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Random graphs

Erdős–Rényi graphs (E–R 1959, 1960)

Gn,m – n vertices; m edges, each with equal probability

Random graph process

in discrete time:
(
Gn,t , t = 0, 1, . . . ,

(
n
2

))
probabilistic version:

(
Gn,t , t > 0

)
– edges come according to

a homogeneous Poisson process

Asymptotic results of the form whp (with high probability –
i.e., with probability tending to 1 as n→∞)
E.g., threshold phenomenon for monotone graph properties

Very exciting mathematically, but real world networks often
behave differently.
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Evolving random graphs

Degree distribution

The proportions of degree d vertices (d = 0, 1, . . . ) decrease
polynomially – scale free property.

Barabási and Albert (Science, 1999) – evolving graph process
with preferential attachment dynamics.

At every step a new vertex and m new edges are added to the
graph. The new edges connect the new vertex to old ones that
are selected at random, with probabilities proportional to their
current degrees.

m = 1 – a tree is built: plane oriented recursive tree (Yule
1925, Szymański 1987, etc.)

More general, more complicated models of web graphs (e.g.,
Cooper and Frieze, RSA 2003)
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Evolving random graphs

An evolving random graph process means that the probability
spaces describing the graph at subsequent stages of evolution are
embedded one in another, so the whole process can be defined in
the same probability space. This makes it possible to prove almost
sure theorems. When it makes sense, it is stronger than the
corresponding whp result, the two notions are related like
convergence in probability vs a.e. convergence.

Asymptotic degree distribution: for every d = 0, 1, . . . the
proportion of degree d vertices converges to a constant cd with
probability 1 as the size of the graph tends to infinity. The
sequence (cd) sums up to 1.
The asymptotic degree distribution is scale free, if cd ∼ K d−γ as
d →∞, for some γ > 0 (characteristic exponent).

E.g., for the PORT cd = 4
d(d+1)(d+2) , γ = 3.
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Heuristic reasoning

In the beginning of the new millenium we saw an explosion of
(mostly heuristic) results, which were proved rigorously later. It is
always striking when heuristics and approximate computations fail.



Duplication

Biological networks within one cell (gene regulatory networks,
protein-protein interaction networks, aka proteomes) are quite
different from non-biological ones, e.g., γ ∈ (1, 2). The central
force of evolution is the duplication of the information in the
genome.

Kim et al. (Phys. Rev. E, 2002)
Pastor-Satorras et al. (J. Theor. Biol., 2003)
Chung et al. (J. Comp. Biol., 2003)

Start from a set of connected vertices and at each time step

select one vertex of the graph at random and duplicate: add a
new vertex and connect it to the neighbors of the selected
vertex;

delete the new edges independently, with probability δ;

connect the new vertex to each old one independently, with
probability α/n; merge multiple edges.
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Pastor-Satorras et al. model

Results claimed

The mean degree distribution is a power law with exponential
cut-off, that is, cd ∼ K d−γe−λd (Pastor-Satorras et al.)

FALSE

The pure duplication model (δ = 0) has an asymptotic degree
distribution, which is a power law (Chung et al.)

FALSE

Bebek et al. (Theor. Comput. Sci., 2006)

Modification: an extra step at the end of each turn. The new
vertex is given a fixed number of additional edges, uniformly at
random, so as to avoid singletons.

Then the expected number of degree d vertices, divided by n,
converges, and the limits decrease polynomially (still a bit sketchy).
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One more model with duplication and deletion

Inspired by these models we consider the following one.

Model 1

Start from a single vertex. The graph evolves in discrete time
steps. At every step choose two (not necessarily different) vertices
independently, uniformly at random.

Duplication phase. Add a new vertex and connect it to the
first selected vertex and to all of its neighbours.

Deletion phase. Delete all old edges of the second selected
vertex.

A kind of coagulation-fragmentation model. The presence of
deletion causes intense fluctuation in the model’s behavior, and
makes it harder to access.

We do not claim that this model is biologically relevant.



One more model with duplication and deletion

A new vertex is added (in black)



One more model with duplication and deletion

Duplication phase



One more model with duplication and deletion

Deletion phase



Properties

Linear growth

The number of vertices after step n is n + 1, and the mean
number of edges is equal to n — just like in a tree.
However, in a recursive tree the individual degrees are
increasing to infinity, while here they are regularly cut back to
0 due to deletion. In fact, individual degrees remain
stochastically bounded, hence

⇒ the asymptotic degree distribution (if exists) must have
lighter tail;

⇒ the maxdegree is of smaller order than any power of n;

⇒ scale free property cannot be expected.



