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1 Introduction

We investigate relations between sums of the form
> xept,
M<p<M'

where Y is a non- principal character modQ, t € R, M < M’ < 2M and zero- free regions of the related
Dirichlet L- function

L(s,x) = Y x(n)n™*.
n=1

One direction can easily be obtained by complex integration as a generalization of the Explicit formula

2
¥(z,x) = Eo(x)z — Z ﬁ—&-OQ (73101% x)7

[S(pI<T

where ¥(z, x) = >, <, A(n)x(n) with von- Mangoldt’s function A and

1a X = Xo
Eo(x) =
Oa X 7é X0-
We set
Uz, x, t) = Z A(n)x(n)n ™o
n<x
and obtain
; gP o xlog?(zto)
blaxto) = By)e 0 — Y o ( ) | )
(o) tol<r P T 0 r

The result for Zpgz x(p)pte follows by partial summation.
We obtain Theorem 1:
Assume that L(s, x) # 0 for R(p) > 0¢. Then
o X" < M7 log? [to|.
M<p<2M
Results in the other direction were obtained by Turdn (1974, see []) by the application of his power- sum
method.
We just cite one example:
Theorem (Turdn):
Suppose the existence of constants a > 2, 0 < 8 < 1 and ¢(«, 8) so that 7 > ¢(«, 8) the inequality
Nlog'® N

—1 <
Z exp(—itlogp)| < =
N1<p<Ns

holds for all N, Ny integers with 7® < N < N} < Ny < 2N < exp(77/19). Then ((s) # 0 on the segment
671053

a?

o>1-—

with t = 7 and s = o + it.



We shall prove
Theorem 2:
Let @ € Nand Q > 1. Let B = B(Q) > 0 a fixed but arbitrarily large constant. Let y be a non- principal
Dirichlet- character modQ. Let ¢ = log(|t| + A) + B for t € R and A > 1. Assume that the following
hypothesis holds:

> xp' <M

M<p<M’
for M < M' <2M, M > (4 and 09 = 1 — &.
Then L(s, x) # 0 for 0 > 0¢ + €, where e = ¢(B) — 0 for B — 0.

2 Proof of Theorem 1

A standard application of Perron’s formula gives (1).
Let
N(T,x) = {p: L(s,x) = 0, 0 < (p) < T}

By the well- known estimate N(T'+1,x) — N(T, x) = Og(logT), (see []) we obtain from (1) with z = M,
=M T =t
A)x(n)n® <q M0 1og* [to].
M<n<M’

Theorem 1 follows by partial summation.

3 Approximation by Dirichlet- polynomials

Definition 3.1:
La(s,x) = Y x(n)n™*.

1<n<lz

Lemma 3.1:
Let C;y > 1,0 >0,s =0+t and [t| < %r—f.Then

L(s,x) = La(s,X) + Oo,c, (7).

Proof: Karacuba, [].

4 Construction of the Mollifier

We start with a partition of the set of integers into boxes, cartesian products of intervals for the prime

factors of these integers.

Definition 4.1 (The boxes):
Let £ = (4 and ¢’

We partition the interval [£, z| into subintervals I;. For this purpose we define the sequence (Y;) by
Yj = L- 2j’ (2)

with j € Ny and 0 < j < Jy, where Jy = {minj: £-27 >z} and set I; = [y;, yj+1)-



Let v(m, I;) be the number of primefactors of m (u*(m) = 1) in the interval I;. Let mo be an integer
consisting only of primes p < L:
plmo =p < L.

For each n € N with p2(n) = 1, we set

mo(n) = H .

pln
p<L
Let {ji,.--,Jr} C{1,...,Jo}, vu €N, 1 <u <r. We then define the box
B(mo, ji, .- Jry i,y vp) = {ntmo(n) = mo, v(n, 1;,) = vy for1 <u <r, v(n,I;) =0forj & {j1,...,jr}}.
We also use the vectors notations
F=0hrondr) and 7= (1,...,1)

and write B(my, 7, V).

Obviously each n belongs to at most one box, each n < x to exactly one box which we denote by B(n).

Definition 4.2 (The mollifier):

We set

. w(im), if, meX orm=1,

fi(m) = :

0 otherwise,
where X is the union of all boxes B(mo, yj,s .-, ¥Yj,., V1, -, Vr) With
moyy, -y < @ (3)
We define
M(s,x) =Y _ ji(m)x(m)m™*
Lemma 4.1:
For 1 < z we have
fi(m) =0
mll

Proof:
From 1 <1 <z and m|l it follows that m = 1 or that the box B(m) satifies (3) and thus fi(m) = pu(m)

for all m|l. Thus
> _alm) =) p(m)=0.

mll mll
Definition 4.3:
For a box B(mo,]?7 V), q € Nand s € C we set

Y Bas) = Y x(ng)(ng®)~

n: B(n)=B
2,Bas) = > x(ng’)(ng?)
n: B(n)=B
¢*n<z
DBl = D> Am)x(m)m™
a m: B(m)=B

In the sequal we want to prove that L(os +its, x) # 0 for all o3 = 0 + 10¢ for sufficiently large B, where

€ = €(B) is any function with limp_, . €(B) = 0.



