Weighted D-T moduli revisited and applied

D. Leviatan

Tel Aviv University

Budapest July 1st-5th, 2013 Joint work with K. Kopotun and I. A. Shevchuk

21

Budapest July 1st-5th, 2013 Joint work with I D. Leviatan (Tel Aviv University) Weighted D-T moduli revisited and applied

Introduction

For
$$1 \leq p < \infty$$
 and $r \in \mathbf{N_0}$, denote for $r \geq 1$,
 $\mathbf{B}_p^r := \{f : f^{(r-1)} \in AC_{loc}(-1, 1) \text{ and } \|f^{(r)}\varphi^r\|_p < +\infty\},\$
where $\varphi(x) := \sqrt{1-x^2}$, and for $r = 0$, $\mathbf{B}_p^0 := L_p[-1, 1].$

Introduction

For
$$1 \leq p < \infty$$
 and $r \in \mathbf{N_0}$, denote for $r \geq 1$,
 $\mathbf{B}_p^r := \{f : f^{(r-1)} \in AC_{loc}(-1, 1) \text{ and } ||f^{(r)}\varphi^r||_p < +\infty\},\$
where $\varphi(x) := \sqrt{1 - x^2}$, and for $r = 0$, $\mathbf{B}_p^0 := L_p[-1, 1].$
• For $f \in \mathbf{B}_p^r$ define
 $\omega_{k,r}^{\varphi}(f^{(r)}, t)_p := \sup_{0 \leq h \leq t} ||\mathcal{W}_{kh}^r(\cdot)\Delta_{h\varphi(\cdot)}^k(f^{(r)}, \cdot)||_p,\$

where

$$\mathcal{W}_{\delta}(x) := \begin{cases} \left((1 - x - \delta\varphi(x)/2)(1 + x - \delta\varphi(x)/2) \right)^{1/2}, \\ 1 \pm x - \delta\varphi(x)/2 \in [-1, 1], \\ 0, & \text{otherwise.} \end{cases}$$

D. Leviatan (Tel Aviv University) Weighted D-T moduli revisited and applied / 21

Introduction

For
$$1 \leq p < \infty$$
 and $r \in \mathbf{N_0}$, denote for $r \geq 1$,
 $\mathbf{B}_p^r := \{f : f^{(r-1)} \in AC_{loc}(-1, 1) \text{ and } ||f^{(r)}\varphi^r||_p < +\infty\},\$
where $\varphi(x) := \sqrt{1 - x^2}$, and for $r = 0$, $\mathbf{B}_p^0 := L_p[-1, 1].$
• For $f \in \mathbf{B}_p^r$ define

$$\omega_{k,r}^{\varphi}(f^{(r)},t)_p := \sup_{0 < h \le t} \|\mathcal{W}_{kh}^r(\cdot)\Delta_{h\varphi(\cdot)}^k(f^{(r)},\cdot)\|_p,$$

where

$$\mathcal{W}_{\delta}(x) := \begin{cases} \left((1 - x - \delta\varphi(x)/2)(1 + x - \delta\varphi(x)/2) \right)^{1/2}, \\ 1 \pm x - \delta\varphi(x)/2 \in [-1, 1], \\ 0, & \text{otherwise.} \end{cases}$$

Note that

$$\omega_{k,0}^{\varphi}(f,t)_p = \omega_{\varphi}^k(f,t)_p \,(\mathsf{I} \text{ prefer } = \omega_k^{\varphi}(f,t)_p).$$

D. Leviatan (Tel Aviv University) Weighted D-T moduli revisited and applied / 21

The K-functional

It turns out that if $f \in \mathbf{B}_p^r$, then

$$\omega_{k,r}^{\varphi}(f^{(r)},t)_p \to 0, \quad \text{if} \quad t \to 0+.$$

The K-functional

It turns out that if $f \in \mathbf{B}_p^r$, then

$$\omega_{k,r}^{\varphi}(f^{(r)},t)_p \to 0, \quad \text{if} \quad t \to 0+.$$

• For $k \in \mathbb{N}$, $r \geq 0$ and $f \in \mathbf{B}_p^r$, denote by

$$K_{k,r}^{\varphi}(f^{(r)}, t^k)_p := \inf_{g \in \mathbf{B}_p^{k+r}} (\|(f^{(r)} - g^{(r)})\varphi^r\|_p + t^k \|g^{(k+r)}\varphi^{k+r}\|_p),$$

21

the K-functional.

