Smooth numbers and zeros of Dirichlet L - functions

H. Maier, H.-P. Reck, University of Ulm

1 Introduction

We investigate relations between sums of the form

$$
\sum_{M<p \leq M^{\prime}} \chi(p) p^{+i t}
$$

where χ is a non- principal character $\bmod Q, t \in \mathbb{R}, M<M^{\prime} \leq 2 M$ and zero- free regions of the related Dirichlet L - function

$$
L(s, \chi)=\sum_{n=1}^{\infty} \chi(n) n^{-s} .
$$

One direction can easily be obtained by complex integration as a generalization of the Explicit formula

$$
\psi(x, \chi)=E_{0}(\chi) x-\sum_{|\Im(\rho)| \leq T} \frac{x^{\rho}}{\rho}+O_{Q}\left(\frac{x \log ^{2} x}{T}\right)
$$

where $\psi(x, \chi)=\sum_{n \leq x} \Lambda(n) \chi(n)$ with von- Mangoldt's function Λ and

$$
E_{0}(\chi)= \begin{cases}1, & \chi=\chi_{0} \\ 0, & \chi \neq \chi_{0}\end{cases}
$$

We set

$$
\psi(x, \chi, t)=\sum_{n \leq x} \Lambda(n) \chi(n) n^{+i t_{0}}
$$

and obtain

$$
\begin{equation*}
\psi\left(x, \chi, t_{0}\right)=E_{0}(\chi) x^{1-i t_{0}}-\sum_{\left|\Im(\rho)-t_{0}\right| \leq T} \frac{x^{\rho-i t_{0}}}{\rho-i t_{0}}+O\left(\frac{x \log ^{2}\left(x t_{0}\right)}{T}\right) . \tag{1}
\end{equation*}
$$

The result for $\sum_{p \leq x} \chi(p) p^{i t_{0}}$ follows by partial summation.
We obtain Theorem 1:
Assume that $L(s, \chi) \neq 0$ for $\Re(\rho) \geq \sigma_{0}$. Then

$$
\sum_{M<p \leq 2 M} \chi(p) p^{i t_{0}} \lll Q M^{\sigma_{0}} \log ^{2}\left|t_{0}\right| .
$$

Results in the other direction were obtained by Turán (1974, see []) by the application of his power- sum method.
We just cite one example:
Theorem (Turán):
Suppose the existence of constants $\alpha \geq 2,0<\beta \leq 1$ and $c(\alpha, \beta)$ so that $\tau>c(\alpha, \beta)$ the inequality

$$
\left|\sum_{N_{1} \leq p \leq N_{2}} \exp (-i \tau \log p)\right| \leq \frac{N \log ^{10} N}{\tau^{\beta}}
$$

holds for all N_{1}, N_{2} integers with $\tau^{\alpha} \leq N \leq N_{1}<N_{2} \leq 2 N \leq \exp \left(\tau^{\beta / 10}\right)$. Then $\zeta(s) \neq 0$ on the segment

$$
\sigma>1-\frac{e^{-10} \beta^{3}}{\alpha^{2}}
$$

with $t=\tau$ and $s=\sigma+i t$.

We shall prove
Theorem 2:
Let $Q \in \mathbb{N}$ and $Q>1$. Let $B=B(Q)>0$ a fixed but arbitrarily large constant. Let χ be a non- principal Dirichlet- character $\bmod Q$. Let $\ell=\log (|t|+A)+B$ for $t \in \mathbb{R}$ and $A \geq \frac{1}{2}$. Assume that the following hypothesis holds:

$$
\sum_{M<p \leq M^{\prime}} \chi(p) p^{i t} \leq M^{\sigma_{0}}
$$

for $M<M^{\prime}<2 M, M \geq \ell^{A}$ and $\sigma_{0}=1-\frac{1}{A}$.
Then $L(s, \chi) \neq 0$ for $\sigma>\sigma_{0}+\epsilon$, where $\epsilon=\epsilon(B) \rightarrow 0$ for $B \rightarrow 0$.

2 Proof of Theorem 1

A standard application of Perron's formula gives (1).
Let

$$
N(T, \chi)=\{\rho: L(s, \chi)=0,0 \leq \Im(\rho) \leq T\} .
$$

By the well- known estimate $N(T+1, \chi)-N(T, \chi)=O_{Q}(\log T)$, (see []) we obtain from (1) with $x=M$, $x=M^{\prime}, T=t_{0}$

$$
\sum_{M<n \leq M^{\prime}} \Lambda(n) \chi(n) n^{i t_{0}} \lll Q M^{\sigma_{0}} \log ^{3}\left|t_{0}\right| .
$$

Theorem 1 follows by partial summation.

3 Approximation by Dirichlet- polynomials

Definition 3.1:

$$
L_{x}(s, \chi)=\sum_{1 \leq n \leq x} \chi(n) n^{-s}
$$

Lemma 3.1:
Let $C_{1}>1, \sigma>0, s=\sigma+i t$ and $|t| \leq \frac{2 \pi x}{C_{1}}$. Then

$$
L(s, \chi)=L_{x}(s, \chi)+O_{\sigma, C_{1}}\left(x^{-\sigma}\right)
$$

Proof: Karacuba, [].

4 Construction of the Mollifier

We start with a partition of the set of integers into boxes, cartesian products of intervals for the prime factors of these integers.

