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A Puzzle

Suppose that a, b, x , y are positive real numbers such that

ax ≤ 50

ay ≤ 100

bx ≤ 100

by ≤ 100

Prove that
ax + ay + bx + by ≤ 300.
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Extremal Set Theory

Let M be a set. A family of sets A is M-intersecting if

|A ∩ B| ∈ M for every A,B ∈ A

General Problem of Extremal Set Theory:

Given A ⊂ 2[n] and M ⊂ {0, . . . , n}, what is max |A|?

As M gets larger, max |A| gets larger.

What if M misses only one number?
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The Frankl-Rödl theorem

Theorem (Frankl-Rödl (1987), $250 problem of Erdős)

Suppose that A ⊂ 2[n] and |A ∩ B| 6= n/4 for all A,B,∈ A, and
n > n0. Then

|A| < (1.99)n.

Theorem (Frankl-Rödl (1987))

Let 0 < η < 1/4 and ηn < t < (1/2− η)n. There is ε0 = ε0(η)
such that if A ⊂ 2[n] and |A ∩ B| 6= t for all A,B ∈ A, then

|A| < (2− ε0)n.

How big is ε0 (problem of Erdős)?

Frankl-Rödl show it is about (t/n)2/2.
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Suppose that A ⊂ 2[n] and |A ∩ B| 6= n/4 for all A,B,∈ A, and
n > n0. Then

|A| < (1.99)n.

Theorem (Frankl-Rödl (1987))
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Applications

Combinatorics (solved Erdős-Szemerédi weak delta system
conjecture)

Geometry (solved Larman-Rogers conjecture, Borsuk problem)

Coding Theory (improved Frankl-Blokhuis bound)

Communication Complexity (Sgall 1999)

Quantum Computing (Buhrman-Cleve-Wigderson 1998)

Semidefinite Programming (Goemans-Kleinberg 1998,
Hatami-Magen-Markakis 2009)

Dhruv Mubayi Intersection theorems for finite sets



Katona’s Theorem

Suppose we forbid all numbers less than t + 1 as intersection sizes.

Define A(n, t) to be

{A ⊂ [n] : |A| ≥ (n + t + 1)/2} if n + t is odd

{A ⊂ [n] : |A ∩ ([n]− {1})| ≥ (n + t)/2} if n + t is even.

Theorem (Katona)

Let A ⊂ 2[n] and suppose that |A ∩ A′| > t for every A,A′ ∈ A.
Then

|A| ≤ |A(n, t)|.

Moreover, if t ≥ 1 and |A| = |A(n, t)|, then A = A(n, t).
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The optimal ε0

Conjecture

Let 0 < η < 1/3, ηn < t < n/3, and A ⊂ 2[n] with |A ∩ B| 6= t for
all A,B ∈ A. Then

|A| ≤
(

n

(n + t)/2

)
2o(n).

If true, the conjecture is (asymptotically) sharp via A =
( [n]
>(n+t)/2

)
.

For n/3 < t < (1/2− η)n, the construction A =
([n]
t

)
is better,

and we conjecture it is optimal.
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Forbidding a small interval

Theorem (M-Rödl)

Let 0 < ε < 1/5 be fixed, n > n0(ε), εn < t < n/5 and A ⊂ 2[n].
Suppose that |A ∩ B| 6∈ (t, t + n0.525) for all A,B ∈ A. Then

|A| < n

(
n

(n + t)/2

)
.

The constant 0.525 is a consequence of the result of
Baker-Harman-Pintz that there is a prime in every interval
(s − s0.525, s) as long as s is sufficiently large.

If we assume the Riemann Hypothesis, then 0.525 could be
improved to 1/2 + o(1) using a result of Cramér.
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More restricted intersections

Question. Can the upper bound for M-intersecting families be
improved for more restrictive M?

Theorem (Berlekamp (1965), Graver (1975))

Suppose that A ⊂ 2[n] is M-intersecting, where M = {0, 2, 4, . . .}.
In other words, |A ∩ B| is even for all A,B ∈ A. Then
|A| ≤ 2bn/2c + 1.

