# Weighted D-T moduli revisited and applied 

D. Leviatan

Tel Aviv University
Budapest July 1st-5th, 2013
Joint work with K. Kopotun and I. A. Shevchuk

## Introduction

For $1 \leq p<\infty$ and $r \in \mathbf{N}_{\mathbf{0}}$, denote for $r \geq 1$,

$$
\mathbf{B}_{p}^{r}:=\left\{f: f^{(r-1)} \in A C_{l o c}(-1,1) \quad \text { and } \quad\left\|f^{(r)} \varphi^{r}\right\|_{p}<+\infty\right\}
$$

where $\varphi(x):=\sqrt{1-x^{2}}$, and for $r=0, \mathbf{B}_{p}^{0}:=L_{p}[-1,1]$.

## Introduction

For $1 \leq p<\infty$ and $r \in \mathbf{N}_{\mathbf{0}}$, denote for $r \geq 1$,

$$
\mathbf{B}_{p}^{r}:=\left\{f: f^{(r-1)} \in A C_{l o c}(-1,1) \quad \text { and } \quad\left\|f^{(r)} \varphi^{r}\right\|_{p}<+\infty\right\}
$$

where $\varphi(x):=\sqrt{1-x^{2}}$, and for $r=0, \mathbf{B}_{p}^{0}:=L_{p}[-1,1]$.

- For $f \in \mathbf{B}_{p}^{r}$ define

$$
\omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{p}:=\sup _{0<h \leq t}\left\|\mathcal{W}_{k h}^{r}(\cdot) \Delta_{h \varphi(\cdot)}^{k}\left(f^{(r)}, \cdot\right)\right\|_{p}
$$

where

$$
\mathcal{W}_{\delta}(x):= \begin{cases}((1-x-\delta \varphi(x) / 2)(1+x-\delta \varphi(x) / 2))^{1 / 2} \\ & 1 \pm x-\delta \varphi(x) / 2 \in[-1,1] \\ 0, & \text { otherwise }\end{cases}
$$

## Introduction

For $1 \leq p<\infty$ and $r \in \mathbf{N}_{\mathbf{0}}$, denote for $r \geq 1$,

$$
\mathbf{B}_{p}^{r}:=\left\{f: f^{(r-1)} \in A C_{l o c}(-1,1) \quad \text { and } \quad\left\|f^{(r)} \varphi^{r}\right\|_{p}<+\infty\right\}
$$

where $\varphi(x):=\sqrt{1-x^{2}}$, and for $r=0, \mathbf{B}_{p}^{0}:=L_{p}[-1,1]$.

- For $f \in \mathbf{B}_{p}^{r}$ define

$$
\omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{p}:=\sup _{0<h \leq t}\left\|\mathcal{W}_{k h}^{r}(\cdot) \Delta_{h \varphi(\cdot)}^{k}\left(f^{(r)}, \cdot\right)\right\|_{p}
$$

where

$$
\mathcal{W}_{\delta}(x):= \begin{cases}((1-x-\delta \varphi(x) / 2)(1+x-\delta \varphi(x) / 2))^{1 / 2} \\ & 1 \pm x-\delta \varphi(x) / 2 \in[-1,1] \\ 0, & \text { otherwise }\end{cases}
$$

- Note that

$$
\omega_{k, 0}^{\varphi}(f, t)_{p}=\omega_{\varphi}^{k}(f, t)_{p}\left(\text { I prefer }=\omega_{k}^{\varphi}(f, t)_{p}\right)
$$

## The $K$-functional

It turns out that if $f \in \mathbf{B}_{p}^{r}$, then

$$
\omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{p} \rightarrow 0, \quad \text { if } \quad t \rightarrow 0+.
$$

## The $K$-functional

It turns out that if $f \in \mathbf{B}_{p}^{r}$, then

$$
\omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{p} \rightarrow 0, \quad \text { if } \quad t \rightarrow 0+
$$

- For $k \in \mathbb{N}, r \geq 0$ and $f \in \mathbf{B}_{p}^{r}$, denote by

$$
K_{k, r}^{\varphi}\left(f^{(r)}, t^{k}\right)_{p}:=\inf _{g \in \mathbf{B}_{p}^{k+r}}\left(\left\|\left(f^{(r)}-g^{(r)}\right) \varphi^{r}\right\|_{p}+t^{k}\left\|g^{(k+r)} \varphi^{k+r}\right\|_{p}\right)
$$

the $K$-functional.