Definition 4.1 (The boxes):

Let $\mathcal{L}=\ell^{A}$ and ℓ^{ℓ}.
We partition the interval $[\mathcal{L}, x]$ into subintervals I_{j}. For this purpose we define the sequence $\left(Y_{j}\right)$ by

$$
\begin{equation*}
y_{j}=\mathcal{L} \cdot 2^{j}, \tag{2}
\end{equation*}
$$

with $j \in \mathbb{N}_{0}$ and $0 \leq j \leq J_{0}$, where $J_{0}=\left\{\min j: \mathcal{L} \cdot 2^{j} \geq x\right\}$ and set $I_{j}=\left[y_{j}, y_{j+1}\right]$.

Let $\nu\left(m, I_{j}\right)$ be the number of primefactors of $m\left(\mu^{2}(m)=1\right)$ in the interval I_{j}. Let m_{0} be an integer consisting only of primes $p \leq \mathcal{L}$:

$$
p \mid m_{0} \Rightarrow p \leq \mathcal{L}
$$

For each $n \in \mathbb{N}$ with $\mu^{2}(n)=1$, we set

$$
m_{0}(n)=\prod_{\substack{p \backslash n \\ p \leq \mathcal{L}}} p
$$

Let $\left\{j_{1}, \ldots, j_{r}\right\} \subset\left\{1, \ldots, J_{0}\right\}, \nu_{u} \in \mathbb{N}, 1 \leq u \leq r$. We then define the box
$\mathcal{B}\left(m_{0}, j_{1}, \ldots, j_{r}, \nu_{1}, \ldots, \nu_{r}\right)=\left\{n: m_{0}(n)=m_{0}, \nu\left(n, I_{j_{u}}\right)=\nu_{u}\right.$ for $1 \leq u \leq r, \nu\left(n, I_{j}\right)=0$ for $\left.j \notin\left\{j_{1}, \ldots, j_{r}\right\}\right\}$.
We also use the vectors notations

$$
\vec{j}=\left(j_{1}, \ldots, j_{r}\right) \quad \text { and } \quad \vec{\nu}=\left(\nu_{1}, \ldots, \nu_{r}\right)
$$

and write $\mathcal{B}\left(m_{0}, \vec{j}, \vec{\nu}\right)$.
Obviously each n belongs to at most one box, each $n \leq x$ to exactly one box which we denote by $\mathcal{B}(n)$.

Definition 4.2 (The mollifier):
We set

$$
\tilde{\mu}(m)=\left\{\begin{array}{cl}
\mu(m), & \text { if, } \quad m \in \mathcal{X} \text { or } m=1 \\
0 & \text { otherwise }
\end{array}\right.
$$

where \mathcal{X} is the union of all boxes $\mathcal{B}\left(m_{0}, y_{j_{1}}, \ldots, y_{j_{r}}, \nu_{1}, \ldots, \nu_{r}\right)$ with

$$
\begin{equation*}
m_{0} y_{j_{1}}^{\nu_{1}} \cdots y_{j_{r}}^{\nu_{r}} \leq x . \tag{3}
\end{equation*}
$$

We define

$$
M(s, \chi)=\sum_{m} \tilde{\mu}(m) \chi(m) m^{-s}
$$

Lemma 4.1:
For $1 \leq x$ we have

$$
\sum_{m \mid l} \tilde{\mu}(m)=0 .
$$

Proof:
From $1 \leq l \leq x$ and $m \mid l$ it follows that $m=1$ or that the box $\mathcal{B}(m)$ satifies (3) and thus $\tilde{\mu}(m)=\mu(m)$ for all $m \mid l$. Thus

$$
\sum_{m \mid l} \tilde{\mu}(m)=\sum_{m \mid l} \mu(m)=0 .
$$

Definition 4.3:

For a box $B\left(m_{0}, \vec{j}, \vec{\nu}\right), q \in \mathbb{N}$ and $s \in \mathbb{C}$ we set

$$
\begin{aligned}
\sum_{1}(\mathcal{B}, q, s) & =\sum_{n: \mathcal{B}(n)=\mathcal{B}} \chi\left(n q^{2}\right)\left(n q^{2}\right)^{-s} \\
\sum_{1, b}(\mathcal{B}, q, s) & =\sum_{\substack{\mathcal{B}(n)=\mathcal{B} \\
q^{2} n \leq x}} \chi\left(n q^{2}\right)\left(n q^{2}\right)^{-s} \\
\sum_{(\mu)}(\mathcal{B}, s) & =\sum_{m: \mathcal{B}(m)=\mathcal{B}} \tilde{\mu}(m) \chi(m) m^{-s} .
\end{aligned}
$$

In the sequal we want to prove that $L\left(\sigma_{3}+i t_{3}, \chi\right) \neq 0$ for all $\sigma_{3}=\sigma_{0}+10 \epsilon$ for sufficiently large B, where $\epsilon=\epsilon(B)$ is any function with $\lim _{B \rightarrow \infty} \epsilon(B)=0$.

Definition 4.4:

We set $\sigma_{1}=\sigma_{0}+\epsilon$ and $\sigma_{2}=\sigma_{0}+2 \epsilon$.

5 Cutoff by complex integration

$\sum_{1, b}$ is obtained from \sum_{1} by adding the condition $q^{2} n \leq x$. This cutoff may be accomplished by complex integration.

Lemma 5.1 (Perron's formula):

Let $c>0, T>0$ and $q>0$. Then we have for $T \rightarrow \infty$

$$
\int_{c-i T}^{c+i T} \frac{y^{s}}{s} d s=\left\{\begin{array}{cl}
1+O\left(\frac{y^{c}}{T|\log y|}\right), & \text { if } y>1 \\
O\left(\frac{y^{c}}{T|\log y|}\right), & \text { if } 0<y<1
\end{array}\right.
$$

Proof: see [].

