## Intersection theorems for finite sets

Dhruv Mubayi<br>Department of Mathematics, Statistics and Computer Science University of Illinois<br>Chicago

Erdős Centennial Conference, Budapest, July 2013

## A Puzzle

## Suppose that $a, b, x, y$ are positive real numbers such that

## A Puzzle

Suppose that $a, b, x, y$ are positive real numbers such that - $a x \leq 50$

## A Puzzle

Suppose that $a, b, x, y$ are positive real numbers such that

- $a x \leq 50$
- ay $\leq 100$


## A Puzzle

Suppose that $a, b, x, y$ are positive real numbers such that

- $a x \leq 50$
- ay $\leq 100$
- $b x \leq 100$


## A Puzzle

Suppose that $a, b, x, y$ are positive real numbers such that

- $a x \leq 50$
- ay $\leq 100$
- $b x \leq 100$
- by $\leq 100$


## A Puzzle

Suppose that $a, b, x, y$ are positive real numbers such that

- $a x \leq 50$
- ay $\leq 100$
- $b x \leq 100$
- by $\leq 100$

Prove that

$$
a x+a y+b x+b y \leq
$$

## A Puzzle

Suppose that $a, b, x, y$ are positive real numbers such that

- $a x \leq 50$
- ay $\leq 100$
- $b x \leq 100$
- by $\leq 100$

Prove that

$$
a x+a y+b x+b y \leq 300
$$

## Extremal Set Theory

Let $M$ be a set. A family of sets $\mathcal{A}$ is $M$-intersecting if

$$
|A \cap B| \in M \text { for every } A, B \in \mathcal{A}
$$

## Extremal Set Theory

Let $M$ be a set. A family of sets $\mathcal{A}$ is $M$-intersecting if

$$
|A \cap B| \in M \text { for every } A, B \in \mathcal{A}
$$

General Problem of Extremal Set Theory:
Given $\mathcal{A} \subset 2^{[n]}$ and $M \subset\{0, \ldots, n\}$, what is $\max |\mathcal{A}|$ ?

## Extremal Set Theory

Let $M$ be a set. A family of sets $\mathcal{A}$ is $M$-intersecting if

$$
|A \cap B| \in M \text { for every } A, B \in \mathcal{A}
$$

General Problem of Extremal Set Theory:
Given $\mathcal{A} \subset 2^{[n]}$ and $M \subset\{0, \ldots, n\}$, what is $\max |\mathcal{A}|$ ?
As $M$ gets larger, $\max |\mathcal{A}|$ gets larger.

## Extremal Set Theory

Let $M$ be a set. A family of sets $\mathcal{A}$ is $M$-intersecting if

$$
|A \cap B| \in M \text { for every } A, B \in \mathcal{A}
$$

General Problem of Extremal Set Theory:
Given $\mathcal{A} \subset 2^{[n]}$ and $M \subset\{0, \ldots, n\}$, what is $\max |\mathcal{A}|$ ?
As $M$ gets larger, $\max |\mathcal{A}|$ gets larger.
What if $M$ misses only one number?

## The Frankl-Rödl theorem

## The Frankl-Rödl theorem

## Theorem (Frankl-Rödl (1987), \$250 problem of Erdős)

Suppose that $\mathcal{A} \subset 2^{[n]}$ and $|A \cap B| \neq n / 4$ for all $A, B, \in \mathcal{A}$, and $n>n_{0}$. Then

$$
|\mathcal{A}|<(1.99)^{n}
$$

## The Frankl-Rödl theorem

## Theorem (Frankl-Rödl (1987), \$250 problem of Erdős)

Suppose that $\mathcal{A} \subset 2^{[n]}$ and $|A \cap B| \neq n / 4$ for all $A, B, \in \mathcal{A}$, and $n>n_{0}$. Then