Theorem (Eventown Theorem)

Suppose that A ⊂ 2[n] such that

|A| is even for every A ∈ A
|A ∩ B| is even for every A,B ∈ A

Then |A| ≤ 2bn/2c.
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Between the extremes

Frankl-Rödl: M = {0, 1, . . . , n} \ {n/4} − |A| < (1.99)n

Eventown: M = {0, 2, . . .} − |A| < (1.4142..)n

What about M that are in between these two extremes?

Definition

The length `(M) of a set M is the maximum number of
consecutive integers contained in M.

`(M) ≤ ` if and only if M is (`+ 1)-syndetic.
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Frankl-Rödl: M = {0, 1, . . . , n} \ {n/4} − |A| < (1.99)n

Eventown: M = {0, 2, . . .} − |A| < (1.4142..)n

What about M that are in between these two extremes?

Definition

The length `(M) of a set M is the maximum number of
consecutive integers contained in M.

`(M) ≤ ` if and only if M is (`+ 1)-syndetic.

Dhruv Mubayi Intersection theorems for finite sets



Between the extremes
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Bounds for small `(M)

Theorem (M-Rödl)

Let M ⊂ {0, 1, . . . , n} with `(M) = `. Suppose that A ⊂ 2[n] is an
M-intersecting family. Then

|A| < 1.622n × 100`.

The result is nontrivial as long as, ` < n/10 or so

For example, if [n] \M = {0, n/104, 2n/104, . . . , }, then

|A| < 1.63n.

The 1.622 is probably not sharp, just a result of the proof

Dhruv Mubayi Intersection theorems for finite sets



Bounds for small `(M)

Theorem (M-Rödl)
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Bounds for very small `(M)

Theorem (M-Rödl)

Let M ⊂ {0, 1 . . . , n} with `(M) = `. Suppose that A ⊂ 2[n] is an
M-intersecting family. Then

|A| < 2n/2+` log2 n.

For ` = o(n/ log2 n), this bound better than the first one; it is

|A| < 2n/2+o(n).

This is the first non-linear-algebraic proof of an asymptotic
version of the Eventown Theorem; it applies in more general
scenarios though doesn’t give bounds as precise as 2n/2.
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Proof Methods

Prove the result for pairs of families (A,B). This facilitates an
induction argument

(A,B) is M-intersecting if

|A ∩ B| ∈ M

for all A ∈ A and B ∈ B

Theorem (M-Rödl)

Let M ⊂ {0, 1 . . . , n} with `(M) = `. Suppose that (A,B) is an
M-intersecting pair of families in 2[n]. Then

|A||B| < min
{

2.631n × 104`, 2n+2` log2 n
}
.
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Height functions

Definition (Sgall)

Say that a function h : 2N → N ∪ {∞} is a height function if the
following four properties hold:

(A1) h(L) = 0 if and only if L = ∅,

(A2) if h(L) <∞ and L′ ⊂ L, then h(L′) ≤ h(L),

(A3) if h(L) <∞ and L′ ⊂ L− 1, then h(L′) ≤ h(L),

(A4) if h(L), h(L′) ≤ s <∞, then either

h(L′ ∩ L) ≤ s − 1 or h(L′ ∩ (L− 1)) ≤ s − 1.
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Sgall’s theorem

Theorem (Sgall (1999))

Suppose that (A,B) is an M-intersecting pair of families in 2[n]

and h(M) ≤ s ≤ n + 1. Then

|A||B| ≤ 2n+s−1
(

n

s − 1

)
.

Theorem (M-Rödl)

There exists a height function h such that for M ⊂ {0, 1 . . . , n},

h(M) ≤ 1 + 2`(M) log n.

Applying this bound in Sgall’s Theorem yields |A||B| < 2n+2` log2 n.
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The Height function

h(∅) = 0

Suppose that L 6= ∅ and h has been defined on all sets of size
less than |L|

T (L) = {M : M 6∈ {L, L + 1} and 0 < |M| ≤ |L|}

a = h(L ∩ (L + 1))

b = maxM∈T (L) min{h(L ∩M), h(L ∩ (M − 1))}

h(L) = 1 + max{a, b}
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Sgall’s Lemma and the Puzzle

Lemma (Sgall)

Suppose that a, b, x , y , p,Q are positive real numbers such that

ax ≤ p

ay ≤ Q

bx ≤ Q

by ≤ Q

Then
(a + b)(x + y) ≤ 2(p + Q).

Thank You
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