## The $K$-functional

It turns out that if $f \in \mathbf{B}_{p}^{r}$, then

$$
\omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{p} \rightarrow 0, \quad \text { if } \quad t \rightarrow 0+
$$

- For $k \in \mathbb{N}, r \geq 0$ and $f \in \mathbf{B}_{p}^{r}$, denote by

$$
K_{k, r}^{\varphi}\left(f^{(r)}, t^{k}\right)_{p}:=\inf _{g \in \mathbf{B}_{p}^{k+r}}\left(\left\|\left(f^{(r)}-g^{(r)}\right) \varphi^{r}\right\|_{p}+t^{k}\left\|g^{(k+r)} \varphi^{k+r}\right\|_{p}\right)
$$

the $K$-functional.

- We have the following equivalence.


## Theorem

If $f \in \mathbf{B}_{p}^{r}$, then

$$
\omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{p} \sim K_{k, r}^{\varphi}\left(f^{(r)}, t^{k}\right)_{p}
$$

## Polynomial approximation in $L_{p}$

Denote

$$
E_{n}(f)_{p}:=\inf _{p_{n} \in \mathbb{P}_{n}}\left\|f-p_{n}\right\|_{p}
$$

where $\mathbb{P}_{n}$ is the set of polynomials of degree $<n$, and let $c$ denote a constant independent of $f$ and $n$.

## Polynomial approximation in $L_{p}$

Denote

$$
E_{n}(f)_{p}:=\inf _{p_{n} \in \mathbb{P}_{n}}\left\|f-p_{n}\right\|_{p}
$$

where $\mathbb{P}_{n}$ is the set of polynomials of degree $<n$, and let $c$ denote a constant independent of $f$ and $n$.

- Then


## Theorem

If $f \in \mathbf{B}_{p}^{r}, 1 \leq p<\infty$, then

$$
E_{n}(f)_{p} \leq \frac{c}{n^{r}} \omega_{k, r}^{\varphi}\left(f^{(r)}, 1 / n\right)_{p}, \quad n \geq k+r
$$

## Polynomial approximation in $L_{p}$

## Denote

$$
E_{n}(f)_{p}:=\inf _{p_{n} \in \mathbb{P}_{n}}\left\|f-p_{n}\right\|_{p},
$$

where $\mathbb{P}_{n}$ is the set of polynomials of degree $<n$, and let $c$ denote a constant independent of $f$ and $n$.

- Then


## Theorem

If $f \in \mathbf{B}_{p}^{r}, 1 \leq p<\infty$, then

$$
E_{n}(f)_{p} \leq \frac{c}{n^{r}} \omega_{k, r}^{\varphi}\left(f^{(r)}, 1 / n\right)_{p}, \quad n \geq k+r .
$$

## Theorem

If $f \in \mathbf{B}_{p}^{r}, 1 \leq p<\infty$, and $P_{n} \in \mathbb{P}_{n}$ denotes its polynomial of best approximation in $L_{p}[-1,1]$, then for each $k \in \mathbb{N}$,

$$
\left\|\varphi^{r+k} P_{n}^{(r+k)}\right\|_{p} \leq c n^{k} \omega_{k, r}^{\varphi}\left(f^{(r)}, 1 / n\right)_{p}
$$

## Rewriting the latter is

$$
n^{-k}\left\|\varphi^{r+k} P_{n}^{(r+k)}\right\|_{p} \leq c \omega_{k, r}^{\varphi}\left(f^{(r)}, 1 / n\right)_{p}
$$

Rewriting the latter is

$$
n^{-k}\left\|\varphi^{r+k} P_{n}^{(r+k)}\right\|_{p} \leq c \omega_{k, r}^{\varphi}\left(f^{(r)}, 1 / n\right)_{p}
$$