$$
|\mathcal{A}|<(1.99)^{n}
$$

## Theorem (Frankl-Rödl (1987))

Let $0<\eta<1 / 4$ and $\eta n<t<(1 / 2-\eta) n$. There is $\varepsilon_{0}=\varepsilon_{0}(\eta)$ such that if $\mathcal{A} \subset 2^{[n]}$ and $|A \cap B| \neq t$ for all $A, B \in \mathcal{A}$, then

$$
|\mathcal{A}|<\left(2-\varepsilon_{0}\right)^{n} .
$$

## The Frankl-Rödl theorem

## Theorem (Frankl-Rödl (1987), \$250 problem of Erdős)

Suppose that $\mathcal{A} \subset 2^{[n]}$ and $|A \cap B| \neq n / 4$ for all $A, B, \in \mathcal{A}$, and $n>n_{0}$. Then

$$
|\mathcal{A}|<(1.99)^{n}
$$

## Theorem (Frankl-Rödl (1987))

Let $0<\eta<1 / 4$ and $\eta n<t<(1 / 2-\eta) n$. There is $\varepsilon_{0}=\varepsilon_{0}(\eta)$ such that if $\mathcal{A} \subset 2^{[n]}$ and $|A \cap B| \neq t$ for all $A, B \in \mathcal{A}$, then

$$
|\mathcal{A}|<\left(2-\varepsilon_{0}\right)^{n} .
$$

How big is $\varepsilon_{0}$ (problem of Erdős)?

## The Frankl-Rödl theorem

## Theorem (Frankl-Rödl (1987), \$250 problem of Erdős)

Suppose that $\mathcal{A} \subset 2^{[n]}$ and $|A \cap B| \neq n / 4$ for all $A, B, \in \mathcal{A}$, and $n>n_{0}$. Then

$$
|\mathcal{A}|<(1.99)^{n}
$$

## Theorem (Frankl-Rödl (1987))

Let $0<\eta<1 / 4$ and $\eta n<t<(1 / 2-\eta) n$. There is $\varepsilon_{0}=\varepsilon_{0}(\eta)$ such that if $\mathcal{A} \subset 2^{[n]}$ and $|A \cap B| \neq t$ for all $A, B \in \mathcal{A}$, then

$$
|\mathcal{A}|<\left(2-\varepsilon_{0}\right)^{n} .
$$

How big is $\varepsilon_{0}$ (problem of Erdős)?
Frankl-Rödl show it is about $(t / n)^{2} / 2$.

## Applications

- Combinatorics (solved Erdős-Szemerédi weak delta system conjecture)
- Geometry (solved Larman-Rogers conjecture, Borsuk problem)
- Coding Theory (improved Frankl-Blokhuis bound)
- Communication Complexity (Sgall 1999)
- Quantum Computing (Buhrman-Cleve-Wigderson 1998)
- Semidefinite Programming (Goemans-Kleinberg 1998, Hatami-Magen-Markakis 2009)


## Katona's Theorem

Suppose we forbid all numbers less than $t+1$ as intersection sizes.
Define $\mathcal{A}(n, t)$ to be

$$
\begin{gathered}
\{A \subset[n]:|A| \geq(n+t+1) / 2\} \quad \text { if } n+t \text { is odd } \\
\{A \subset[n]:|A \cap([n]-\{1\})| \geq(n+t) / 2\} \text { if } n+t \text { is even. }
\end{gathered}
$$

## Katona's Theorem

Suppose we forbid all numbers less than $t+1$ as intersection sizes.
Define $\mathcal{A}(n, t)$ to be

$$
\begin{gathered}
\{A \subset[n]:|A| \geq(n+t+1) / 2\} \quad \text { if } n+t \text { is odd } \\
\{A \subset[n]:|A \cap([n]-\{1\})| \geq(n+t) / 2\} \text { if } n+t \text { is even. }
\end{gathered}
$$

## Theorem (Katona)

Let $\mathcal{A} \subset 2^{[n]}$ and suppose that $\left|A \cap A^{\prime}\right|>t$ for every $A, A^{\prime} \in \mathcal{A}$. Then

$$
|\mathcal{A}| \leq|\mathcal{A}(n, t)|
$$

Moreover, if $t \geq 1$ and $|\mathcal{A}|=|\mathcal{A}(n, t)|$, then $\mathcal{A}=\mathcal{A}(n, t)$.