Lemma 5.2:

Let $\mathcal{B}=\mathcal{B}\left(n_{0}, \vec{j}, \vec{\nu}\right), s_{1}=\sigma_{1}+i t_{1}$. For $T \geq 1$ we have

$$
\sum_{1, b}(\mathcal{B}, q, s)=\frac{1}{2 \pi i} \int_{\epsilon-i T}^{\epsilon+i T} \sum_{1}\left(\mathcal{B}, q, s_{1}+s\right) \frac{x^{s}}{s} d s+O\left(\left(\frac{x}{q^{4} n_{0}} \cdot 2^{\nu_{1}+\ldots+\nu_{r}}\right)^{1-\sigma_{0}} \frac{n_{0}^{-2 \sigma_{0}} q^{-4 \sigma_{0}}}{T}\right)
$$

Proof: We apply Lemma 5.1 with $c=\epsilon$ and obtain

$$
\sum_{1, b}(\mathcal{B}, q, s)=\frac{1}{2 \pi i} \int_{\epsilon-i T}^{\epsilon+i T} \sum_{1}\left(\mathcal{B}, q, s_{1}+s\right) \frac{x^{s}}{s} d s+O\left(\frac{1}{T}\left(\left|\sum^{(1)}\right|+\left|\sum^{(2)}\right|+\left|\sum^{(3)}\right|\right)\right)
$$

with

$$
\begin{aligned}
& \left|\sum^{(1)}\right|=\sum_{n<\frac{1}{2} \frac{x}{q^{2} n_{0}}} \frac{n^{-\sigma_{2}}}{\left|\log \frac{x}{q^{2} n_{0} n}\right|} \\
& \left|\sum^{(2)}\right|=\sum_{\left.\frac{1}{2} \frac{x}{q^{2} n_{0}} \leq n<\frac{2 x}{q^{2} n_{0}} \right\rvert\,} \frac{n^{-\sigma_{2}}}{\left|\log \frac{x}{q^{2} n_{0} n}\right|} \\
& \left|\sum^{(3)}\right|=\sum_{\left.\frac{2 x}{q^{2} n_{0}}<n \leq \frac{x}{q^{2} n_{0}} \cdot 2^{\nu_{1}+\ldots+\nu_{r}} \right\rvert\, \frac{n^{-\sigma_{2}}}{\left|\log \frac{x}{q^{2} n_{0} n}\right|}} .
\end{aligned}
$$

In $\sum^{(1)}$ and $\sum^{(3)}$ we have $\left|\log \frac{x}{q^{2} n_{0} n}\right|^{-1}=O(1)$ and thus

$$
\begin{aligned}
\left|\sum^{(1)}\right| & \ll \sum_{n<\frac{1}{2} \frac{x}{q^{2} n_{0}}} n^{-\sigma_{2}} \ll \int_{1}^{\frac{x}{2 n_{0}}} u^{-\sigma_{2}} d u \ll \sigma_{0}\left(\frac{x}{n_{0}}\right)^{1-\sigma_{2}} \\
\left|\sum^{(3)}\right| & \ll\left(\frac{x}{q^{2} n_{0}} \cdot 2^{\nu_{1}+\ldots+\nu_{r}}\right)^{1-\sigma_{2}}
\end{aligned}
$$

$\underline{\text { Estimate of } \sum^{(2)}:}$
Let L be an integer clostest to $\frac{x}{q^{2} n_{0}}$. For $L<n \leq 2 x$ let $r=n-L$. Then, since $\frac{x}{q^{2} n_{0}} \leq L+\frac{1}{2}$ we have the estimate

$$
\log \left(\frac{n_{0} n q^{2}}{x}\right) \geq \log \left(\frac{L+r}{L+\frac{1}{2}}\right)=\log \left(1+\frac{r-\frac{1}{2}}{L+\frac{1}{2}}\right)
$$

In the sequal let $c_{0}, c_{1}>0$ be fixed constants. From the mean- value Theorem we have that $\log (1+u) \geq c_{0} u$ for $0 \leq u \leq 1$ and obtain

$$
\log \left(1+\frac{r-\frac{1}{2}}{L+\frac{1}{2}}\right) \geq c_{0} \frac{r-\frac{1}{2}}{L+\frac{1}{2}} \geq c_{1} \frac{r q^{2} n_{0}}{x} .
$$

Thus
$\sum^{(2)}=\sum_{\frac{1}{2} \frac{x}{q^{2} n_{0}} \leq n<\frac{2 x}{q^{2} n_{0}}} \frac{1}{q^{2} n^{\sigma_{2}}\left|\log \frac{x}{n_{0} n}\right|}=O\left(\left(\frac{x}{q^{2} n_{0}}\right)^{1-\sigma_{1}} \sum_{1 \leq r \leq \frac{2 x}{q^{2} n_{0}}} \frac{1}{r}\right) \ll\left(\frac{x}{q^{2} n_{0}}\right)^{1-\sigma_{1}} \log \left(\frac{2 x}{q^{2} n_{0}}\right)$.
This concludes the proof of lemma 5.2.