Asymptotic degree distribution

Theorem (Asymptotic degree distribution)

Let X [n, d ] denote the number of degree d vertices after step n.
Then

lim
n→∞

X [n, d ]

n + 1
= cd , d = 0, 1, . . . ,

with probability 1, where (cd) is a sequence of positive numbers
satisfying

c0 =
1 + c1

3
; cd =

(d + 1)(cd−1 + cd+1)

2d + 3
(d ≥ 1) ;

c0 + c1 + · · · = 1.

Not a recursion.



Method

A slight modification of the original model makes the analysis
easier.

Model 2

The only point where Model 2 differs from Model 1 is that in the
deletion phase the selected vertex loses all of its edges without any
exceptions. That is, the new edges are protected in the erasure
part of the same step in Model 1, but they might be deleted
immediately in Model 2.

In Model 2, all connected components of the graph are cliques
(including singletons). The number of d-cliques does not vary so
vehemently as the number of degree d vertices: the fluctuation is
bounded by 2.



Coupling

How to transfer the limit result from Model 2 to Model 1?

Coupling

We develop the two models simultaneously. The selected vertices
are the same in both models. We color some of the edges and
vertices of Model 1 red.

Edge coloring

In the deletion phase, if a newborn edge is deleted in Model 2,
color it red in Model 1.

In the duplication phase, copies of red edges are also red in
Model 1.

All other edges are born to be black.

In this way, the edges in Model 1 are either black or red. The black
subgraph is a realization of Model 2.



Coupling

Vertex coloring

In the duplication phase, the new vertex becomes red if and
only if the duplicated vertex is red.

In the deletion phase, whenever an edge becomes red, color
both endpoints red.

If a red vertex is chosen to be deleted, and it loses all of its
edges, color it back to black.

Black vertices can only have black edges, hence they have the
same degree in both models. It is sufficient to show that the
number of red vertices is o(n). In fact, it is o

(
n1/2+ε

)
.



A useful lemma

Lemma (simplified version)

Let (Fn) be a filtration, (ξn) a nonnegative adapted process.
Suppose that

E
(
(ξn − ξn−1)2

∣∣ Fn−1

)
= O

(
n1−δ

)
holds with some δ > 0. Let (un), (vn) be nonnegative predictable
processes such that un < n for all n ≥ 1.

(a) Suppose that E(ξn | Fn−1) ≤
(

1− un

n

)
ξn−1 + vn, and

limn→∞ un = u, lim supn→∞ vn ≤ v with some random variables
u > 0, v ≥ 0. Then

lim sup
n→∞

ξn
n
≤ v

u + 1
a.s.



A useful lemma

Lemma (continued)

Let (Fn) be a filtration, (ξn) a nonnegative adapted process.
Suppose that

E
(
(ξn − ξn−1)2

∣∣ Fn−1

)
= O

(
n1−δ

)
holds with some δ > 0. Let (un), (vn) be nonnegative predictable
processes such that un < n for all n ≥ 1.

(b) Suppose that E(ξn | Fn−1) ≥
(

1− un

n

)
ξn−1 + vn, and

limn→∞ un = u, lim infn→∞ vn ≥ v with some random variables
u > 0, v ≥ 0. Then

lim inf
n→∞

ξn
n
≥ v

u + 1
a.s.



Explicit form of the limits

Let G (z) denote the generating function of the sequence (cd), then

(1− z)2G ′(z) = (3− 2z)G (z)− 1, G (0) = c0.

This o.d.e can be solved.

G (z) =
1

(1− z)2
exp
( z

1− z

)∫ 1−z

0
exp
(

1− 1

x

)
dx .

After some variable transformation we can expand it into Taylor
series.

Theorem

cd = (d + 1)

∫ ∞
0

yde−y

(1 + y)d+2
dy , d = 0, 1, . . . .



Asymptotics

cd = (d + 1)

∫ ∞
0

yde−y

(1 + y)d+2
dy

In order to approximate the integral we first analyse the behavior
of the integrand around the point where it attains its maximum.
Second order Taylor approximation to the logarithm of the
integrand turns the integral into a Gaussian one.

Theorem

cd ∼ (eπ)1/2 d1/4 e−2
√

d , as d →∞.

Stretched exponential decay.
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