+t)/2\}$ if n+t is even.

Theorem (Katona)

Let $\mathcal{A} \subset 2^{[n]}$ and suppose that $|A \cap A'| > t$ for every $A, A' \in \mathcal{A}.$ Then

$$|\mathcal{A}| \leq |\mathcal{A}(n,t)|.$$

Moreover, if $t \ge 1$ and $|\mathcal{A}| = |\mathcal{A}(n, t)|$, then $\mathcal{A} = \mathcal{A}(n, t)$.

マロト マヨト マヨト 三日

Conjecture

Let $0 < \eta < 1/3$, $\eta n < t < n/3$, and $\mathcal{A} \subset 2^{[n]}$ with $|A \cap B| \neq t$ for all $A, B \in \mathcal{A}$. Then

$$|\mathcal{A}| \leq \binom{n}{(n+t)/2} 2^{o(n)}.$$

▲□→ ▲注→ ▲注→

æ

Conjecture

Let $0 < \eta < 1/3$, $\eta n < t < n/3$, and $\mathcal{A} \subset 2^{[n]}$ with $|A \cap B| \neq t$ for all $A, B \in \mathcal{A}$. Then

$$|\mathcal{A}| \leq {n \choose (n+t)/2} 2^{o(n)}.$$

If true, the conjecture is (asymptotically) sharp via $\mathcal{A} = {[n] \choose >(n+t)/2}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Conjecture

Let $0 < \eta < 1/3$, $\eta n < t < n/3$, and $\mathcal{A} \subset 2^{[n]}$ with $|A \cap B| \neq t$ for all $A, B \in \mathcal{A}$. Then

$$|\mathcal{A}| \leq {n \choose (n+t)/2} 2^{o(n)}.$$

If true, the conjecture is (asymptotically) sharp via $\mathcal{A} = {[n] \choose (n+t)/2}$.

For $n/3 < t < (1/2 - \eta)n$, the construction $\mathcal{A} = {[n] \choose t}$ is better, and we conjecture it is optimal.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Dhruy Mubayi Intersection theorems for finite sets

▲御★ ▲注★ ▲注★

æ

Let $0 < \varepsilon < 1/5$ be fixed, $n > n_0(\varepsilon)$, $\varepsilon n < t < n/5$ and $\mathcal{A} \subset 2^{[n]}$. Suppose that $|A \cap B| \notin (t, t + n^{0.525})$ for all $A, B \in \mathcal{A}$. Then

$$|\mathcal{A}| < n \binom{n}{(n+t)/2}.$$

白 と く ヨ と く ヨ と …

Let $0 < \varepsilon < 1/5$ be fixed, $n > n_0(\varepsilon)$, $\varepsilon n < t < n/5$ and $\mathcal{A} \subset 2^{[n]}$. Suppose that $|A \cap B| \notin (t, t + n^{0.525})$ for all $A, B \in \mathcal{A}$. Then

$$|\mathcal{A}| < n \binom{n}{(n+t)/2}.$$

 The constant 0.525 is a consequence of the result of Baker-Harman-Pintz that there is a prime in every interval (s - s^{0.525}, s) as long as s is sufficiently large.

伺 とう ほう く きょう

Let $0 < \varepsilon < 1/5$ be fixed, $n > n_0(\varepsilon)$, $\varepsilon n < t < n/5$ and $\mathcal{A} \subset 2^{[n]}$. Suppose that $|A \cap B| \notin (t, t + n^{0.525})$ for all $A, B \in \mathcal{A}$. Then

$$|\mathcal{A}| < n \binom{n}{(n+t)/2}.$$

- The constant 0.525 is a consequence of the result of Baker-Harman-Pintz that there is a prime in every interval (s - s^{0.525}, s) as long as s is sufficiently large.
- If we assume the Riemann Hypothesis, then 0.525 could be improved to 1/2 + o(1) using a result of Cramér.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Question. Can the upper bound for M-intersecting families be improved for more restrictive M?

< 注→ < 注→ -

Question. Can the upper bound for M-intersecting families be improved for more restrictive M?

Theorem (Berlekamp (1965), Graver (1975))

Suppose that $A \subset 2^{[n]}$ is *M*-intersecting, where $M = \{0, 2, 4, ...\}$. In other words, $|A \cap B|$ is even for all $A, B \in A$. Then $|A| \leq 2^{\lfloor n/2 \rfloor} + 1$.