## The optimal $\varepsilon_{0}$

## Conjecture

Let $0<\eta<1 / 3, \eta n<t<n / 3$, and $\mathcal{A} \subset 2^{[n]}$ with $|A \cap B| \neq t$ for all $A, B \in \mathcal{A}$. Then

$$
|\mathcal{A}| \leq\binom{ n}{(n+t) / 2} 2^{\circ(n)}
$$

## The optimal $\varepsilon_{0}$

## Conjecture

Let $0<\eta<1 / 3, \eta n<t<n / 3$, and $\mathcal{A} \subset 2^{[n]}$ with $|A \cap B| \neq t$ for all $A, B \in \mathcal{A}$. Then

$$
|\mathcal{A}| \leq\binom{ n}{(n+t) / 2} 2^{o(n)}
$$

If true, the conjecture is (asymptotically) sharp via $\mathcal{A}=\binom{[n]}{>(n+t) / 2}$.

## The optimal $\varepsilon_{0}$

## Conjecture

Let $0<\eta<1 / 3, \eta n<t<n / 3$, and $\mathcal{A} \subset 2^{[n]}$ with $|A \cap B| \neq t$ for all $A, B \in \mathcal{A}$. Then

$$
|\mathcal{A}| \leq\binom{ n}{(n+t) / 2} 2^{\circ(n)}
$$

If true, the conjecture is (asymptotically) sharp via $\mathcal{A}=\binom{[n]}{>(n+t) / 2}$.
For $n / 3<t<(1 / 2-\eta) n$, the construction $\mathcal{A}=\binom{[n]}{t}$ is better, and we conjecture it is optimal.

## Forbidding a small interval

## Forbidding a small interval

Theorem (M-Rödl)
Let $0<\varepsilon<1 / 5$ be fixed, $n>n_{0}(\varepsilon), \varepsilon n<t<n / 5$ and $\mathcal{A} \subset 2^{[n]}$. Suppose that $|A \cap B| \notin\left(t, t+n^{0.525}\right)$ for all $A, B \in \mathcal{A}$. Then

$$
|\mathcal{A}|<n\binom{n}{(n+t) / 2} .
$$

## Forbidding a small interval

## Theorem (M-Rödl)

Let $0<\varepsilon<1 / 5$ be fixed, $n>n_{0}(\varepsilon), \varepsilon n<t<n / 5$ and $\mathcal{A} \subset 2^{[n]}$. Suppose that $|A \cap B| \notin\left(t, t+n^{0.525}\right)$ for all $A, B \in \mathcal{A}$. Then

$$
|\mathcal{A}|<n\binom{n}{(n+t) / 2} .
$$

- The constant 0.525 is a consequence of the result of Baker-Harman-Pintz that there is a prime in every interval $\left(s-s^{0.525}, s\right)$ as long as $s$ is sufficiently large.


## Forbidding a small interval

## Theorem (M-Rödl)

Let $0<\varepsilon<1 / 5$ be fixed, $n>n_{0}(\varepsilon), \varepsilon n<t<n / 5$ and $\mathcal{A} \subset 2^{[n]}$. Suppose that $|A \cap B| \notin\left(t, t+n^{0.525}\right)$ for all $A, B \in \mathcal{A}$. Then

$$
|\mathcal{A}|<n\binom{n}{(n+t) / 2} .
$$

- The constant 0.525 is a consequence of the result of Baker-Harman-Pintz that there is a prime in every interval $\left(s-s^{0.525}, s\right)$ as long as $s$ is sufficiently large.
- If we assume the Riemann Hypothesis, then 0.525 could be improved to $1 / 2+o(1)$ using a result of Cramér.


