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Gallai’'s work in matching theory

Gallal Identities

Perfect matching in regular graphs
Realizable degree sequences (with Erdos)
Factor-critical graphs

Edmonds-Gallal Structure Theorem

Point-disjoint A-paths
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The perfect matching problem

Given a graph, is there a set of edges

covering each node exactly once?
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The perfect matching problem

Given a graph, Is there a set of edges

covering each node exactly once?

Answer for 3-regular graphs: Petersen 1891

Answer for bipartite graphs: Frobenius 1912
Konig 1931

[Maximum number of independent edges?}
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The perfect matching problem

For regular graphs: Babler, Belck, Gallai 1950
For all graphs:  Tutte 1947
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The perfect matching problem

For regular graphs: Babler, Belck, Gallai 1950
For all graphs:  Tutte 1947

Formula for the maximum number of
Independent edges: Berge 1958

Polynomial time algorithm:  Edmonds 1965
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Structure of maximum matchings

The Edmonds-Gallal Structure Theorem 1965

comp’s with D\/\/O factor-
perfect — D< A — critical

matching [KU% comp's

# odd components > |A|

o

characterizations by | |H-Xx has pm
Gallai, L, Frank,... for all nodes x
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Structure of graphs with perfect matchings

For bipartite: Konig 1915
Dulmage — Mendelsohn 1958-67

For all graphs: Kotzig 1959-60
L 1972
L — Plummer 1975

bicritical:
G-Xx-y has pm
for all nodes X,y
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Structure of graphs with perfect matchings
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Structure of graphs with perfect matchings
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bipartite reduction
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Structure of graphs with perfect matchings
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Ear-decomposition

Every edge of G is in a perfect matching
— G has ear-decomposition starting with
an even cycle.

Hetyel 1976
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Ear-decomposition

G Is critical < G has ear-decomposition starting
with an odd cycle, adding one ear at a time.

L 1972
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Ear-decomposition

Every edge of G Is Iin a perfect matching

= G has ear-decomposition starting with

an even cycle, adding <2 ears at a time.
L-Plummer 1975

£:> 2-edge-connected 3-regular graph }

has at least n/2 perfect matchings.

-
VvV 2-edge-connected 3-regular graph o

has exponentially many perfect matchings.
L Esperet-Kardos-King-Kral-Norine 2012/
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Ear-decomposition

G Is 3-connected bicritical
— G has ear-decomposition starting with one of
the graphs below, allowing bipartite extension,

adding one ear at a time.
Carvalho-Lucchesi-Murty 2002
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July 2013 17