Definition 4.4:

We set 01 = g + € and g9 = g9 + 2e¢.

5 Cutoff by complex integration

> 1 is obtained from ), by adding the condition ¢*n < x. This cutoff may be accomplished by complex

integration.

Lemma 5.1 (Perron’s formula):

Let ¢ >0, 7T > 0 and ¢ > 0. Then we have for T'— oo

c

—iT S O(%), ifo<y <1

Proof: see [].

Lemma 5.2:
Let B = B(no,j7 V), s1 = o1 + it;. For T > 1 we have

l—09 —20¢ —40,
1 x® x ng “70q*70
_ Covit..tuy 0
) 1’b(l’j‘,q,s) =5 / > \(B.a,51+5)—ds +0 <<q4n0 2 ) N ) .

—iT
Proof: We apply Lemma 5.1 with ¢ = € and obtain

B0 =g [T s 0T a0 (12"
1,b y g, S _27_” 1 yqs 51 S s S T

e+1T

(2)

+‘Z

N ’ Z(:s)

e—iT
with
> > o
. log % —
n<i q21n0 g a2non
> > —
. log % —
%qzaosm%—zg‘ & @non

—02

2(3) _ Z n

p%ﬁlﬁpﬁ'?ﬁmhr log quz:on
In Z(l) and 2(3) we have ’10g €z - = 0(1) and thus
q2non
(1) g z\'
‘Z < > a7 <</ U du K gy (
1 1o
n<% »

a%ng

(3)
>

170‘2
< (‘T «2”1+~~+Vr> )
q*no
Estimate of 2(2):

Let L be an integer clostest to —-=—. For L < n < 2x let r = n — L. Then, since - < L + % we have

*no” ?no —
2 1
nong L+r r— 3
1 >1 =1 1 .
og( v )‘Og<L+§) Og( +L+§)

the estimate




In the sequal let ¢g, ¢; > 0 be fixed constants. From the mean- value Theorem we have that log(1+u) > cou
for 0 < u <1 and obtain

1 1 2
r—3 rT—3 rq*ng
log ( 1+ 2)2@ 2> -
g( L+3 3

Thus

1—0o 1-0o
(2) 1 T ! 1 x ! 2z
Y= Z —— -0 <q2n0> Z“ . <<( -~ ) log< - )
2710

o Sn< 2 q 2no2 |log X o

1
27y

This concludes the proof of lemma 5.2.

We expect the mollifier M (s, x) to be an approximation to the reciprocal of L(s,x). An evaluation of
L.(s,x)M (s, x) by definitions 4.1 and 4.2 gives

Lemma 5.3:

Ll 0M(s0) = 3, (Bras) Y (Bas)= > 32 3 film)x(mn)(mn)

61762 neBy meBsy

n<zx

l mll, I/m<zx
meX
By Lemma 4.1 the inner sum is 0 for [ < z. Thus by a second cutoff we may remove from each pair

(By, B2) of boxes alle the pairs (m,n) for which m -n < z.

Lemma 5.4:
Let so = 0o + ity. Let By = B(my, g, ﬁ,f) and By = B(my, LX, l;) Then we have

e+i1T

3 fi(m)(mn)~* — Z (By, 52 + 5) Z(M)(Bg,s2+s)% ds

2mi
(m,n): meBL,NEB2
m-n<z,nlz

g*mono T

1-0o0 —20¢0 ,,—4
1 VIt Ve AL A, (mono) 70g—470
+0 (xe < .

Proof: We apply Lemma 5.1 with ¢ = € and obtain

e+1T

N x®
Z fi(m) = i ) Z (B1, 82+ s Z(“) (Ba, s2 + S)? ds
(m,n): meBy,nEB,

m-n<z,nlz
0 (;, (|Z(4) I |))



with

2(4) _ Z \mn\;‘”
2x

(5) —o2
> - ) Te—

log

.1 @ . 2xmn —
(m,n): 3 o g <m-n< Zmong q?monomn
—o
Z(G) Z Imn‘ 2
log ——%
(m,n): 22— <mn< 52— .2"1F - vrpFArt Ay g q?monomn
’ aZmgng a2mgng

By using the wellknown upper bound for the divisor function d(n) < n¢ we obtain the claim of Lemma

5.4 in an anlogoues manner to the proof of Lemma 5.2.