## More restricted intersections

Question. Can the upper bound for $M$-intersecting families be improved for more restrictive $M$ ?

## More restricted intersections

Question. Can the upper bound for $M$-intersecting families be improved for more restrictive $M$ ?

## Theorem (Berlekamp (1965), Graver (1975))

Suppose that $\mathcal{A} \subset 2^{[n]}$ is $M$-intersecting, where $M=\{0,2,4, \ldots\}$. In other words, $|A \cap B|$ is even for all $A, B \in \mathcal{A}$. Then $|\mathcal{A}| \leq 2^{\lfloor n / 2\rfloor}+1$.

## More restricted intersections

Question. Can the upper bound for $M$-intersecting families be improved for more restrictive $M$ ?

## Theorem (Berlekamp (1965), Graver (1975))

Suppose that $\mathcal{A} \subset 2^{[n]}$ is $M$-intersecting, where $M=\{0,2,4, \ldots\}$. In other words, $|A \cap B|$ is even for all $A, B \in \mathcal{A}$. Then $|\mathcal{A}| \leq 2^{\lfloor n / 2\rfloor}+1$.

## Theorem (Eventown Theorem)

Suppose that $\mathcal{A} \subset 2^{[n]}$ such that

- $|A|$ is even for every $A \in \mathcal{A}$
- $|A \cap B|$ is even for every $A, B \in \mathcal{A}$

Then $|\mathcal{A}| \leq 2^{\lfloor n / 2\rfloor}$.

## Between the extremes

Frankl-Rödl: $M=\{0,1, \ldots, n\} \backslash\{n / 4\} \quad-\quad|\mathcal{A}|<(1.99)^{n}$

## Between the extremes

Frankl-Rödl: $M=\{0,1, \ldots, n\} \backslash\{n / 4\} \quad-\quad|\mathcal{A}|<(1.99)^{n}$
Eventown: $M=\{0,2, \ldots\} \quad-\quad|\mathcal{A}|<(1.4142 . .)^{n}$

## Between the extremes

Frankl-Rödl: $M=\{0,1, \ldots, n\} \backslash\{n / 4\} \quad-\quad|\mathcal{A}|<(1.99)^{n}$
Eventown: $M=\{0,2, \ldots\} \quad-\quad|\mathcal{A}|<(1.4142 . .)^{n}$
What about $M$ that are in between these two extremes?

## Between the extremes

Frankl-Rödl: $M=\{0,1, \ldots, n\} \backslash\{n / 4\} \quad-\quad|\mathcal{A}|<(1.99)^{n}$
Eventown: $M=\{0,2, \ldots\} \quad-\quad|\mathcal{A}|<(1.4142 . .)^{n}$
What about $M$ that are in between these two extremes?

## Definition

The length $\ell(M)$ of a set $M$ is the maximum number of consecutive integers contained in $M$.

## Between the extremes

Frankl-Rödl: $M=\{0,1, \ldots, n\} \backslash\{n / 4\} \quad-\quad|\mathcal{A}|<(1.99)^{n}$
Eventown: $M=\{0,2, \ldots\} \quad-\quad|\mathcal{A}|<(1.4142 . .)^{n}$
What about $M$ that are in between these two extremes?

## Definition

The length $\ell(M)$ of a set $M$ is the maximum number of consecutive integers contained in $M$.
$\ell(M) \leq \ell$ if and only if $\bar{M}$ is $(\ell+1)$-syndetic.