- and we can also show


## Theorem

If $f \in \mathbf{B}_{p}^{r}, 1 \leq p<\infty$, and $P_{n} \in \mathbb{P}_{n}$ denotes its polynomial of best approximation in $L_{p}[-1,1]$, then for each $k \in \mathbb{N}$,

$$
\left\|\varphi^{r}\left(f^{(r)}-P_{n}^{(r)}\right)\right\|_{p} \leq \int_{0}^{1 / n}\left(\omega_{k, r}^{\varphi}\left(f^{(r)}, \tau\right)_{p} / \tau\right) d \tau
$$

Rewriting the latter is

$$
n^{-k}\left\|\varphi^{r+k} P_{n}^{(r+k)}\right\|_{p} \leq c \omega_{k, r}^{\varphi}\left(f^{(r)}, 1 / n\right)_{p}
$$

- and we can also show


## Theorem

If $f \in \mathbf{B}_{p}^{r}, 1 \leq p<\infty$, and $P_{n} \in \mathbb{P}_{n}$ denotes its polynomial of best approximation in $L_{p}[-1,1]$, then for each $k \in \mathbb{N}$,

$$
\left\|\varphi^{r}\left(f^{(r)}-P_{n}^{(r)}\right)\right\|_{p} \leq \int_{0}^{1 / n}\left(\omega_{k, r}^{\varphi}\left(f^{(r)}, \tau\right)_{p} / \tau\right) d \tau
$$

- Not quite "realization".


## Polynomial approximation in $L_{p}$ - continued

The proof is based on two results. First, a theorem that illustrates the hierarchy between the moduli of smoothness.

$$
\begin{aligned}
& \text { Theorem } \\
& \text { If } f \in \mathbf{B}_{p}^{r+1}, r \in \mathbb{N}_{0} \text { and } 1 \leq p<\infty \text {, and } k \geq 2 \text {, then } \\
& \qquad \omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{p} \leq c t \omega_{k-1, r+1}^{\varphi}\left(f^{(r+1)}, t\right)_{p}
\end{aligned}
$$

## Polynomial approximation in $L_{p}$ - continued

The proof is based on two results. First, a theorem that illustrates the hierarchy between the moduli of smoothness.

## Theorem

If $f \in \mathbf{B}_{p}^{r+1}, r \in \mathbb{N}_{0}$ and $1 \leq p<\infty$, and $k \geq 2$, then

$$
\omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{p} \leq c t \omega_{k-1, r+1}^{\varphi}\left(f^{(r+1)}, t\right)_{p}
$$

- Second, the following estimates by Ditzian and Totik. The Jackson-type estimates

$$
E_{n}(f)_{p} \leq c \omega_{k}^{\varphi}(f, 1 / n)_{p}, \quad n \geq k
$$

## Polynomial approximation in $L_{p}$ - continued

The proof is based on two results. First, a theorem that illustrates the hierarchy between the moduli of smoothness.

## Theorem

If $f \in \mathbf{B}_{p}^{r+1}, r \in \mathbb{N}_{0}$ and $1 \leq p<\infty$, and $k \geq 2$, then

$$
\omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{p} \leq c t \omega_{k-1, r+1}^{\varphi}\left(f^{(r+1)}, t\right)_{p}
$$

- Second, the following estimates by Ditzian and Totik. The Jackson-type estimates

$$
E_{n}(f)_{p} \leq c \omega_{k}^{\varphi}(f, 1 / n)_{p}, \quad n \geq k
$$

- and the estimates on the derivatives of the polynomial of best approximation

$$
\left\|\varphi^{r+k} P_{n}^{(r+k)}\right\|_{p} \leq c n^{r+k} \omega_{k+r}^{\varphi}(f, 1 / n)_{p}
$$

## Comments

It is also known that for $f \in L_{p}[-1,1]$, that if $f^{(r)} \in L_{p}[-1,1]$ for some $r \geq 1$, then

$$
E_{n}(f)_{p} \leq c n^{-r} \omega_{k}^{\varphi}\left(f^{(r)}, 1 / n\right)_{p}, \quad n \geq k+r
$$

## Comments

It is also known that for $f \in L_{p}[-1,1]$, that if $f^{(r)} \in L_{p}[-1,1]$ for some $r \geq 1$, then

$$
E_{n}(f)_{p} \leq c n^{-r} \omega_{k}^{\varphi}\left(f^{(r)}, 1 / n\right)_{p}, \quad n \geq k+r .
$$

- Again, this follows from the hierarchy

$$
\omega_{k}^{\varphi}\left(f^{(r-1)}, t\right)_{p} \leq c t \omega_{k-1}^{\varphi}\left(f^{(r)}, t\right)_{p}, \quad r \geq 1
$$

(Note that we have to assume that $f^{(r)} \in L_{p}[-1,1]$, the DT-moduli are not defined if the function is not in $L_{p}[-1,1]$.)

