Singular integrals on self-similar subsets of metric groups

Pertti Mattila

Singular integrals on self-similar subsets of metric groups

Pertti Mattila

University of Helsinki

July 1,2013

Hilbert transform

Singular integrals on self-similar subsets of metric groups

Pertti Mattila

- $Hf(x) = \lim_{\epsilon \to 0} \int_{|x-y| > \epsilon} \frac{f(y)}{y-x} dy$
- $H^*f(x) = \sup_{\epsilon>0} \left| \int_{|x-y|>\epsilon} \frac{f(y)}{y-x} dy \right|$
- $H^*: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ is bounded

Cauchy transform

Singular integrals on self-similar subsets of metric groups

Pertti Mattila

- μ a finite Borel measure on $\mathbb C$
- $C^*_{\mu}f(z) = \sup_{\epsilon>0} \left| \int_{|z-w|>\epsilon} \frac{f(w)}{w-z} d\mu w \right|$
- When is $C^*_{\mu}: L^2(\mu) \to L^2(\mu)$ bounded?

• $\int C^*_{\mu}(f)^2 d\mu \lesssim \int |f|^2 d\mu$?

Regular sets and measures

Singular integrals on self-similar subsets of metric groups

Pertti Mattila

 μ is (Ahlfors-David) *m*-regular if

 $r^m/C \le \mu(B(x,r)) \le Cr^m$ for all $x \in \operatorname{spt}\mu, 0 < r < \operatorname{diam}(\operatorname{spt}\mu).$

E is *m*-regular if

 $r^m/C \leq \mathcal{H}^m(E \cap B(x, r)) \leq Cr^m$ for all $x \in E, 0 < r < diam(E)$.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Cauchy transform

Singular integrals on self-similar subsets of metric groups

Pertti Mattila

Theorem (Mattila, Melnikov, Verdera, 1996, David,...)

Suppose μ is a 1-regular finite Borel measure on \mathbb{C} . Then $C^*_{\mu} : L^2(\mu) \to L^2(\mu)$ is bounded if and only spt μ is contained in a 1- regular curve.

Examples: $C^*_{\mu} : L^2(\mathcal{H}^1 \lfloor E) \to L^2(\mathcal{H}^1 \lfloor E)$ is unbounded for all fractal self-similar 1-dimensional sets E with open set condition (thanks for Andras Mathe for a correction here)

Removable sets

Singular integrals on self-similar subsets of metric groups

Pertti Mattila

Theorem (Mattila, Melnikov, Verdera, 1996)

Suppose $E \subset \mathbb{C}$ is a compact 1-regular set. Then the following are equivalent:

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

E is removable for bounded analytic functions

E is removable for Lipschitz harmonic functions

 $\mathcal{H}^1(E \cap \Gamma) = 0$ for every rectifiable curve Γ

Removable sets

Singular integrals on self-similar subsets of metric groups

Pertti Mattila

Examples: all fractal self-similar 1-dimensional sets with open set condition

Much more general results were later proven by David, Nazarov, Treil, Volberg, Tolsa, and others

Riesz transforms

Singular integrals on self-similar subsets of metric groups

Pertti Mattila

- $0 < m < n, \mu$ *m*-regular
- $R_{m,\mu}^* f(x) = \sup_{\epsilon > 0} | \int_{|x-y| > \epsilon} \frac{y-x}{|y-x|^{m+1}} f(y) d\mu y |, x \in \mathbb{R}^n$
- David and Semmes, 1991: $R_{m,\mu}^*: L^2(\mu) \to L^2(\mu)$ is bounded for uniformly rectifiable *m*-regular measures μ
- Conjecture: converse holds
- Vihtilä, 1996: $R^*_{m,\mu}: L^2(\mu) \to L^2(\mu)$ is not bounded if m is not an integer

Riesz transforms

Singular integrals on self-similar subsets of metric groups

Pertti Mattila

David-Semmes conjecture is true when m = n - 1:

Theorem (Nazarov, Tolsa, Volberg, 2013)

Suppose μ is an (n-1)-regular finite Borel measure on \mathbb{R}^n . Then $R^*_{m,\mu} : L^2(\mu) \to L^2(\mu)$ is bounded if and only spt μ is an (n-1)-dimensional uniformly rectifiable set.

Riesz transforms

Singular integrals on self-similar subsets of metric groups

Pertti Mattila

Theorem (Nazarov, Tolsa, Volberg, 2013)

Suppose $E \subset \mathbb{R}^n$ is a compact (n-1)-regular set. Then E is removable for Lipschitz harmonic functions, if and only $\mathcal{H}^{n-1}(E \cap S) = 0$ for every (n-1)-dimensional C^1 surface S.