The K-functional

It turns out that if $f \in \mathbf{B}_p^r$, then

$$\omega_{k,r}^{\varphi}(f^{(r)},t)_p \to 0, \quad \text{if} \quad t \to 0+.$$

• For $k \in \mathbb{N}$, $r \geq 0$ and $f \in \mathbf{B}_p^r$, denote by

$$K_{k,r}^{\varphi}(f^{(r)}, t^k)_p := \inf_{g \in \mathbf{B}_p^{k+r}} (\|(f^{(r)} - g^{(r)})\varphi^r\|_p + t^k \|g^{(k+r)}\varphi^{k+r}\|_p),$$

the K-functional.

We have the following equivalence.

Theorem

If $f \in \mathbf{B}_p^r$, then

$$\omega_{k,r}^{\varphi}(f^{(r)},t)_p \sim K_{k,r}^{\varphi}(f^{(r)},t^k)_p.$$

D. Leviatan (Tel Aviv University)

Budapest July 1st-5th, 2013 Joint work with I Weighted D-T moduli revisited and applied

21

Polynomial approximation in L_p

Denote

$$E_n(f)_p := \inf_{p_n \in \mathbb{P}_n} \|f - p_n\|_p,$$

21

where \mathbb{P}_n is the set of polynomials of degree < n, and let c denote a constant independent of f and n.

Polynomial approximation in L_p

Denote

$$E_n(f)_p := \inf_{p_n \in \mathbb{P}_n} \|f - p_n\|_p,$$

where \mathbb{P}_n is the set of polynomials of degree < n, and let c denote a constant independent of f and n.

Then

Theorem If $f \in \mathbf{B}_p^r$, $1 \le p < \infty$, then $E_n(f)_p \le \frac{c}{n^r} \omega_{k,r}^{\varphi}(f^{(r)}, 1/n)_p, \quad n \ge k + r.$

Polynomial approximation in L_p

Denote

$$E_n(f)_p := \inf_{p_n \in \mathbb{P}_n} \|f - p_n\|_p,$$

where \mathbb{P}_n is the set of polynomials of degree < n, and let c denote a constant independent of f and n.

Then

Theorem

If $f \in \mathbf{B}_p^r$, $1 \le p < \infty$, then

$$E_n(f)_p \le \frac{c}{n^r} \omega_{k,r}^{\varphi}(f^{(r)}, 1/n)_p, \quad n \ge k+r.$$

Theorem

If $f \in \mathbf{B}_p^r$, $1 \le p < \infty$, and $P_n \in \mathbb{P}_n$ denotes its polynomial of best approximation in $L_p[-1, 1]$, then for each $k \in \mathbb{N}$,

$$\|\varphi^{r+k}P_n^{(r+k)}\|_p \le cn^k \omega_{k,r}^{\varphi}(f^{(r)}, 1/n)_p.$$

D. Leviatan (Tel Aviv University)

Weighted D-T moduli revisited and applied

Rewriting the latter is

$$n^{-k} \| \varphi^{r+k} P_n^{(r+k)} \|_p \le c \omega_{k,r}^{\varphi} (f^{(r)}, 1/n)_p,$$

Rewriting the latter is

$$n^{-k} \| \varphi^{r+k} P_n^{(r+k)} \|_p \le c \omega_{k,r}^{\varphi} (f^{(r)}, 1/n)_p$$

and we can also show

Theorem

If $f \in \mathbf{B}_p^r$, $1 \le p < \infty$, and $P_n \in \mathbb{P}_n$ denotes its polynomial of best approximation in $L_p[-1,1]$, then for each $k \in \mathbb{N}$,

$$\|\varphi^{r}(f^{(r)} - P_{n}^{(r)})\|_{p} \leq \int_{0}^{1/n} (\omega_{k,r}^{\varphi}(f^{(r)}, \tau)_{p}/\tau) d\tau.$$