## Bounds for small $\ell(M)$

## Theorem (M-Rödl)

Let $M \subset\{0,1, \ldots, n\}$ with $\ell(M)=\ell$. Suppose that $\mathcal{A} \subset 2^{[n]}$ is an $M$-intersecting family. Then

$$
|\mathcal{A}|<1.622^{n} \times 100^{\ell} .
$$

## Bounds for small $\ell(M)$

## Theorem (M-Rödl)

Let $M \subset\{0,1, \ldots, n\}$ with $\ell(M)=\ell$. Suppose that $\mathcal{A} \subset 2^{[n]}$ is an M-intersecting family. Then

$$
|\mathcal{A}|<1.622^{n} \times 100^{\ell} .
$$

- The result is nontrivial as long as, $\ell<n / 10$ or so


## Bounds for small $\ell(M)$

## Theorem (M-Rödl)

Let $M \subset\{0,1, \ldots, n\}$ with $\ell(M)=\ell$. Suppose that $\mathcal{A} \subset 2^{[n]}$ is an M-intersecting family. Then

$$
|\mathcal{A}|<1.622^{n} \times 100^{\ell} .
$$

- The result is nontrivial as long as, $\ell<n / 10$ or so
- For example, if $[n] \backslash M=\left\{0, n / 10^{4}, 2 n / 10^{4}, \ldots,\right\}$, then

$$
|\mathcal{A}|<1.63^{n}
$$

## Bounds for small $\ell(M)$

## Theorem (M-Rödl)

Let $M \subset\{0,1, \ldots, n\}$ with $\ell(M)=\ell$. Suppose that $\mathcal{A} \subset 2^{[n]}$ is an M-intersecting family. Then

$$
|\mathcal{A}|<1.622^{n} \times 100^{\ell}
$$

- The result is nontrivial as long as, $\ell<n / 10$ or so
- For example, if $[n] \backslash M=\left\{0, n / 10^{4}, 2 n / 10^{4}, \ldots,\right\}$, then

$$
|\mathcal{A}|<1.63^{n}
$$

- The 1.622 is probably not sharp, just a result of the proof


## Bounds for very small $\ell(M)$

## Theorem (M-RödI)

Let $M \subset\{0,1 \ldots, n\}$ with $\ell(M)=\ell$. Suppose that $\mathcal{A} \subset 2^{[n]}$ is an M-intersecting family. Then

$$
|\mathcal{A}|<2^{n / 2+\ell \log ^{2} n}
$$

## Bounds for very small $\ell(M)$

## Theorem (M-Rödl)

Let $M \subset\{0,1 \ldots, n\}$ with $\ell(M)=\ell$. Suppose that $\mathcal{A} \subset 2^{[n]}$ is an M-intersecting family. Then

$$
|\mathcal{A}|<2^{n / 2+\ell \log ^{2} n}
$$

- For $\ell=o\left(n / \log ^{2} n\right)$, this bound better than the first one; it is

$$
|\mathcal{A}|<2^{n / 2+o(n)}
$$

## Bounds for very small $\ell(M)$

## Theorem (M-Rödl)

Let $M \subset\{0,1 \ldots, n\}$ with $\ell(M)=\ell$. Suppose that $\mathcal{A} \subset 2^{[n]}$ is an M-intersecting family. Then

$$
|\mathcal{A}|<2^{n / 2+\ell \log ^{2} n}
$$

- For $\ell=o\left(n / \log ^{2} n\right)$, this bound better than the first one; it is

$$
|\mathcal{A}|<2^{n / 2+o(n)}
$$

- This is the first non-linear-algebraic proof of an asymptotic version of the Eventown Theorem; it applies in more general scenarios though doesn't give bounds as precise as $2^{n / 2}$.