We expect the mollifier $M(s, \chi)$ to be an approximation to the reciprocal of $L(s, \chi)$. An evaluation of $L_{x}(s, \chi) M(s, \chi)$ by definitions 4.1 and 4.2 gives

Lemma 5.3:

$$
\begin{aligned}
L_{x}(s, \chi) M(s, \chi) & =\sum_{1, b}\left(\mathcal{B}_{1}, q, s\right) \sum_{(\mu)}\left(\mathcal{B}_{2}, s\right)=\sum_{\substack{\mathcal{B}_{1}, \mathcal{B}_{2}}} \sum_{\substack{n \in \mathcal{B}_{1} \\
n \leq x}} \sum_{m \in \mathcal{B}_{2}} \tilde{\mu}(m) \chi(m n)(m n)^{-s} \\
& =\sum_{l}\left(\sum_{\substack{m \mid l, l / m \leq x \\
m \in \mathcal{X}}} \tilde{\mu}(m)\right) l^{-s} .
\end{aligned}
$$

By Lemma 4.1 the inner sum is 0 for $l \leq x$. Thus by a second cutoff we may remove from each pair $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ of boxes alle the pairs (m, n) for which $m \cdot n \leq x$.

Lemma 5.4:

Let $s_{2}=\sigma_{2}+i t_{2}$. Let $\mathcal{B}_{1}=\mathcal{B}\left(m_{0}, q, \vec{\nu}, \vec{j}\right)$ and $\mathcal{B}_{2}=\mathcal{B}\left(m_{0}, 1, \vec{\lambda}, \vec{k}\right)$. Then we have

$$
\begin{aligned}
\sum_{\substack{(m, n): m \in \mathcal{B}_{1}, n \in \mathcal{B}_{2} \\
m \cdot n \leq x, n \leq x}} \tilde{\mu}(m)(m n)^{-s_{2}}= & \frac{1}{2 \pi i} \int_{\epsilon-i T}^{\epsilon+i T} \sum_{1, b}\left(\mathcal{B}_{1}, s_{2}+s\right) \sum_{(\mu)}\left(\mathcal{B}_{2}, s_{2}+s\right) \frac{x^{s}}{s} d s \\
& +O\left(x^{\epsilon}\left(\frac{x \cdot 2^{\nu_{1}+\ldots+\nu_{r_{1}}+\lambda_{1}+\ldots+\lambda_{r_{2}}}}{q^{4} m_{0} n_{0}}\right)^{1-\sigma_{0}} \frac{\left(m_{0} n_{0}\right)^{-2 \sigma_{0}} q^{-4 \sigma_{0}}}{T}\right) .
\end{aligned}
$$

Proof: We apply Lemma 5.1 with $c=\epsilon$ and obtain

$$
\begin{aligned}
\sum_{\substack{(m, n): m \in \mathcal{B}_{1}, n \in \mathcal{B}_{2} \\
m \cdot n \leq x, n \leq x}} \tilde{\mu}(m)= & \frac{1}{2 \pi i} \int_{\epsilon-i T}^{\epsilon+i T} \sum_{1, b}\left(\mathcal{B}_{1}, s_{2}+s\right) \sum_{(\mu)}\left(\mathcal{B}_{2}, s_{2}+s\right) \frac{x^{s}}{s} d s \\
& +O\left(\frac{1}{T}\left(\left|\sum^{(4)}\right|+\left|\sum^{(5)}\right|+\left|\sum^{(6)}\right|\right)\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& \sum^{(4)}=\sum_{\substack{(m, n): m \cdot n \leq \frac{1}{2 x} \\
n<\frac{1}{2} \frac{x}{q^{2}}}} \frac{|m n|^{-\sigma_{2}}}{\left|\log \frac{x}{q^{2} m_{0} n_{0} m n}\right|} \\
& \sum^{(5)}=\sum_{(m, n): \frac{1}{2} \frac{x}{q^{2} m_{0} n_{0}} \leq m \cdot n \leq \frac{2 x m n}{q^{2} m_{0} n_{0}}}^{\left|\log \frac{|m n|^{-\sigma_{2}}}{q^{2} m_{0} n_{0} m n}\right|} \\
& \sum^{(6)}=\sum_{(m, n): \frac{2 x}{q^{2} m_{0} n_{0}}<m \cdot n \leq \frac{x}{q^{2} m_{0} n_{0}} \cdot 2^{\nu_{1}+\ldots \nu_{r_{1}}+\lambda_{1}+\ldots+\lambda_{r_{2}}}\left|\log \frac{|m n|^{-\sigma_{2}}}{q^{2} m_{0} n_{0} m n}\right|} .
\end{aligned}
$$

By using the wellknown upper bound for the divisor function $d(n) \ll n^{\epsilon}$ we obtain the claim of Lemma 5.4 in an anlogoues manner to the proof of Lemma 5.2.

Lemma 5.5:
We have

$$
\begin{aligned}
L_{x}(s, \chi) M(s, \chi)= & 1+\sum_{\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)}^{\prime}\left(\sum_{\substack{n \in \mathcal{B}_{1} \\
n \leq x}} \sum_{m \in \mathcal{B}_{2}} \tilde{\mu}(m) \chi(m n)(m n)^{-s_{2}}\right. \\
& \left.-\frac{1}{2 \pi i} \int_{\epsilon-i T}^{\epsilon+i T} \sum_{1, b}\left(\mathcal{B}_{1}, s_{2}+s\right) \sum_{(\mu)}\left(\mathcal{B}_{2}, s_{2}+s\right) \frac{x^{s}}{s} d s\right) \\
& +O\left(x^{\epsilon}\left(\frac{x}{q^{4} m_{0} n_{0}} \cdot 2^{\nu_{1}+\ldots \nu_{r_{1}}+\lambda_{1}+\ldots+\lambda_{r_{2}}}\right)^{1-\sigma_{0}} \frac{\left(m_{0} n_{0}\right)^{-2 \sigma_{0}} q^{-4 \sigma_{0}}}{T}\right)
\end{aligned}
$$

where the sum \sum^{\prime} is extended over all pairs $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ of boxes $\mathcal{B}_{1}=\mathcal{B}\left(n_{0}, q, \nu_{1}, \ldots, \nu_{r_{1}}, j_{1}, \ldots, j_{r_{1}}\right)$, $\mathcal{B}_{2}=\mathcal{B}\left(m_{0}, 1, \lambda_{1}, \ldots, \lambda_{r_{2}}, k_{1}, \ldots, j_{k_{2}}\right)$ with

$$
\begin{equation*}
m_{0} n_{0} q^{2} y_{j_{1}}^{\nu_{1}} \cdots y_{j_{r}}^{\nu_{r_{1}}} \cdot y_{k_{1}}^{\lambda_{1}} \cdots y_{k_{r_{2}}}^{\lambda_{r_{2}}} \geq x^{\frac{9}{10}} \tag{4}
\end{equation*}
$$