General setting

Singular integrals on self-similar subsets of metric groups

Pertti Mattila

- X a separable metric space, μ a finite Borel measure on X,
- $K: X \times X \setminus \{(x, y): x = y\} \rightarrow \mathbb{R}$ Borel function,

•
$$K(x, y) = -K(y, x)$$
,

- K bounded in $\{(x, y) : |x y| > \delta\}$ for every $\delta > 0$,
- $T^*_{K,\mu}f(x) = \sup_{\epsilon>0} \left| \int_{d(x,y)>\epsilon} K(x,y)f(y)d\mu y \right|, x \in X.$

Convergence

Singular integrals on self-similar subsets of metric groups

Pertti Mattila

When does L^2 -boundedness;

$$\int T^*_{K,\mu}(f)^2 d\mu \lesssim \int f^2 d\mu,$$

imply almost everywhere convergence of principal values;

$$\exists \lim_{\epsilon \to 0} \int_{X \setminus B(x,\epsilon)} f(y) K(x,y) d\mu y \text{ for } \mu \text{ almost all } x?$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Convergence

Singular integrals on self-similar subsets of metric groups

Pertti Mattila

- When $X = \mathbb{R}^n$ and K is the Riesz kernel, results of Mattila and Preiss, 1994, and Tolsa, 2008, say that the almost everywhere convergence of principal values implies rectifiability.
- Similar results by Huovinen, 1997, for other kernels, for example $z^{2k-1}/|z|^{2k}, z \in \mathbb{C}, k \in \mathbb{N}$.

Singular integrals on self-similar subsets of metric groups

 L^2 -boundedness implies rectifiability with the kernels $x^{2k-1}/|z|^{2k}$, $z = x + iy \in \mathbb{C}$, by Chousionis, Mateu, Prat and Tolsa, 2012.

Pertti Mattila

Convergence

Singular integrals on self-similar subsets of metric groups

Pertti Mattila

Theorem (Mattila and Verdera, 2009)

If $\int \mathcal{T}^*_{\mathcal{K},\mu}(f)^2 d\mu \lesssim \int f^2 d\mu$, then the operators

$$T_{\mathcal{K},\mu,\epsilon}f(x) = \int_{X\setminus B(x,\epsilon)} \mathcal{K}(x,y)f(y)d\mu y,$$

converge weakly in $L^2(\mu)$; $T_{K,\mu,\epsilon} \to T_{K,\mu}$ as $\epsilon \to 0$, and

$$T_{K,\mu}f(x) = \lim_{\epsilon \to 0} \frac{1}{\mu B(z,r)} \int_{B(z,r)} \int_{X \setminus B(z,r)} K(x,y)f(y) d\mu y d\mu x$$

for μ almost all $z \in X$.

Singular integrals on self-similar subsets of metric groups

Pertti Mattila

Unfortunately we don't know for the Riesz kernels if the above converge implies rectifiability nor if the L^2 -boundedness implies the almost everywhere convergence of principal values, except when m = 1 or m = n - 1.

Metric groups

Singular integrals on self-similar subsets of metric groups

Pertti Mattila

- (G, d) is a complete separable metric group with the following properties:
- The left translations τ_q : G → G, τ_q(x) = q ⋅ x, x ∈ G, are isometries for all q ∈ G.

- There exist dilations δ_r : G → G, r > 0, which are continuous group homomorphisms for which,
- $\delta_1 = \text{identity}, \ \delta_{rs} = \delta_r \circ \delta_s$,
- $d(\delta_r(x), \delta_r(y)) = rd(x, y)$ for $x, y \in G, r > 0$,

Singular integrals on self-similar subsets of metric groups

Pertti Mattila

Let $S = \{S_1, \ldots, S_N\}, N \ge 2$, be an iterated function system of similarities of the form $S_i = \tau_{q_i} \circ \delta_{r_i}$ where $q_i \in G, r_i \in (0, 1)$ and $i = 1, \ldots, N$. The self-similar set C is the invariant set with respect to S, that is, the unique non-empty compact set such that

$$C=\bigcup_{i=1}^N S_i(C).$$

Singular integrals on self-similar subsets of metric groups

Pertti Mattila

Suppose that the sets $S_i(C)$ are pairwise disjoint for i = 1, ..., N. Then

$$0 < \mathcal{H}^{s}(\mathcal{C}) < \infty$$
 for s such that $\sum_{i=1}^{N} r_{i}^{s} = 1$,

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

and the measure $\mu = \mathcal{H}^{s} \lfloor C$ is *s*-regular.