## Proof Methods

- Prove the result for pairs of families $(\mathcal{A}, \mathcal{B})$. This facilitates an induction argument


## Proof Methods

- Prove the result for pairs of families $(\mathcal{A}, \mathcal{B})$. This facilitates an induction argument
- $(\mathcal{A}, \mathcal{B})$ is $M$-intersecting if

$$
|A \cap B| \in M
$$

for all $A \in \mathcal{A}$ and $B \in \mathcal{B}$

## Proof Methods

- Prove the result for pairs of families $(\mathcal{A}, \mathcal{B})$. This facilitates an induction argument
- $(\mathcal{A}, \mathcal{B})$ is $M$-intersecting if

$$
|A \cap B| \in M
$$

for all $A \in \mathcal{A}$ and $B \in \mathcal{B}$

## Theorem (M-Rödl)

Let $M \subset\{0,1 \ldots, n\}$ with $\ell(M)=\ell$. Suppose that $(\mathcal{A}, \mathcal{B})$ is an $M$-intersecting pair of families in $2^{[n]}$. Then

$$
|\mathcal{A}||\mathcal{B}|<\min \left\{2.631^{n} \times 10^{4 \ell}, \quad 2^{n+2 \ell \log ^{2} n}\right\}
$$

## Height functions

## Height functions

## Definition (Sgall)

Say that a function $h: 2^{N} \rightarrow N \cup\{\infty\}$ is a height function if the following four properties hold:

## Height functions

## Definition (Sgall)

Say that a function $h: 2^{N} \rightarrow N \cup\{\infty\}$ is a height function if the following four properties hold:
(A1) $h(L)=0$ if and only if $L=\emptyset$,

## Height functions

## Definition (Sgall)

Say that a function $h: 2^{N} \rightarrow N \cup\{\infty\}$ is a height function if the following four properties hold:
(A1) $h(L)=0$ if and only if $L=\emptyset$,
(A2) if $h(L)<\infty$ and $L^{\prime} \subset L$, then $h\left(L^{\prime}\right) \leq h(L)$,

## Height functions

## Definition (Sgall)

Say that a function $h: 2^{N} \rightarrow N \cup\{\infty\}$ is a height function if the following four properties hold:
(A1) $h(L)=0$ if and only if $L=\emptyset$,
(A2) if $h(L)<\infty$ and $L^{\prime} \subset L$, then $h\left(L^{\prime}\right) \leq h(L)$,
(A3) if $h(L)<\infty$ and $L^{\prime} \subset L-1$, then $h\left(L^{\prime}\right) \leq h(L)$,

## Height functions

## Definition (Sgall)

Say that a function $h: 2^{N} \rightarrow N \cup\{\infty\}$ is a height function if the following four properties hold:
(A1) $h(L)=0$ if and only if $L=\emptyset$,
(A2) if $h(L)<\infty$ and $L^{\prime} \subset L$, then $h\left(L^{\prime}\right) \leq h(L)$,
(A3) if $h(L)<\infty$ and $L^{\prime} \subset L-1$, then $h\left(L^{\prime}\right) \leq h(L)$,
(A4) if $h(L), h\left(L^{\prime}\right) \leq s<\infty$, then either

$$
h\left(L^{\prime} \cap L\right) \leq s-1 \quad \text { or } \quad h\left(L^{\prime} \cap(L-1)\right) \leq s-1 .
$$

## Sgall's theorem

## Theorem (Sgall (1999))

Suppose that $(\mathcal{A}, \mathcal{B})$ is an $M$-intersecting pair of families in $2^{[n]}$ and $h(M) \leq s \leq n+1$. Then

$$
|\mathcal{A}||\mathcal{B}| \leq 2^{n+s-1}\binom{n}{s-1}
$$

## Sgall's theorem

## Theorem (Sgall (1999))

Suppose that $(\mathcal{A}, \mathcal{B})$ is an $M$-intersecting pair of families in $2^{[n]}$ and $h(M) \leq s \leq n+1$. Then

$$
|\mathcal{A}||\mathcal{B}| \leq 2^{n+s-1}\binom{n}{s-1}
$$

## Theorem (M-Rödl)

There exists a height function $h$ such that for $M \subset\{0,1 \ldots, n\}$,

$$
h(M) \leq 1+2 \ell(M) \log n
$$

Applying this bound in Sgall's Theorem yields $|\mathcal{A}||\mathcal{B}|<2^{n+2 \ell \log ^{2} n}$.