## Comments

It is also known that for $f \in L_{p}[-1,1]$, that if $f^{(r)} \in L_{p}[-1,1]$ for some $r \geq 1$, then

$$
E_{n}(f)_{p} \leq c n^{-r} \omega_{k}^{\varphi}\left(f^{(r)}, 1 / n\right)_{p}, \quad n \geq k+r .
$$

- Again, this follows from the hierarchy

$$
\omega_{k}^{\varphi}\left(f^{(r-1)}, t\right)_{p} \leq c t \omega_{k-1}^{\varphi}\left(f^{(r)}, t\right)_{p}, \quad r \geq 1
$$

(Note that we have to assume that $f^{(r)} \in L_{p}[-1,1]$, the DT-moduli are not defined if the function is not in $L_{p}[-1,1]$.)

- We have a sharper estimate, and for $\mathbf{B}_{p}^{r}$ - a wider class of functions.


## Direct and inverse theorems

An immediate consequence is,

$$
\begin{aligned}
& \text { Corollary } \\
& \text { If } f \in \mathbf{B}_{p}^{r}, r \in \mathbb{N}_{0} \text {, and if for some } k \geq 1 \text {, and } \alpha>r, \\
& \omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{p}=O\left(t^{\alpha-r}\right) \text {, then } \\
& \qquad E_{n}(f)_{p} \leq c n^{-\alpha}, \quad n \geq k+r .
\end{aligned}
$$

## Direct and inverse theorems

An immediate consequence is,

## Corollary

If $f \in \mathbf{B}_{p}^{r}, r \in \mathbb{N}_{0}$, and if for some $k \geq 1$, and $\alpha>r$, $\omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{p}=O\left(t^{\alpha-r}\right)$, then

$$
E_{n}(f)_{p} \leq c n^{-\alpha}, \quad n \geq k+r .
$$

- We have the following inverse result.


## Theorem

Let $r \in \mathbb{N}_{0}, k \geq 1$ and $\alpha>0$, be such that $r<\alpha<r+k$, and let $f \in L_{p}[-1,1]$. If

$$
E_{n}(f)_{p} \leq M n^{-\alpha}, \quad n \geq 1
$$

then $f \in \mathbf{B}_{p}^{r}$ and

$$
\omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{p} \leq c(M, \alpha, r) t^{\alpha-r}, \quad \underset{\text { Budapest Ju }}{t>0}
$$

## Inverse consequences

Let $P_{k+r} \in \mathcal{P}_{k+r}$, be the best approximation to $f \in L_{p}[-1,1]$, and set $F:=f-P_{k+r}$. Since $\omega_{k, r}^{\varphi}\left(p_{k+r}^{(r)}, t\right)_{p} \equiv 0$ for $p_{k+r} \in \mathcal{P}_{k+r}$, it follows that $\omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{p}=\omega_{k, r}^{\varphi}\left(F^{(r)}, t\right)_{p}, t>0$, that $E_{n}(F)_{p}=\|F\|_{p}=E_{k+r}(f)_{p}$, $n \leq k+r$, and that we have $E_{n}(f)_{p}=E_{n}(F)_{p}$, for all $n \geq k+r$.

## Inverse consequences

Let $P_{k+r} \in \mathcal{P}_{k+r}$, be the best approximation to $f \in L_{p}[-1,1]$, and set $F:=f-P_{k+r}$. Since $\omega_{k, r}^{\varphi}\left(p_{k+r}^{(r)}, t\right)_{p} \equiv 0$ for $p_{k+r} \in \mathcal{P}_{k+r}$, it follows that $\omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{p}=\omega_{k, r}^{\varphi}\left(F^{(r)}, t\right)_{p}, t>0$, that $E_{n}(F)_{p}=\|F\|_{p}=E_{k+r}(f)_{p}$, $n \leq k+r$, and that we have $E_{n}(f)_{p}=E_{n}(F)_{p}$, for all $n \geq k+r$.