Singular integrals on self-similar subsets of metric groups

Pertti Mattila

Let $K : G \setminus \{e\} \to \mathbb{R}$ be an *s*-homogeneous kernel, $K(\delta_r(x)) = r^{-s}K(x)$ and

$$T^*_{K,\mu}f(x) = \sup_{\epsilon>0} |\int_{d(x,y)>\epsilon} K(x^{-1}y)f(y)d\mu y|, x \in G.$$

Singular integrals on self-similar subsets of metric groups

Pertti Mattila

Theorem (Chousionis and Mattila, 2012)

If there exists a fixed point x_w for some $S_w = S_{w_1} \circ \cdots \circ S_{w_k}, w = (w_1, \dots, w_k)$, such that

$$\int_{C\setminus S_w(C)} K(x_w^{-1}y) d\mathcal{H}^s y \neq 0,$$

then the maximal operator $T^*_{K,\mathcal{H}^s \mid C}$ is unbounded in $L^2(\mathcal{H}^s \mid C)$, moreover $\|T^*_K(1)\|_{L^{\infty}(\mathcal{H}^s \mid C)} = \infty$.

Singular integrals on self-similar subsets of metric groups

Is it true in the above situation that L^2 -boundedness implies the almost everywhere convergence of principal values? This question is (vaguely) of the following type: when does the boundedness of the ergodic sums

$$\sum_{j=1}^m f(\sigma^j x)$$

imply their almost everywhere convergence?

Singular integrals on self-similar subsets of metric groups

Pertti Mattila

Example where this fails:

 $\begin{aligned} &\sigma(\omega_1,\omega_2,\dots)=(\omega_2,\omega_3,\dots), \omega_j\in\{0,1\}, \text{ the shift,} \\ &\mu \text{ the standard uniform measure on } \{(\omega_j):\omega_j\in\{0,1\}\}, \\ &f(\omega_j)=1, \text{ if } \omega_1=0, \omega_2=1, f(\omega_j)=-1, \text{ if } \omega_1=1, \omega_2=0, \\ &\text{ and } f(\omega_j)=0 \text{ otherwise.} \end{aligned}$

Heisenberg group $\mathbb H$

Singular integrals on self-similar subsets of metric groups

Pertti Mattila

Heisenberg group \mathbb{H} is \mathbb{R}^3 equipped with a non-abelian group structure, with a left invariant metric and with natural dilations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Heisenberg group $\mathbb H$

Singular integrals on self-similar subsets of metric groups

Pertti Mattila

- $\mathbb{H} = \mathbb{C} \times \mathbb{R}$, $p = (w, s), q = (z, t) \in \mathbb{H}$
- $p \cdot q = (w + z, s + t + 2Im(w\overline{z}))$
- $||p|| = (|z|^4 + t^2)^{1/4}$
- $d(p,q) = ||p^{-1} \cdot q|| = (|w-z|^4 + |s-t+2Im(w\bar{z})|^2)^{1/4}$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

•
$$\delta_r(p) = (rz, r^2t)$$

•
$$d(\delta_r(p), \delta_r(q)) = rd(p, q)$$

• $d(p \cdot q_1, p \cdot q_2) = d(q_1, q_2)$

• dim_{$$H$$} $\mathbb{H} = 4$

Horizontal differential operators

Singular integrals on self-similar subsets of metric groups

Pertti Mattila

• $p = (z, t) = (x + iy, t) \in \mathbb{H}$

•
$$X = \frac{\partial}{\partial x} + 2y \frac{\partial}{\partial t}, Y = \frac{\partial}{\partial y} - 2x \frac{\partial}{\partial t}$$

- $\nabla_H = (X, Y)$
- $\Delta_H = X^2 + Y^2$
- f is Δ_H -harmonic if $\Delta_H f = 0$.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Fundamental solution and the kernel K

Singular integrals on self-similar subsets of metric groups

Pertti Mattila

- The fundamental solution for $\Delta_H f = 0$ is $\Gamma(p) = c||p||^{-2}$.
- $\nabla_H \Gamma(p) = c(\frac{x(x^2+y^2)+yt}{||p||^6}, \frac{y(x^2+y^2)-xt}{||p||^6}), p = (x+iy, t)$
- $K(p) = \nabla_H \Gamma(p)$
- $T^*_{K,\mu}f(p) = \sup_{\epsilon>0} ||\int_{d(p,q)>\epsilon} K(p^{-1}q)f(q)d\mu q||, p \in \mathbb{H}$

T^{*}_{K,μ} is unbounded on *L*²(μ) for many self-similar measures μ

Removable sets

Singular integrals on self-similar subsets of metric groups

Pertti Mattila

- A compact set E ⊂ H is removable for Lipschitz
 Δ_H-harmonic functions if for all open sets U with E ⊂ U every Lipschitz function f : U → R which is Δ_H-harmonic in U \ E is harmonic in U.
- If $\mathcal{H}^3(E) = 0$, then E is removable.
- If dim E > 3, then E is not removable.
- Many self-similar 3-dimensional sets are removable for Lipschitz Δ_H -harmonic functions.