Lemma 5.5:
We have

Lo 0M(s) = 1+ 3 | 353 alm)x(mn)(mn) =

(B1,B2) \ neB1 meB:
n<zx

e+iT

xS
5 Z (B1,s2 + s Z(u) (Ba, 52 + s)? ds)

1—0o¢ -2 —4
19 € z . 2V1+...l/7‘1+)\1+4..+)\7‘2 (mono) qu 70
+ T T ,
g mono T

where the sum > is extended over all pairs (By,Bs) of boxes By = B(no,q, V1, ..\ Vryy J1s- s e )s
By = B(mg, 1, A1, .. A, R, ,jkz) with

vr Ar o
mon0q2y;11 eyt Z/kl Yl > x1o. (4)

T2

Proof: We have by Lemma 5.3

La(s2, X)M(s2,x) =14+ > > > i n)(mn)~%.

(B1,B2) n€EB1 meB2
n<x mn>x

The inner double sum is empty, if (B, B2) does not satisfy (4). The claim of Lemma 5.5 now follows from

Lemma 5.4.

Definition 5.1:
We define recursively log, = by log; « = log z and log;, « = log(log,_; x).

Lemma 5.6:

With fixed constants ¢1, ¢ > 0 we have:

The number of tuplets 7/ is < exp <01 lfi = logs x) For fixed mg, ¢ we have for the number of boxes

lo
{Blmo, 0.7, 7)}] < exp ( L Jog, x)



log 2
Jite+irg

at most O(log2 x) values J € N. For fixed r; and J € N the number of possibilities to choose the j;

Proof: We have logy;, +... +logy;, =1+ . Thus the sum j; + ... + j,, = J may assume

is (‘HII_l). Because of J < logz and m < 11)0522 by Stirling’s formula the number of tuplets j is

log, x log,

< exp (01 Ly x) Since > 'L v <w(n), YL < logg; the bound for the tuplets 7 follows in

the same manner.

Definition 5.2:
Let g(s2) be the vertical line

g(s9) := {sg +it: t € [—alo2te glmozte],

Lemma 5.7:
We have

1
|La(s3,Xx)M(s3,x) — 1] < exp (61 1;:;:2 log, x) ~

’

Bs, ,5(2)+s ‘ max
Zl( 2,4 ) seg(sD)

max

(B1oBy) s€g(s2)

Z(u)(BhS(Q) + 5)

Proof: This follows from Lemmas 5.1 to 5.5.

6 Relation to exponential sums over primes

We now discuss the relation of the sums >, (B,q,s) and }- (B, s) to the sums >y, oy, x(p)p~ .

We have for B = B(ng, j1, -« Jry Vs« Vr)

Y (B.a,8) = x(no)ng *x(@)*a~> [ ] Z(”“’j“)
u=1

with i)
ST =S ) (),

where n(*) runs over all numbers of the form n(*) = py ;. -+ py. ., Puj. € Lj, With py, j. # Do, for
v1 # vUs.

In the sequal we eliminate the restriction py, j, # Pus,j. by the inclusion- exclusion- principle. For
U5, = (v1,v2) with vy, va € {1,... v} let f(¥},) = f(Ju, Vu,Tj, ) be the set of all tuplets = (p1,...,pu,)
with p, prime, p, € I, and p,, = py,,. (The p, are not orderes by size.)

Definition 6.1:
For pj, = (P1,jus -+ s Puu.gu) We set [[(P),) = p1j, -+ P, j.- We obtain

—S

> X(P1ju o) PLgu Prai) S = > Xrge Prd)Pri. D)

ﬁju *Puygu #pv%]u ﬁju:(pl“"’p”u)
V1AV2, Dojy €14y,

DI > v(IT@) (@) (5)

w=1 ﬁl,juw")ﬁw,ju Pjy ef('Ul 7ju)m---mf("7w7ju)



The condition p;, € f(U1,7u) N ..

N f(Tw, ju) is equivalent to a set of conditions of the form

_ _ _ £, 1
Py ., Py(v j, = TPy G M= {oy, o)
— — _ _ (2 2
Py = P == pe s Ne = {0 e
P, () = P = =D, N, Z{U(w) U(w)} (6)
v v g T T Pl g0 Ve 1o Uk
This leads to
Definition 6.2:
For v, € N and a tuplet K, = (K1,-..,Kw) of natural numbers k, > 2 with k1 + ... + ko < vy let

S = (v, k) be the set of all tuplets N = (N3, ..., N, of subsets N, C{1,...,v,} with Ny, NN, =0
for 1 # @o. [Nyl = Ky, 1 < ¢ < w. sgn(N) € {—1,1} comes from the factor (—1)* in (5) and the
condition p;, € f(U1,4u) N ... N f(Uw, ju) with leads to (6) and thus to the definition of N.