Proof: We have by Lemma 5.3

$$
L_{x}\left(s_{2}, \chi\right) M\left(s_{2}, \chi\right)=1+\sum_{\substack{\left.\mathcal{B}_{1}, \mathcal{B}_{2}\right)}} \sum_{\substack{n \in \mathcal{B}_{1} \\ n \leq x}} \sum_{m n \rightarrow x} \mathcal{B}_{2} \tilde{\mu}(m) \chi(m n)(m n)^{-s_{2}} .
$$

The inner double sum is empty, if $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ does not satisfy (4). The claim of Lemma 5.5 now follows from Lemma 5.4.

Definition 5.1:

We define recursively $\log _{k} x$ by $\log _{1} x=\log x$ and $\log _{k} x=\log \left(\log _{k-1} x\right)$.

Lemma 5.6:

With fixed constants $c_{1}, c_{2}>0$ we have:
The number of tuplets $\vec{\nu}$ is $\ll \exp \left(c_{1} \frac{\log x}{\log _{2} x} \log _{3} x\right)$. For fixed m_{0}, q we have for the number of boxes

$$
\left|\left\{\mathcal{B}\left(m_{0}, q, \vec{j}, \vec{\nu}\right)\right\}\right| \ll \exp \left(c_{2} \frac{\log x}{\log _{2} x} \log _{3} x\right) .
$$

Proof: We have $\log y_{j_{1}}+\ldots+\log y_{j_{r_{1}}}=l+\frac{\log 2}{j_{1}+\ldots+j_{r_{1}}}$. Thus the sum $j_{1}+\ldots+j_{r_{1}}=J$ may assume at most $O\left(\log ^{2} x\right)$ values $J \in \mathbb{N}$. For fixed r_{1} and $J \in \mathbb{N}$ the number of possibilities to choose the j_{1} is $\binom{J+r_{1}-1}{r_{1}}$. Because of $J \ll \log x$ and $r_{1} \ll \frac{\log x}{\log _{2} x}$ by Stirling's formula the number of tuplets \vec{j} is $\ll \exp \left(c_{1} \frac{\log x}{\log _{2} x} \log _{3} x\right)$. Since $\sum_{r=1}^{r_{1}} \nu_{r} \leq \nu(n), \sum_{r=1}^{r_{1}} \nu_{r} \ll \frac{\log x}{\log _{2} x}$ the bound for the tuplets $\vec{\nu}$ follows in the same manner.

Definition 5.2:

Let $g\left(s_{2}\right)$ be the vertical line

$$
g\left(s_{2}\right):=\left\{s_{2}+i t: t \in\left[-x^{1-\sigma_{2}+\epsilon}, x^{1-\sigma_{2}+\epsilon}\right] .\right.
$$

Lemma 5.7:

We have

$$
\begin{aligned}
\left|L_{x}\left(s_{3}, \chi\right) M\left(s_{3}, \chi\right)-1\right| \ll & \exp \left(c_{1} \frac{\log x}{\log _{2} x} \log _{3} x\right) . \\
& \sum_{\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)}^{\prime} \max _{s \in g\left(s_{2}\right)}\left|\sum_{1}\left(\mathcal{B}_{2}, q, s^{(2)}+s\right)\right| \cdot \max _{s \in g\left(s^{1}\right)}\left|\sum_{(\mu)}\left(\mathcal{B}_{1}, s^{(2)}+s\right)\right|
\end{aligned}
$$

Proof: This follows from Lemmas 5.1 to 5.5.

6 Relation to exponential sums over primes

We now discuss the relation of the sums $\sum_{1}(\mathcal{B}, q, s)$ and $\sum_{(\mu)}(\mathcal{B}, s)$ to the sums $\sum_{M<p \leq 2 M} \chi(p) p^{-i t}$. We have for $\mathcal{B}=\mathcal{B}\left(n_{0}, j_{1}, \ldots, j_{r}, \nu_{1}, \ldots, \nu_{r}\right)$

$$
\sum_{1}(\mathcal{B}, q, s)=\chi\left(n_{0}\right) n_{0}^{-s} \chi(q)^{2} q^{-2 s} \prod_{u=1}^{r} \sum^{\left(\nu_{u}, j_{u}\right)}
$$

with

$$
\sum^{\left(\nu_{u}, j_{u}\right)}=\sum \chi\left(n^{(u)}\right)\left(n^{(u)}\right)^{-s}
$$

where $n^{(u)}$ runs over all numbers of the form $n^{(u)}=p_{1, j_{u}} \cdots p_{v_{u}, j_{u}}, p_{v, j_{u}} \in I_{j_{u}}$ with $p_{v_{1}, j_{u}} \neq p_{v_{2}, j_{u}}$ for $v_{1} \neq v_{2}$.
In the sequal we eliminate the restriction $p_{v_{1}, j_{u}} \neq p_{v_{2}, j_{u}}$ by the inclusion- exclusion- principle. For $\vec{v}_{j_{u}}=\left(v_{1}, v_{2}\right)$ with $v_{1}, v_{2} \in\left\{1, \ldots, v_{u}\right\}$ let $f\left(\vec{v}_{j_{u}}\right)=f\left(j_{u}, \nu_{u}, \vec{v}_{j_{u}}\right)$ be the set of all tuplets $\vec{p}=\left(p_{1}, \ldots, p_{\nu_{u}}\right)$ with p_{v} prime, $p_{v} \in I_{j_{u}}$ and $p_{v_{1}}=p_{v_{2}}$. (The p_{v} are not orderes by size.)