伺 とう ヨン うちょう

Question. Can the upper bound for M-intersecting families be improved for more restrictive M?

Theorem (Berlekamp (1965), Graver (1975))

Suppose that $A \subset 2^{[n]}$ is *M*-intersecting, where $M = \{0, 2, 4, ...\}$. In other words, $|A \cap B|$ is even for all $A, B \in A$. Then $|A| \leq 2^{\lfloor n/2 \rfloor} + 1$.

Theorem (Eventown Theorem)

Suppose that $\mathcal{A} \subset 2^{[n]}$ such that

- |A| is even for every $A \in \mathcal{A}$
- $|A \cap B|$ is even for every $A, B \in \mathcal{A}$

Then $|\mathcal{A}| \leq 2^{\lfloor n/2 \rfloor}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Frankl-Rödl: $M = \{0, 1, \dots, n\} \setminus \{n/4\}$ – $|\mathcal{A}| < (1.99)^n$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Frankl-Rödl:
$$M = \{0, 1, ..., n\} \setminus \{n/4\}$$
 – $|\mathcal{A}| < (1.99)^n$
Eventown: $M = \{0, 2, ...\}$ – $|\mathcal{A}| < (1.4142...)^n$

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Frankl-Rödl:
$$M = \{0, 1, ..., n\} \setminus \{n/4\}$$
 – $|\mathcal{A}| < (1.99)^n$
Eventown: $M = \{0, 2, ...\}$ – $|\mathcal{A}| < (1.4142..)^n$

What about M that are in between these two extremes?

★ 문 ▶ 문

A ■

Frankl-Rödl:
$$M = \{0, 1, \dots, n\} \setminus \{n/4\}$$
 – $|\mathcal{A}| < (1.99)^n$

Eventown: $M = \{0, 2, ...\}$ – $|\mathcal{A}| < (1.4142..)^n$

What about M that are in between these two extremes?

Definition

The length $\ell(M)$ of a set M is the maximum number of consecutive integers contained in M.

個人 くほん くほん しき

Frankl-Rödl:
$$M = \{0, 1, \dots, n\} \setminus \{n/4\}$$
 – $|\mathcal{A}| < (1.99)^n$

Eventown: $M = \{0, 2, ...\}$ – $|\mathcal{A}| < (1.4142..)^n$

What about M that are in between these two extremes?

Definition

The length $\ell(M)$ of a set M is the maximum number of consecutive integers contained in M.

 $\ell(M) \leq \ell$ if and only if \overline{M} is $(\ell + 1)$ -syndetic.

(< E) < E) = E</p>

Let $M \subset \{0, 1, ..., n\}$ with $\ell(M) = \ell$. Suppose that $\mathcal{A} \subset 2^{[n]}$ is an *M*-intersecting family. Then

 $|\mathcal{A}| < 1.622^n \times 100^{\ell}.$

・回 ・ ・ ヨ ・ ・ ヨ ・

2

Let $M \subset \{0, 1, ..., n\}$ with $\ell(M) = \ell$. Suppose that $\mathcal{A} \subset 2^{[n]}$ is an *M*-intersecting family. Then

 $|\mathcal{A}| < 1.622^n \times 100^{\ell}.$

• The result is nontrivial as long as, $\ell < n/10$ or so

伺 とう ヨン うちょう

Let $M \subset \{0, 1, ..., n\}$ with $\ell(M) = \ell$. Suppose that $\mathcal{A} \subset 2^{[n]}$ is an *M*-intersecting family. Then

 $|\mathcal{A}| < 1.622^n \times 100^{\ell}.$

- The result is nontrivial as long as, $\ell < n/10$ or so
- For example, if $[n] \setminus M = \{0, n/10^4, 2n/10^4, \dots, \}$, then

 $|\mathcal{A}| < 1.63^{n}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $M \subset \{0, 1, ..., n\}$ with $\ell(M) = \ell$. Suppose that $\mathcal{A} \subset 2^{[n]}$ is an *M*-intersecting family. Then

 $|\mathcal{A}| < 1.622^n \times 100^{\ell}.$

- The result is nontrivial as long as, $\ell < n/10$ or so
- For example, if $[n] \setminus M = \{0, n/10^4, 2n/10^4, \dots, \}$, then

 $|\mathcal{A}| < 1.63^{n}.$

• The 1.622 is probably not sharp, just a result of the proof

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $M \subset \{0, 1..., n\}$ with $\ell(M) = \ell$. Suppose that $\mathcal{A} \subset 2^{[n]}$ is an *M*-intersecting family. Then