We obtain

Lemma 6.1:

Vu!z(’/uvju) _

The sums Z( )
”w

Lemma 6.2:

We have for B = B(mg, k1, . .

with

>

(P15 +>Pou ju)
V1#£V2, Du,j, €15,

DY

Vu

X(p17ju '.'pvuyju)(plzju ...pvuaju)_ = Z X(p)p_s

vy— (k14 +Kw)

w

S s T DD x@E || DD x)p®

Ro=(k1, k) NES(Vy,kw) p=1 \py€lj, p€lj,

Kit...tro vy
Kyp>2

are treated in an analogous manner.

'1kra>\17"‘7>\r)

3 (B:s) = nlm)x(moymy* T 37"

>

u=1

(Auyku)

(r) B

> alm™)x(m™)(m)=,

where m(® runs over all numbers of the form m() = Dlky *** Phu by 30 Dy g, € T, With Dy k. 7 Dug ke

for vy # vs.

Lemma 6.3:

v, Z(Vuyku') =

p€ly,

DY

Auw—(P1+

oo s T Do et |- | D xop®

Ty=(41,000) NES (A, ) p=1 \py€lk, pElk,

w1+...+ww S)\u
>

0 >2

0]

)



Lemma 6.4:

1
|S(Vus kw)| < exp <Cloogg2:; logs x)

log x
[S(Aus¥w)| < exp <c & log; x)
logy
for fixed ¢ > 0.
Proof: By applying Stirling’s formula to the multinomial coefficient.
We now carry out the substitutions

CUZCU(VUa‘%la"'vF‘:w) - Vy — Rl — ... Ry and

ﬁuzﬂu()‘uvwlwuku}) = /\u*wlf-“*ww

and obtain from the lemma 5.6, 6.1, 6.3 and 6.4.

Lemma 6.5:

1
Lo(s®, )M, ) —1] < exp (lggx log; ) -

Cu
7" 720-3
Z mg " ng H Z
(mo,n0,q,C,k,3.,7) Cu SEg(s<2)) =
Gu
H ?9 ! s€g(s(2> Z xw)p? Z I(r)r~ 7| + O(z™°),
elk“ T squarefree

where the summation in 3" is over all septuplets with monog?y%! - - - ijjll yfb\i e y?f > 29/10,
w2

7 Smooth numbers, end of the proof

We now make use of the hypothesis of Theorem 2:

> xpp't <M
M<p<M’
with M < M’ < 2M for M > ¢4 andaozl—%.

From Lemma 6.4 we have

]
|Lo (50, X)M(s0,x) —1] < exp (cbogilogg x) :

1"

T2
S omt —%SH [ o T g™ +0a). @)
u=1 '

(mo,n0,q,X,7k,5)

where the summation in Z” is over all septuplets with m0n0q2yﬁ yi“ll y,z‘ll e y,;\“Q

ug :

For the sake of simplicity we treat only the case ¢ = 1.

We make another partition of the sum

S = Y S (M NRS),

(M,N,R,S)



where

— —03,,—03
E (M7N7R?S) - E E E mg "Ny
Mo,n0. N7k, 7) 2M <moy<2MH! 2N <noy<2N+!

™1 )
1 —€Cu 1 —ey
Cal Yiu 91k,
R Vi, "1 <9R A Arg u=1 % u=1 %
<moyj Yy, S2R S<noy !y 2 <25
We need a result on smoothe numbers:
Definition 7.1: For 1 <y < z let

1
Uay) = n<wipn s p<yll and w= oot
Lemma 7.1: For y > (log )¢ we have
¥(z,y) < zexp(—ulogu(l+o(1)).
Proof: Hildebrand ||
case A: S > z9/20
case distinction for (ng, S):
. log S .
case 1: N < 0110523'
From (7) we have
> (M,N,R,S) < a~".
. log S .
case 2: N > ¢ k?is.
By lemma 7.1 we obtain
—Nlog2
—Nlog2
> (M,N,R,S) < 2N(=7)exp (Alo;:gg(logN + log, £(1 + 0(1))> .

From og =1 — % we obtain

1
Z(M, N,R,S) < exp (—c 08T logs x) .
logy

case A: R > z9/20

This is treated in an anlogous manner.

From (7)-(9) we now have

1
(o) (50 = e (e 52 tog o).

From lemma 3.1 and the bound M (s, x) < z¢ the claim of Theorem 2 follows.
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