Definition 6.1:

For $\vec{p}_{j_{u}}=\left(p_{1, j_{u}}, \ldots, p_{\nu_{u}, j_{u}}\right)$ we set $\prod\left(\vec{p}_{j_{u}}\right)=p_{1, j_{u}} \cdots p_{\nu_{u}, j_{u}}$. We obtain

$$
\begin{align*}
\sum_{\substack{\vec{p}_{j_{u}}: p_{v_{1}, j_{u} \neq p_{v_{2}, j_{u}}}^{v_{1} \neq v_{2}, p_{v}, j_{u} \in I_{j_{u}}}}} & \chi\left(p_{1, j_{u}} \cdots p_{\nu_{u}, j_{u}}\right)\left(p_{1, j_{u}} \cdots p_{\nu_{u}, j_{u}}\right)^{-s}=\sum_{\vec{p}_{j_{u}}=\left(p_{1}, \ldots, p_{\nu_{u}}\right)} \chi\left(p_{1, j_{u}} \cdots p_{\nu_{u}, j_{u}}\right)\left(p_{1, j_{u}} \cdots p_{\nu_{u}, j_{u}}\right)^{-s} \\
& +\sum_{w=1}^{\binom{\nu_{u}}{2}}(-1)^{w} \sum_{\vec{v}_{1, j_{u}}, \ldots, \vec{v}_{w, j_{u}}} \sum_{p_{j_{u} \in f\left(\vec{v}_{1}, j_{u}\right) \cap \ldots \cap f\left(\vec{v}_{w}, j_{u}\right)}} \chi\left(\prod\left(\vec{p}_{j_{u}}\right)\right)\left(\prod\left(\vec{p}_{j_{u}}\right)\right)^{-s}
\end{align*}
$$

The condition $p_{j_{u}} \in f\left(\vec{v}_{1}, j_{u}\right) \cap \ldots \cap f\left(\vec{v}_{w}, j_{u}\right)$ is equivalent to a set of conditions of the form

$$
\begin{align*}
p_{v_{1}^{(1)}, j_{u}}= & p_{v_{2}^{(1)}, j_{u}}=\ldots=p_{v_{\kappa_{1}}^{(1)}, j_{u}}, \mathcal{N}_{1}=\left\{v_{1}^{(1)}, \ldots, v_{\kappa_{1}}^{(1)}\right\} \\
p_{v_{1}^{(2)}, j_{u}}= & p_{v_{2}^{(2)}, j_{u}}=\ldots=p_{v_{\kappa_{2}}^{(2)}, j_{u}}, \mathcal{N}_{2}=\left\{v_{1}^{(2)}, \ldots, v_{\kappa_{2}}^{(2)}\right\} \\
& \vdots \tag{6}\\
p_{v_{1}^{(\omega)}, j_{u}}= & p_{v_{2}^{(\omega)}, j_{u}}=\ldots=p_{v_{\kappa_{\omega}}^{(\omega)}, j_{u}}, \mathcal{N}_{\omega}=\left\{v_{1}^{(\omega)}, \ldots, v_{\kappa_{\omega}}^{(\omega)}\right\} .
\end{align*}
$$

This leads to
Definition 6.2:
For $\nu_{u} \in \mathbb{N}$ and a tuplet $\overrightarrow{\mathcal{K}}_{\omega}=\left(\kappa_{1}, \ldots, \kappa_{\omega}\right)$ of natural numbers $\kappa_{\omega} \geq 2$ with $\kappa_{1}+\ldots+\kappa_{\omega} \leq \nu_{u}$ let $\mathcal{S}=\left(\nu_{u}, \kappa_{\omega}\right)$ be the set of all tuplets $\overrightarrow{\mathcal{N}}=\left(\mathcal{N}_{1}, \ldots, \mathcal{N}_{\omega}\right)$ of subsets $\mathcal{N}_{\varphi} \subset\left\{1, \ldots, \nu_{u}\right\}$ with $\mathcal{N}_{\varphi_{1}} \cap \mathcal{N}_{\varphi_{2}}=\emptyset$ for $\varphi_{1} \neq \varphi_{2} \cdot\left|\mathcal{N}_{\varphi}\right|=\kappa_{\varphi}, 1 \leq \varphi \leq \omega \cdot \operatorname{sgn}(\overrightarrow{\mathcal{N}}) \in\{-1,1\}$ comes from the factor $(-1)^{w}$ in (5) and the condition $p_{j_{u}} \in f\left(\vec{v}_{1}, j_{u}\right) \cap \ldots \cap f\left(\vec{v}_{w}, j_{u}\right)$ with leads to (6) and thus to the definition of $\overrightarrow{\mathcal{N}}$.