- Therefore, an immediate consequence is,


## Corollary

Let $r \in \mathbb{N}_{0}, k \geq 1$ and $\alpha>0$, be such that $r<\alpha<r+k$, and let $f \in L_{p}[-1,1]$. If

$$
E_{n}(f)_{p} \leq n^{-\alpha}, \quad n \geq k+r
$$

then $f \in \mathbf{B}_{p}^{r}$ and

$$
\omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{p} \leq c(\alpha, k, r) t^{\alpha-r}, \quad t>0
$$

## Inverse consequences - continued

We have the following extension.

## Corollary

Let $r \in \mathbb{N}_{0}, k \geq 1$ and $\alpha>0$, be such that $r<\alpha<r+k$, and let $f \in L_{p}[-1,1]$. If

$$
E_{n}(f)_{p} \leq n^{-\alpha}, \quad n \geq N,
$$

for some $N \geq k+r$, then $f \in \mathbf{B}_{p}^{r}$ and

$$
\omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{p} \leq c(\alpha, k, r) t^{\alpha-r}+c(N, k, r) t^{k} E_{k+r}(f)_{p}, \quad t>0 .
$$

## Weighted DT moduli

Let $\|\cdot\|_{p}:=\|\cdot\|_{L_{p}[-1,1]}, 1 \leq p<\infty$, and let $w$ and $\phi$ be such $w, \phi \sim 1$ in compacta of $(-1,1)$, and $w(x) \sim(1 \mp x)^{\gamma( \pm 1)}$ and $\phi(x) \sim(1 \mp x)^{\beta( \pm 1)}$, as $x \rightarrow \pm 1$, where $\gamma( \pm 1), \beta( \pm 1) \geq 0$.
For $k \in \mathbb{N}_{0}$, let
$\Delta_{h}^{k}(f, x):= \begin{cases}\sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i} f(x+(i-k / 2) h), & \text { if } x \pm k h / 2 \in[-1,1], \\ 0, & \text { otherwise },\end{cases}$
be the $k$ th symmetric difference.

## Weighted DT moduli

Let $\|\cdot\|_{p}:=\|\cdot\|_{L_{p}[-1,1]}, 1 \leq p<\infty$, and let $w$ and $\phi$ be such $w, \phi \sim 1$ in compacta of $(-1,1)$, and $w(x) \sim(1 \mp x)^{\gamma( \pm 1)}$ and $\phi(x) \sim(1 \mp x)^{\beta( \pm 1)}$, as $x \rightarrow \pm 1$, where $\gamma( \pm 1), \beta( \pm 1) \geq 0$.
For $k \in \mathbb{N}_{0}$, let
$\Delta_{h}^{k}(f, x):= \begin{cases}\sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i} f(x+(i-k / 2) h), & \text { if } x \pm k h / 2 \in[-1,1], \\ 0, & \text { otherwise },\end{cases}$
be the $k$ th symmetric difference.

- Similarly, the $k$ th forward and backward differences, respectively, are

$$
\vec{\Delta}_{h}^{k}(f, x):= \begin{cases}\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} f(x+i h), & \text { if } \quad[x, x+k h] \subseteq[-1,1] \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
\overleftarrow{\Delta}_{h}^{k}(f, x):= \begin{cases}\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} f(x-i h), & \text { if }[x-k h, x] \subseteq[-1,1], \\ 0, & \text { otherwise },\end{cases}
$$

## Weighted DT moduli - continued

Ditzian and Totik have defined the weighted $\phi$-moduli of smoothness, with weight $w^{p}$, of a function $f$, such that $w f \in L_{p}[-1,1]$, by