Budapest July 1st-5th, 2013 Joint work with H

D. Leviatan (Tel Aviv University) Weighted D-T moduli revisited and applied

Rewriting the latter is

$$n^{-k} \| \varphi^{r+k} P_n^{(r+k)} \|_p \le c \omega_{k,r}^{\varphi} (f^{(r)}, 1/n)_p$$

and we can also show

Theorem

If $f \in \mathbf{B}_p^r$, $1 \le p < \infty$, and $P_n \in \mathbb{P}_n$ denotes its polynomial of best approximation in $L_p[-1,1]$, then for each $k \in \mathbb{N}$,

$$\|\varphi^r (f^{(r)} - P_n^{(r)})\|_p \le \int_0^{1/n} (\omega_{k,r}^{\varphi} (f^{(r)}, \tau)_p / \tau) \, d\tau.$$

Not quite "realization".

D. Leviatan (Tel Aviv University) Weighted D-T moduli revisited and applied / 21

Polynomial approximation in L_p – continued

The proof is based on two results. First, a theorem that illustrates the hierarchy between the moduli of smoothness.

Theorem

If
$$f \in \mathbf{B}_p^{r+1}$$
, $r \in \mathbb{N}_0$ and $1 \le p < \infty$, and $k \ge 2$, then

$$\omega_{k,r}^{\varphi}(f^{(r)},t)_p \le ct\omega_{k-1,r+1}^{\varphi}(f^{(r+1)},t)_p.$$

Polynomial approximation in L_p – continued

The proof is based on two results. First, a theorem that illustrates the hierarchy between the moduli of smoothness.

Theorem

If
$$f \in \mathbf{B}_p^{r+1}$$
, $r \in \mathbb{N}_0$ and $1 \le p < \infty$, and $k \ge 2$, then

$$\omega_{k,r}^{\varphi}(f^{(r)},t)_p \le ct\omega_{k-1,r+1}^{\varphi}(f^{(r+1)},t)_p.$$

• Second, the following estimates by Ditzian and Totik. The Jackson-type estimates

$$E_n(f)_p \le c\omega_k^{\varphi}(f, 1/n)_p, \quad n \ge k,$$

Polynomial approximation in L_p – continued

The proof is based on two results. First, a theorem that illustrates the hierarchy between the moduli of smoothness.

Theorem

If
$$f \in \mathbf{B}_p^{r+1}$$
, $r \in \mathbb{N}_0$ and $1 \leq p < \infty$, and $k \geq 2$, then

$$\omega_{k,r}^{\varphi}(f^{(r)},t)_p \le ct\omega_{k-1,r+1}^{\varphi}(f^{(r+1)},t)_p.$$

• Second, the following estimates by Ditzian and Totik. The Jackson-type estimates

$$E_n(f)_p \le c\omega_k^{\varphi}(f, 1/n)_p, \quad n \ge k,$$

• and the estimates on the derivatives of the polynomial of best approximation

$$\|\varphi^{r+k}P_n^{(r+k)}\|_p \le cn^{r+k}\omega_{k+r}^{\varphi}(f,1/n)_p.$$

Comments

It is also known that for $f\in L_p[-1,1],$ that if $f^{(r)}\in L_p[-1,1]$ for some $r\geq 1,$ then

$$E_n(f)_p \le cn^{-r}\omega_k^{\varphi}(f^{(r)}, 1/n)_p, \quad n \ge k+r.$$

Comments

It is also known that for $f \in L_p[-1,1]$, that if $f^{(r)} \in L_p[-1,1]$ for some $r \ge 1$, then

$$E_n(f)_p \le cn^{-r}\omega_k^{\varphi}(f^{(r)}, 1/n)_p, \quad n \ge k+r.$$

• Again, this follows from the hierarchy

$$\omega_k^{\varphi}(f^{(r-1)}, t)_p \le ct \omega_{k-1}^{\varphi}(f^{(r)}, t)_p, \quad r \ge 1.$$

(Note that we have to assume that $f^{(r)} \in L_p[-1, 1]$, the DT-moduli are not defined if the function is not in $L_p[-1, 1]$.)