We obtain
Lemma 6.1:

$$
\begin{aligned}
\nu_{u}!\sum^{\left(\nu_{u}, j_{u}\right)}= & \sum_{\substack{\left(p_{\left.1, j_{1} \ldots, p_{\left.v_{u}, j_{u}\right)}\right)}^{v_{1} \neq v_{2}, p_{v, j_{u} \in I_{j_{u}}}}\right.}} \chi\left(p_{1, j_{u}} \cdots p_{v_{u}, j_{u}}\right)\left(p_{1, j_{u}} \cdots p_{v_{u}, j_{u}}\right)^{-s}=\left(\sum_{p \in I_{j_{u}}} \chi(p) p^{-s}\right)^{\nu_{u}} \\
& +\sum_{\substack{\overrightarrow{\mathcal{K}}_{\omega}=\left(\kappa_{1}, \ldots, \kappa_{\omega}\right) \\
\kappa_{1}+\ldots+\kappa_{\omega} \leq \nu_{u} \\
\kappa_{\varphi} \geq 2}} \sum_{\overrightarrow{\mathcal{N}} \in S\left(\nu_{u}, \kappa_{\omega}\right)} \operatorname{sgn}(\overrightarrow{\mathcal{N}}) \prod_{\varphi=1}^{\omega}\left(\sum_{p_{\varphi} \in I_{j_{u}}} \chi\left(p_{\varphi}^{\kappa_{\varphi}}\right) p_{\varphi}^{-\kappa_{\varphi} s}\right) \cdot\left(\sum_{p \in I_{j_{u}}} \chi(p) p^{-s}\right)^{\nu_{u}-\left(\kappa_{1}+\ldots+\kappa_{\omega}\right)}
\end{aligned}
$$

The sums $\sum_{(\mu)}$ are treated in an analogous manner.
Lemma 6.2:
We have for $\mathcal{B}=\mathcal{B}\left(m_{0}, k_{1}, \ldots, k_{r}, \lambda_{1}, \ldots, \lambda_{r}\right)$

$$
\sum_{(\mu)}(\mathcal{B}, s)=\mu\left(m_{0}\right) \chi\left(m_{0}\right) m_{0}^{-s} \prod_{u=1}^{r} \sum_{(\mu)}^{\left(\lambda_{u}, k_{u}\right)}
$$

with

$$
\sum_{(\mu)}^{\left(\lambda_{u}, k_{u}\right)}=\sum \mu\left(m^{(u)}\right) \chi\left(m^{(u)}\right)\left(m^{(u)}\right)^{-s}
$$

where $m^{(u)}$ runs over all numbers of the form $m^{(u)}=p_{1, k_{u}} \cdots p_{\lambda_{u}, k_{u}}$ and $p_{v, k_{u}} \in I_{k_{u}}$ with $p_{v_{1}, k_{u}} \neq p_{v_{2}, k_{u}}$ for $v_{1} \neq v_{2}$.

Lemma 6.3:

$\nu_{u}!\sum^{\left(\nu_{u}, k_{u}\right)}=(-1)^{\lambda_{u}}\left(\sum_{p \in I_{k_{u}}} \chi(p) p^{-s}\right)^{\lambda_{u}}$
$+\sum_{\substack{\vec{\Psi}_{\omega}=\left(\psi_{1}, \ldots, \psi_{\omega}\right) \\ \psi_{1}+\ldots+\psi_{\omega} \in \lambda_{u} \in S\left(\lambda_{u}, \psi_{\omega}\right) \\ \psi_{\varphi} \geq 2}} \operatorname{sgn}(\overrightarrow{\mathcal{N}}) \prod_{\varphi=1}^{\omega}\left(\sum_{p_{\varphi} \in I_{k_{u}}} \chi\left(p_{\varphi}^{\psi_{\varphi}}\right) p_{\varphi}^{-\psi_{\varphi} s}\right) \cdot\left(\sum_{p \in I_{k_{u}}} \chi(p) p^{-s}\right)^{\lambda_{u}-\left(\psi_{1}+\ldots+\psi_{\omega}\right)}$

Lemma 6.4:

$$
\begin{aligned}
\left|S\left(\nu_{u}, \kappa_{\omega}\right)\right| & \ll \exp \left(c \frac{\log x}{\log _{2} x} \log _{3} x\right) \\
\left|S\left(\lambda_{u}, \psi_{\omega}\right)\right| & \ll \exp \left(c \frac{\log x}{\log _{2} x} \log _{3} x\right)
\end{aligned}
$$

for fixed $c>0$.
Proof: By applying Stirling's formula to the multinomial coefficient.

We now carry out the substitutions

$$
\begin{aligned}
\zeta_{u}=\zeta_{u}\left(\nu_{u}, \kappa_{1}, \ldots, \kappa_{\omega}\right) & =\nu_{u}-\kappa_{1}-\ldots-\kappa_{\omega} \quad \text { and } \\
\vartheta_{u}=\vartheta_{u}\left(\lambda_{u}, \psi_{1}, \ldots, \psi_{\omega}\right) & =\lambda_{u}-\psi_{1}-\ldots-\psi_{\omega}
\end{aligned}
$$

and obtain from the lemma 5.6, 6.1, 6.3 and 6.4.