## The Height function

- $h(\emptyset)=0$


## The Height function

- $h(\emptyset)=0$
- Suppose that $L \neq \emptyset$ and $h$ has been defined on all sets of size less than $|L|$


## The Height function

- $h(\emptyset)=0$
- Suppose that $L \neq \emptyset$ and $h$ has been defined on all sets of size less than $|L|$
- $T(L)=\{M: M \notin\{L, L+1\}$ and $0<|M| \leq|L|\}$


## The Height function

- $h(\emptyset)=0$
- Suppose that $L \neq \emptyset$ and $h$ has been defined on all sets of size less than $|L|$
- $T(L)=\{M: M \notin\{L, L+1\}$ and $0<|M| \leq|L|\}$
- $a=h(L \cap(L+1))$


## The Height function

- $h(\emptyset)=0$
- Suppose that $L \neq \emptyset$ and $h$ has been defined on all sets of size less than $|L|$
- $T(L)=\{M: M \notin\{L, L+1\}$ and $0<|M| \leq|L|\}$
- $a=h(L \cap(L+1))$
- $b=\max _{M \in T(L)} \min \{h(L \cap M), h(L \cap(M-1))\}$


## The Height function

- $h(\emptyset)=0$
- Suppose that $L \neq \emptyset$ and $h$ has been defined on all sets of size less than $|L|$
- $T(L)=\{M: M \notin\{L, L+1\}$ and $0<|M| \leq|L|\}$
- $a=h(L \cap(L+1))$
- $b=\max _{M \in T(L)} \min \{h(L \cap M), h(L \cap(M-1))\}$
- $h(L)=1+\max \{a, b\}$


## Sgall's Lemma and the Puzzle

## Lemma (Sgall)

Suppose that $a, b, x, y, p, Q$ are positive real numbers such that

## Sgall's Lemma and the Puzzle

Lemma (Sgall)
Suppose that $a, b, x, y, p, Q$ are positive real numbers such that

- $a x \leq p$


## Sgall's Lemma and the Puzzle

Lemma (Sgall)
Suppose that $a, b, x, y, p, Q$ are positive real numbers such that

- $a x \leq p$
- ay $\leq Q$


## Sgall's Lemma and the Puzzle

Lemma (Sgall)
Suppose that $a, b, x, y, p, Q$ are positive real numbers such that

- $a x \leq p$
- ay $\leq Q$
- $b x \leq Q$


## Sgall's Lemma and the Puzzle

Lemma (Sgall)
Suppose that $a, b, x, y, p, Q$ are positive real numbers such that

- $a x \leq p$
- ay $\leq Q$
- $b x \leq Q$
- by $\leq Q$


## Sgall's Lemma and the Puzzle

Lemma (Sgall)
Suppose that $a, b, x, y, p, Q$ are positive real numbers such that

- $a x \leq p$
- ay $\leq Q$
- $b x \leq Q$
- by $\leq Q$

Then

$$
(a+b)(x+y) \leq
$$

## Sgall's Lemma and the Puzzle

Lemma (Sgall)
Suppose that $a, b, x, y, p, Q$ are positive real numbers such that

- $a x \leq p$
- ay $\leq Q$
- $b x \leq Q$
- by $\leq Q$

Then

$$
(a+b)(x+y) \leq 2(p+Q)
$$

## Sgall's Lemma and the Puzzle

Lemma (Sgall)
Suppose that $a, b, x, y, p, Q$ are positive real numbers such that

- $a x \leq p$
- ay $\leq Q$
- $b x \leq Q$
- by $\leq Q$

Then

$$
(a+b)(x+y) \leq 2(p+Q)
$$

## Thank You