## Weighted DT moduli - continued

Ditzian and Totik have defined the weighted $\phi$-moduli of smoothness, with weight $w^{p}$, of a function $f$, such that $w f \in L_{p}[-1,1]$, by

$$
\begin{aligned}
\omega_{\phi}^{k}(f, t)_{w, p} & :=\sup _{0<h \leq t}\left\|w \Delta_{h \phi}^{k} f\right\|_{L_{p}\left[-1+t^{*}, 1-t^{* *}\right]} \\
& +\sup _{0<h \leq t^{*}}\left\|w \vec{\Delta}_{h \phi}^{k} f\right\|_{L_{p}\left[-1,-1+12 t^{*}\right]} \\
& +\sup _{0<h \leq t^{* *}}\left\|w \overleftarrow{\Delta}_{h \phi}^{k} f\right\|_{L_{p}\left[1-12 t^{* *}, 1\right]}
\end{aligned}
$$

## Weighted DT moduli - continued

Ditzian and Totik have defined the weighted $\phi$-moduli of smoothness, with weight $w^{p}$, of a function $f$, such that $w f \in L_{p}[-1,1]$, by

$$
\begin{aligned}
\omega_{\phi}^{k}(f, t)_{w, p} & :=\sup _{0<h \leq t}\left\|w \Delta_{h \phi}^{k} f\right\|_{L_{p}\left[-1+t^{*}, 1-t^{* *}\right]} \\
& +\sup _{0<h \leq t^{*}}\left\|w \vec{\Delta}_{h \phi}^{k} f\right\|_{L_{p}\left[-1,-1+12 t^{*}\right]} \\
& +\sup _{0<h \leq t^{* *}}\left\|w \overleftarrow{\Delta}{ }_{h \phi}^{k} f\right\|_{L_{p}\left[1-12 t^{* *}, 1\right]}
\end{aligned}
$$

- where

$$
t^{*}:= \begin{cases}A(k t)^{1 /(1-\beta(-1))}, & \text { if } \beta(-1)<1 \\ 0, & \text { if } \beta(-1) \geq 1\end{cases}
$$

and, analogously,

$$
t^{* *}:= \begin{cases}A(k t)^{1 /(1-\beta(1))}, & \text { if } \beta(1)<1 \\ 0, & \text { if } \beta(1) \geq 1\end{cases}
$$

## Weighted DT moduli - continued

They called the first term "the main part modulus" and denoted it

$$
\Omega_{\phi}^{k}(f, t)_{w, p}:=\sup _{0<h \leq t}\left\|w \Delta_{h \phi}^{k} f\right\|_{L_{p}\left[t^{*}, 1-t^{* *}\right]} .
$$

## Weighted DT moduli - continued

They called the first term "the main part modulus" and denoted it

$$
\Omega_{\phi}^{k}(f, t)_{w, p}:=\sup _{0<h \leq t}\left\|w \Delta_{h \phi}^{k} f\right\|_{L_{p}\left[t^{*}, 1-t^{* *}\right]} .
$$

- They proved that the $K$-functional

$$
K_{k, \phi}\left(f, t^{k}\right)_{w, p}:=\inf _{g^{(k-1)} \in A C_{(l o c)}}\left(\|(f-g) w\|_{p}+t^{k}\left\|w \phi^{k} g^{(k)}\right\|_{p}\right)
$$

is equivalent to $\omega_{\phi}^{k}(f, t)_{w, p}$.

## Special weighted DT moduli

If we take $\phi(x)=\varphi(x):=\sqrt{1-x^{2}}$ and $w(x)=\varphi^{r}(x)$, the weighted DT moduli become,

## Special weighted DT moduli

If we take $\phi(x)=\varphi(x):=\sqrt{1-x^{2}}$ and $w(x)=\varphi^{r}(x)$, the weighted DT moduli become,

- By the above we conclude that


## Theorem

If $f \in \mathbf{B}_{p}^{r}$, then

$$
\omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{p} \sim \omega_{\varphi}^{k}\left(f^{(r)}, t\right)_{\varphi^{r}, p}
$$

## Comparing definitions

Recall that

$$
\omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{p}:=\sup _{0<h \leq t}\left\|\mathcal{W}_{k h}^{r}(\cdot) \Delta_{h \varphi(\cdot)}^{k}\left(f^{(r)}, \cdot\right)\right\|_{p}
$$

where

$$
\mathcal{W}_{\delta}(x):= \begin{cases}((1-x-\delta \varphi(x) / 2)(1+x-\delta \varphi(x) / 2))^{1 / 2} \\ & 1 \pm x-\delta \varphi(x) / 2 \in[-1,1] \\ 0, & \text { otherwise }\end{cases}
$$