 $|\mathcal{A}| < 2^{n/2 + \ell \log^2 n}.$

(《圖》 《문》 《문》 - 문

Let $M \subset \{0, 1..., n\}$ with $\ell(M) = \ell$. Suppose that $\mathcal{A} \subset 2^{[n]}$ is an *M*-intersecting family. Then

 $|\mathcal{A}| < 2^{n/2 + \ell \log^2 n}.$

• For $\ell = o(n/\log^2 n)$, this bound better than the first one; it is $|\mathcal{A}| < 2^{n/2 + o(n)}.$

< □ > < □ > < □ > □ □

Let $M \subset \{0, 1..., n\}$ with $\ell(M) = \ell$. Suppose that $\mathcal{A} \subset 2^{[n]}$ is an *M*-intersecting family. Then

 $|\mathcal{A}| < 2^{n/2 + \ell \log^2 n}.$

• For $\ell = o(n/\log^2 n)$, this bound better than the first one; it is $|\mathcal{A}| < 2^{n/2 + o(n)}.$

• This is the first non-linear-algebraic proof of an asymptotic version of the Eventown Theorem; it applies in more general scenarios though doesn't give bounds as precise as 2^{n/2}.

▲圖 ▶ ★ 国 ▶ ★ 国 ▶

• Prove the result for pairs of families (A, B). This facilitates an induction argument

・回 ・ ・ ヨ ・ ・ ヨ ・

æ

- Prove the result for pairs of families (A, B). This facilitates an induction argument
- $(\mathcal{A}, \mathcal{B})$ is *M*-intersecting if

 $|A \cap B| \in M$

for all $A \in \mathcal{A}$ and $B \in \mathcal{B}$

・ 回 と ・ ヨ と ・ モ と …

æ

- Prove the result for pairs of families (A, B). This facilitates an induction argument
- $(\mathcal{A}, \mathcal{B})$ is *M*-intersecting if

 $|A \cap B| \in M$

for all $A \in \mathcal{A}$ and $B \in \mathcal{B}$

Theorem (M-Rödl)

Let $M \subset \{0, 1..., n\}$ with $\ell(M) = \ell$. Suppose that $(\mathcal{A}, \mathcal{B})$ is an *M*-intersecting pair of families in $2^{[n]}$. Then

$$|\mathcal{A}||\mathcal{B}| < \min\left\{2.631^n \times 10^{4\ell}, \quad 2^{n+2\ell\log^2 n}\right\}$$

Dhruv Mubayi Intersection theorems for finite sets

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Say that a function $h: 2^N \to N \cup \{\infty\}$ is a *height function* if the following four properties hold:

▲圖▶ ▲屋▶ ▲屋▶

æ

Say that a function $h: 2^N \to N \cup \{\infty\}$ is a *height function* if the following four properties hold:

(A1) h(L) = 0 if and only if $L = \emptyset$,

(本部)) (本語)) (本語)) (語)

Say that a function $h: 2^N \to N \cup \{\infty\}$ is a *height function* if the following four properties hold:

(A1) h(L) = 0 if and only if $L = \emptyset$, (A2) if $h(L) < \infty$ and $L' \subset L$, then $h(L') \le h(L)$,

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Say that a function $h: 2^N \to N \cup \{\infty\}$ is a *height function* if the following four properties hold:

(A1) h(L) = 0 if and only if $L = \emptyset$, (A2) if $h(L) < \infty$ and $L' \subset L$, then $h(L') \le h(L)$, (A3) if $h(L) < \infty$ and $L' \subset L - 1$, then $h(L') \le h(L)$,

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Say that a function $h: 2^N \to N \cup \{\infty\}$ is a *height function* if the following four properties hold:

(A1)
$$h(L) = 0$$
 if and only if $L = \emptyset$,
(A2) if $h(L) < \infty$ and $L' \subset L$, then $h(L') \le h(L)$,
(A3) if $h(L) < \infty$ and $L' \subset L - 1$, then $h(L') \le h(L)$,
(A4) if $h(L), h(L') \le s < \infty$, then either
 $h(L' \cap L) \le s - 1$ or $h(L' \cap (L - 1)) \le s - 1$.