Comments

It is also known that for $f \in L_p[-1,1]$, that if $f^{(r)} \in L_p[-1,1]$ for some $r \ge 1$, then

$$E_n(f)_p \le cn^{-r}\omega_k^{\varphi}(f^{(r)}, 1/n)_p, \quad n \ge k+r.$$

• Again, this follows from the hierarchy

$$\omega_k^{\varphi}(f^{(r-1)}, t)_p \le ct \omega_{k-1}^{\varphi}(f^{(r)}, t)_p, \quad r \ge 1.$$

(Note that we have to assume that $f^{(r)} \in L_p[-1, 1]$, the DT-moduli are not defined if the function is not in $L_p[-1, 1]$.)

 We have a sharper estimate, and for B^r_p – a wider class of functions.

Direct and inverse theorems

An immediate consequence is,

Corollary

If $f \in \mathbf{B}_p^r$, $r \in \mathbb{N}_0$, and if for some $k \ge 1$, and $\alpha > r$, $\omega_{k,r}^{\varphi}(f^{(r)}, t)_p = O(t^{\alpha - r})$, then

 $E_n(f)_p \le cn^{-\alpha}, \quad n \ge k+r.$

Direct and inverse theorems

An immediate consequence is,

Corollary

If
$$f \in \mathbf{B}_p^r$$
, $r \in \mathbb{N}_0$, and if for some $k \ge 1$, and $\alpha > r$,
 $\omega_{k,r}^{\varphi}(f^{(r)}, t)_p = O(t^{\alpha - r})$, then

$$E_n(f)_p \le cn^{-\alpha}, \quad n \ge k+r.$$

• We have the following inverse result.

Theorem

Let $r \in \mathbb{N}_0$, $k \ge 1$ and $\alpha > 0$, be such that $r < \alpha < r + k$, and let $f \in L_p[-1, 1]$. If $E_n(f)_p \le Mn^{-\alpha}, \quad n \ge 1,$

then $f \in \mathbf{B}_p^r$ and

$$\omega_{k,r}^{\varphi}(f^{(r)},t)_p \le c(M,\alpha,r)t^{\alpha-r}, \quad t > 0.$$

D. Leviatan (Tel Aviv University)

Weighted D-T moduli revisited and applied

dapest July 1st-5th, 2013Joint work with I

Inverse consequences

Let $P_{k+r} \in \mathcal{P}_{k+r}$, be the best approximation to $f \in L_p[-1,1]$, and set $F := f - P_{k+r}$. Since $\omega_{k,r}^{\varphi}(p_{k+r}^{(r)},t)_p \equiv 0$ for $p_{k+r} \in \mathcal{P}_{k+r}$, it follows that $\omega_{k,r}^{\varphi}(f^{(r)},t)_p = \omega_{k,r}^{\varphi}(F^{(r)},t)_p$, t > 0, that $E_n(F)_p = ||F||_p = E_{k+r}(f)_p$, $n \leq k+r$, and that we have $E_n(f)_p = E_n(F)_p$, for all $n \geq k+r$.

Inverse consequences

Let $P_{k+r} \in \mathcal{P}_{k+r}$, be the best approximation to $f \in L_p[-1,1]$, and set $F := f - P_{k+r}$. Since $\omega_{k,r}^{\varphi}(p_{k+r}^{(r)},t)_p \equiv 0$ for $p_{k+r} \in \mathcal{P}_{k+r}$, it follows that $\omega_{k,r}^{\varphi}(f^{(r)},t)_p = \omega_{k,r}^{\varphi}(F^{(r)},t)_p$, t > 0, that $E_n(F)_p = ||F||_p = E_{k+r}(f)_p$, $n \leq k+r$, and that we have $E_n(f)_p = E_n(F)_p$, for all $n \geq k+r$.

• Therefore, an immediate consequence is,

Corollary

Let $r \in \mathbb{N}_0$, $k \ge 1$ and $\alpha > 0$, be such that $r < \alpha < r + k$, and let $f \in L_p[-1, 1]$. If $E_n(f)_p \le n^{-\alpha}, \quad n \ge k + r,$

then $f \in \mathbf{B}_p^r$ and

$$\omega_{k,r}^{\varphi}(f^{(r)},t)_p \le c(\alpha,k,r)t^{\alpha-r}, \quad t>0.$$

We have the following extension.