## Comparing definitions

Recall that

$$
\omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{p}:=\sup _{0<h \leq t}\left\|\mathcal{W}_{k h}^{r}(\cdot) \Delta_{h \varphi(\cdot)}^{k}\left(f^{(r)}, \cdot\right)\right\|_{p}
$$

where

$$
\mathcal{W}_{\delta}(x):= \begin{cases}((1-x-\delta \varphi(x) / 2)(1+x-\delta \varphi(x) / 2))^{1 / 2} \\ & 1 \pm x-\delta \varphi(x) / 2 \in[-1,1] \\ 0, & \text { otherwise }\end{cases}
$$

- And compare with: take $t^{*}:=2 k^{2} t^{2}$ and $A$ is an absolute constant (for example, $A=12$ ),

$$
\begin{aligned}
\omega_{\varphi}^{k}\left(f^{(r)}, t\right)_{\varphi^{r}, p} & =\sup _{0<h \leq t}\left\|\varphi^{r} \Delta_{h \varphi}^{k} f^{(r)}\right\|_{L_{p}\left[-1+t^{*}, 1-t^{*}\right]} \\
& +\sup _{0<h \leq t^{*}}\left\|\varphi^{r} \vec{\Delta}_{h}^{k} f^{(r)}\right\|_{L_{p}\left[-1,-1+A t_{0}^{*}\right]} \\
& +\sup _{0<h \leq t^{*}}\left\|\varphi^{r} \overleftarrow{\Delta}_{h}^{k} f^{(r)}\right\|_{L_{p}\left[1-A t^{*}, 1\right]},
\end{aligned}
$$

## Weighted polynomial approximation

Ditzian and Totik were interested in the degree of weighted polynomial approximation (with weight $w^{p}$ ), and proved that for $f$ such that $w f \in L_{p}[-1,1]$, we have

$$
E_{n}(f)_{w, p} \leq c \int_{0}^{1 / n}\left(\Omega_{\phi}^{r}(f, \tau)_{w, p} / \tau\right) d \tau, \quad n \geq r
$$

## Weighted polynomial approximation

Ditzian and Totik were interested in the degree of weighted polynomial approximation (with weight $w^{p}$ ), and proved that for $f$ such that $w f \in L_{p}[-1,1]$, we have

$$
E_{n}(f)_{w, p} \leq c \int_{0}^{1 / n}\left(\Omega_{\phi}^{r}(f, \tau)_{w, p} / \tau\right) d \tau, \quad n \geq r
$$

- Here

$$
E_{n}(f)_{w, p}:=\inf _{p_{n} \in \mathbb{P}_{n}}\left\|w\left(f-p_{n}\right)\right\|_{p}
$$

## Weighted polynomial approximation

Ditzian and Totik were interested in the degree of weighted polynomial approximation (with weight $w^{p}$ ), and proved that for $f$ such that $w f \in L_{p}[-1,1]$, we have

$$
E_{n}(f)_{w, p} \leq c \int_{0}^{1 / n}\left(\Omega_{\phi}^{r}(f, \tau)_{w, p} / \tau\right) d \tau, \quad n \geq r
$$

- Here

$$
E_{n}(f)_{w, p}:=\inf _{p_{n} \in \mathbb{P}_{n}}\left\|w\left(f-p_{n}\right)\right\|_{p}
$$

- They could not show that

$$
E_{n}(f)_{w, p} \leq c \omega_{\phi}^{r}(f, 1 / n)_{w, p}, \quad n \geq r .
$$

## Weighted polynomial approximation

Ditzian and Totik were interested in the degree of weighted polynomial approximation (with weight $w^{p}$ ), and proved that for $f$ such that $w f \in L_{p}[-1,1]$, we have

$$
E_{n}(f)_{w, p} \leq c \int_{0}^{1 / n}\left(\Omega_{\phi}^{r}(f, \tau)_{w, p} / \tau\right) d \tau, \quad n \geq r
$$

- Here

$$
E_{n}(f)_{w, p}:=\inf _{p_{n} \in \mathbb{P}_{n}}\left\|w\left(f-p_{n}\right)\right\|_{p}
$$

- They could not show that

$$
E_{n}(f)_{w, p} \leq c \omega_{\phi}^{r}(f, 1 / n)_{w, p}, \quad n \geq r
$$

- Neither can we!