イロン イヨン イヨン イヨン

æ

Theorem (Sgall (1999))

Suppose that (A, B) is an M-intersecting pair of families in $2^{[n]}$ and $h(M) \leq s \leq n + 1$. Then

$$|\mathcal{A}||\mathcal{B}| \leq 2^{n+s-1} \binom{n}{s-1}.$$

(ロ) (同) (E) (E) (E)

Theorem (Sgall (1999))

Suppose that (A, B) is an M-intersecting pair of families in $2^{[n]}$ and $h(M) \le s \le n + 1$. Then

$$|\mathcal{A}||\mathcal{B}| \leq 2^{n+s-1} \binom{n}{s-1}.$$

Theorem (M-Rödl)

There exists a height function h such that for $M \subset \{0, 1..., n\}$,

 $h(M) \leq 1 + 2\ell(M) \log n.$

Applying this bound in Sgall's Theorem yields $|\mathcal{A}||\mathcal{B}| < 2^{n+2\ell \log^2 n}$.

- (日) (三) (三) (三) (三)

The Height function

Dhruv Mubayi Intersection theorems for finite sets

▲圖> ▲屋> ▲屋>

æ

- $h(\emptyset) = 0$
- Suppose that $L \neq \emptyset$ and *h* has been defined on all sets of size less than |L|

・日・ ・ ヨ ・ ・ ヨ ・ ・

æ

- $h(\emptyset) = 0$
- Suppose that $L \neq \emptyset$ and h has been defined on all sets of size less than |L|
- $T(L) = \{M : M \notin \{L, L+1\} \text{ and } 0 < |M| \le |L|\}$

- $h(\emptyset) = 0$
- Suppose that $L \neq \emptyset$ and h has been defined on all sets of size less than |L|
- $T(L) = \{M : M \notin \{L, L+1\} \text{ and } 0 < |M| \le |L|\}$
- $a = h(L \cap (L+1))$

• $h(\emptyset) = 0$

- Suppose that $L \neq \emptyset$ and *h* has been defined on all sets of size less than |L|
- $T(L) = \{M : M \notin \{L, L+1\} \text{ and } 0 < |M| \le |L|\}$
- $a = h(L \cap (L+1))$
- $b = \max_{M \in T(L)} \min\{h(L \cap M), h(L \cap (M-1))\}$

(《圖》 《문》 《문》 - 문

• $h(\emptyset) = 0$

- Suppose that $L \neq \emptyset$ and *h* has been defined on all sets of size less than |L|
- $T(L) = \{M : M \notin \{L, L+1\} \text{ and } 0 < |M| \le |L|\}$
- $a = h(L \cap (L+1))$
- $b = \max_{M \in T(L)} \min\{h(L \cap M), h(L \cap (M-1))\}$
- $h(L) = 1 + \max\{a, b\}$

(本部) (本語) (本語) (語)

Lemma (Sgall)

Suppose that a, b, x, y, p, Q are positive real numbers such that

Dhruv Mubayi Intersection theorems for finite sets

(ロ) (同) (E) (E) (E)

Lemma (Sgall)

Suppose that a, b, x, y, p, Q are positive real numbers such that

• $ax \leq p$

Lemma (Sgall)

Suppose that a, b, x, y, p, Q are positive real numbers such that

- *ax* ≤ *p*
- ay $\leq Q$

Lemma (Sgall)

Suppose that a, b, x, y, p, Q are positive real numbers such that

- *ax* ≤ *p*
- ay $\leq Q$
- $bx \leq Q$

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Lemma (Sgall)

Suppose that a, b, x, y, p, Q are positive real numbers such that

- *ax* ≤ *p*
- ay $\leq Q$
- $bx \leq Q$
- by $\leq Q$

★@> ★ E> ★ E> = E

Lemma (Sgall)

Suppose that a, b, x, y, p, Q are positive real numbers such that

- $ax \leq p$
- ay $\leq Q$
- $bx \leq Q$
- by $\leq Q$

Then

$$(a+b)(x+y) \leq$$

Lemma (Sgall)

Suppose that a, b, x, y, p, Q are positive real numbers such that

- $ax \leq p$
- ay $\leq Q$
- $bx \leq Q$
- by $\leq Q$

Then

$$(a+b)(x+y) \leq 2(p+Q).$$

Lemma (Sgall)

Suppose that a, b, x, y, p, Q are positive real numbers such that

- $ax \leq p$
- ay $\leq Q$
- $bx \leq Q$
- by $\leq Q$

Then

$$(a+b)(x+y) \leq 2(p+Q).$$

Thank You

(ロ) (同) (E) (E) (E)