Lemma 6.5:

$$
\begin{aligned}
\left|L_{x}\left(s^{(2)}, \chi\right) M\left(s^{(2)}, \chi\right)-1\right| \leq & \exp \left(c \frac{\log x}{\log _{2} x} \log _{3} x\right) . \\
& \sum_{\left(m_{0}, n_{0}, q, \vec{\zeta}, \vec{k}, \vec{\vartheta}, \vec{j}\right)}^{\prime \prime} m_{0}^{-\sigma_{3}} n_{0}^{-\sigma_{3}} q^{-2 \sigma_{3}} \prod_{u=1}^{r_{1}} \frac{1}{\zeta_{u}!} \max _{s \in g\left(s^{(2)}\right)}\left|\sum_{p \in I_{j_{u}}} \chi(p) p^{-s}\right|^{\zeta_{u}} . \\
& \prod_{u=1}^{r_{2}} \frac{1}{\vartheta_{u}!} \max _{s \in g\left(s^{(2)}\right)}\left|\sum_{p \in I_{k_{u}}} \chi(p) p^{-s}\right|^{\vartheta_{u}}\left|\sum_{r \text { squarefree }} \vartheta(r) r^{-\sigma_{3}}\right|+O\left(x^{-\epsilon}\right),
\end{aligned}
$$

where the summation in $\sum^{\prime \prime}$ is over all septuplets with $m_{0} n_{0} q^{2} y_{\kappa_{1}}^{\nu_{1}} \cdots y_{\kappa_{\omega_{1}}}^{\nu_{\omega_{1}}} y_{\psi_{1}}^{\lambda_{1}} \cdots y_{\psi_{\omega_{2}}}^{\lambda_{\omega_{2}}} \geq x^{9 / 10}$.

7 Smooth numbers, end of the proof

We now make use of the hypothesis of Theorem 2:

$$
\sum_{M \leq p<M^{\prime}} \chi(p) p^{i t} \leq M^{\sigma_{0}}
$$

with $M \leq M^{\prime}<2 M$ for $M \geq \ell^{A}$ and $\sigma_{0}=1-\frac{1}{A}$.
From Lemma 6.4 we have

$$
\begin{align*}
\left|L_{x}\left(s_{0}, \chi\right) M\left(s_{0}, \chi\right)-1\right| \leq & \exp \left(c \frac{\log x}{\log _{2} x} \log _{3} x\right) . \\
& \sum_{\left(m_{0}, n_{0}, q, \vec{\lambda}, \vec{\nu} \vec{k}, \vec{j}\right)}^{\prime \prime} m_{0}^{-\sigma_{3}} n_{0}^{-\sigma_{3}} q^{-2 \sigma_{3}} \prod_{u=1}^{r_{1}} \frac{1}{\zeta_{u}!} y_{u}^{-\epsilon \zeta_{u}} \prod_{u=1}^{r_{2}} \frac{1}{\vartheta_{u}!} y_{k_{u}}^{-\epsilon \vartheta_{u}}+O\left(x^{-\epsilon}\right), \tag{7}
\end{align*}
$$

where the summation in $\sum^{\prime \prime}$ is over all septuplets with $m_{0} n_{0} q^{2} y_{j_{1}}^{\nu_{1}} \cdots y_{j_{u_{1}}}^{\nu_{u_{1}}} y_{k_{1}}^{\lambda_{1}} \cdots y_{k_{u_{2}}}^{\lambda_{u_{2}}}$.
For the sake of simplicity we treat only the case $q=1$.
We make another partition of the sum

$$
\sum^{\prime \prime}=\sum_{(M, N, R, S)} \sum(M, N, R, S)
$$

where

$$
\sum(M, N, R, S)=\sum_{\left.m_{0}, n_{0}, \vec{\lambda}, \vec{\nu}, \vec{k}, \vec{j}\right)} \sum_{2^{M}<m_{0} y<2^{M+1}} \sum_{2^{N}<n_{0} y<2^{N+1}} m_{0}^{-\sigma_{3}} n_{0}^{-\sigma_{3}}
$$

We need a result on smoothe numbers:
Definition 7.1: For $1 \leq y \leq x$ let

$$
\psi(x, y)=|\{n \leq x: p \mid n \Rightarrow p \leq y\}| \quad \text { and } \quad u=\frac{\log x}{\log y}
$$

Lemma 7.1: For $y>(\log x)^{1+\epsilon}$ we have

$$
\psi(x, y) \leq x \exp (-u \log u(1+o(1))
$$

Proof: Hildebrand []
case A: $S \geq x^{9 / 20}$
case distinction for $\left(n_{0}, S\right)$:
case 1: $N \leq c_{1} \frac{\log S}{\log _{2} S}$:
From (7) we have

$$
\begin{equation*}
\sum(M, N, R, S) \ll x^{-\epsilon} \tag{8}
\end{equation*}
$$

case 2: $N>c_{1} \frac{\log S}{\log _{2} S}$:
By lemma 7.1 we obtain

$$
\begin{aligned}
\psi\left(2^{N+1}, \ell\right) & \ll 2^{N} \exp \left(\frac{-N \log 2}{A \log \ell}\left(\log N+\log _{2} \ell(1+o(1))\right)\right. \\
\sum(M, N, R, S) & \ll 2^{N\left(1-\sigma_{3}\right)} \exp \left(\frac{-N \log 2}{A \log \ell}\left(\log N+\log _{2} \ell(1+o(1))\right) .\right.
\end{aligned}
$$

From $\sigma_{0}=1-\frac{1}{A}$ we obtain

$$
\begin{equation*}
\sum(M, N, R, S) \ll \exp \left(-c \frac{\log x}{\log _{2} x} \log _{3} x\right) . \tag{9}
\end{equation*}
$$

case A: $R \geq x^{9 / 20}$
This is treated in an anlogous manner.

From (7)-(9) we now have

$$
\left|L_{x}(s, \chi) \cdot M(s, \chi)-1\right| \exp \left(-c \frac{\log x}{\log _{2} x} \log _{3} x\right)
$$

From lemma 3.1 and the bound $M(s, \chi) \ll x^{\epsilon}$ the claim of Theorem 2 follows.