## Weighted polynomial approximation - continued

But we can show,

## Theorem

Let $0<l<r$, and assume that $f^{(l-1)}$ is locally absolutely continuous in $(-1,1)$ and $w \phi^{l} f^{(l)} \in L_{p}[-1,1]$. Then

$$
E_{n}(f)_{w, p} \leq c n^{-l} \omega_{\phi}^{r-l}\left(f^{(l)}, 1 / n\right)_{w \phi^{l}, p}, \quad n \geq r
$$

## Weighted polynomial approximation - continued

But we can show,

## Theorem

Let $0<l<r$, and assume that $f^{(l-1)}$ is locally absolutely continuous in $(-1,1)$ and $w \phi^{l} f^{(l)} \in L_{p}[-1,1]$. Then

$$
E_{n}(f)_{w, p} \leq c n^{-l} \omega_{\phi}^{r-l}\left(f^{(l)}, 1 / n\right)_{w \phi^{l}, p}, \quad n \geq r .
$$

- Hence, in particular, we have


## Theorem

Let $0<l<r<\alpha$, and assume that $f^{(l-1)}$ is locally absolutely continuous in $(-1,1)$ and $w \phi^{l} f^{(l)} \in L_{p}[-1,1]$, and $\omega_{\phi}^{r-l}\left(f^{(l)}, t\right)_{w \phi^{l}, p}=O\left(t^{\alpha-l}\right)$, then

$$
E_{n}(f)_{w, p} \leq c n^{-\alpha}, \quad n \geq r .
$$

## Inverse result

## Conversely,

## Theorem

Let $r \in \mathbb{N}_{0}, k \in \mathbb{N}$ and $r<\alpha<r+k$, and let $f$ be such that $w f \in L_{p}[-1,1]$. If

$$
\begin{equation*}
E_{n}(f)_{w, p} \leq M n^{-\alpha}, \quad n \geq 1 \tag{*}
\end{equation*}
$$

then $f^{(r-1)}$ is locally absolutely continuous in $(-1,1)$ and

$$
\begin{equation*}
\omega_{\phi}^{k}\left(f^{(r)}, t\right)_{w \phi^{r}, p} \leq c(M, l, \alpha) t^{\alpha-r}, \quad t>0 . \tag{**}
\end{equation*}
$$

## Remark

It follows by Ditzian and Totik that (*) implies,

$$
\omega_{\phi}^{r+k}(f, t)_{w, p} \leq c(M, \alpha) t^{\alpha}, \quad t>0 .
$$

## Remark

It follows by Ditzian and Totik that (*) implies,

$$
\omega_{\phi}^{r+k}(f, t)_{w, p} \leq c(M, \alpha) t^{\alpha}, \quad t>0
$$

- However, we have no way to conclude $\left({ }^{* *}\right)$ from this, as we have the hierarchy,

$$
\omega_{\phi}^{r+k}(f, t)_{w, p} \leq c t^{r} \omega_{\phi}^{k}\left(f^{(r)}, t\right)_{w \phi^{r}, p}, \quad t>0
$$

(in the wrong direction).

## Concluding corollary

## Corollary

Let $r \in \mathbb{N}_{0}, k \in \mathbb{N}$ and $\alpha>0$, be such that $r<\alpha<r+k$. Assume $w$ is a weight as above, and let $w f \in L_{p}[-1,1]$. If

$$
E_{n}(f)_{w, p} \leq n^{-\alpha}, \quad n \geq N
$$

for some $N \geq k+r$, then

$$
\omega_{\phi}^{k}\left(f^{(r)}, t\right)_{w \phi^{r}, p} \leq c(w, \alpha, k, r) t^{\alpha-r}+c(w, N, k, r) t^{k} E_{k+r}(f)_{w, p}, \quad t>0
$$

Moreover, if $N=k+r$, then

$$
\omega_{\phi}^{k}\left(f^{(r)}, t\right)_{w \phi^{r}, p} \leq c(w, \alpha, k, r) t^{\alpha-r}, \quad t>0
$$

## $\mathcal{T H A N K}$ YOU