Corollary

Let $r \in \mathbb{N}_0$, $k \ge 1$ and $\alpha > 0$, be such that $r < \alpha < r + k$, and let $f \in L_p[-1,1]$. If $E_n(f)_p \le n^{-\alpha}, \quad n \ge N,$ for some $N \ge k + r$, then $f \in \mathbf{B}_p^r$ and $\omega_{k,r}^{\varphi}(f^{(r)},t)_p \le c(\alpha,k,r)t^{\alpha-r} + c(N,k,r)t^k E_{k+r}(f)_p, \quad t > 0.$

Weighted DT moduli

Let $\|\cdot\|_p := \|\cdot\|_{L_p[-1,1]}$, $1 \le p < \infty$, and let w and ϕ be such $w, \phi \sim 1$ in compacta of (-1,1), and $w(x) \sim (1 \mp x)^{\gamma(\pm 1)}$ and $\phi(x) \sim (1 \mp x)^{\beta(\pm 1)}$, as $x \to \pm 1$, where $\gamma(\pm 1), \beta(\pm 1) \ge 0$. For $k \in \mathbb{N}_0$, let

$$\Delta_h^k(f,x) := \begin{cases} \sum_{i=0}^k (-1)^{k-i} \binom{k}{i} f(x+(i-k/2)h), & \text{if } x \pm kh/2 \in [-1,1], \\ 0, & \text{otherwise,} \end{cases}$$

be the kth symmetric difference.

Weighted DT moduli

Let $\|\cdot\|_p := \|\cdot\|_{L_p[-1,1]}$, $1 \le p < \infty$, and let w and ϕ be such $w, \phi \sim 1$ in compacta of (-1,1), and $w(x) \sim (1 \mp x)^{\gamma(\pm 1)}$ and $\phi(x) \sim (1 \mp x)^{\beta(\pm 1)}$, as $x \to \pm 1$, where $\gamma(\pm 1), \beta(\pm 1) \ge 0$. For $k \in \mathbb{N}_0$, let

$$\Delta_h^k(f,x) := \begin{cases} \sum_{i=0}^k (-1)^{k-i} \binom{k}{i} f(x+(i-k/2)h), & \text{if } x \pm kh/2 \in [-1,1], \\ 0, & \text{otherwise,} \end{cases}$$

be the kth symmetric difference.

• Similarly, the kth forward and backward differences, respectively, are

$$\vec{\Delta}_h^k(f,x) := \begin{cases} \sum_{i=0}^k (-1)^i {k \choose i} f(x+ih), & \text{if } [x,x+kh] \subseteq [-1,1], \\ 0, & \text{otherwise,} \end{cases}$$

and

$$\begin{split} \overleftarrow{\Delta}_{h}^{k}(f,x) &:= \begin{cases} \sum_{i=0}^{k} (-1)^{i} {k \choose i} f(x-ih), & \text{if } [x-kh,x] \subseteq [-1,1], \\ 0, & \text{otherwise}, \end{cases} \\ \end{split}$$

Weighted DT moduli - continued

Ditzian and Totik have defined the weighted ϕ -moduli of smoothness, with weight w^p , of a function f, such that $wf \in L_p[-1, 1]$, by

Weighted DT moduli – continued

Ditzian and Totik have defined the weighted $\phi\text{-moduli}$ of smoothness, with weight $w^p,$ of a function f, such that $wf\in L_p[-1,1],$ by

$$\begin{split} \omega_{\phi}^{k}(f,t)_{w,p} &:= \sup_{0 < h \le t} \| w \Delta_{h\phi}^{k} f \|_{L_{p}[-1+t^{*},1-t^{**}]} \\ &+ \sup_{0 < h \le t^{*}} \| w \overrightarrow{\Delta}_{h\phi}^{k} f \|_{L_{p}[-1,-1+12t^{*}]} \\ &+ \sup_{0 < h \le t^{**}} \| w \overleftarrow{\Delta}_{h\phi}^{k} f \|_{L_{p}[1-12t^{**},1]}, \end{split}$$

Weighted DT moduli – continued

Ditzian and Totik have defined the weighted $\phi\text{-moduli}$ of smoothness, with weight $w^p,$ of a function f, such that $wf\in L_p[-1,1],$ by

$$\begin{split} \omega_{\phi}^{k}(f,t)_{w,p} &:= \sup_{0 < h \le t} \| w \Delta_{h\phi}^{k} f \|_{L_{p}[-1+t^{*},1-t^{**}]} \\ &+ \sup_{0 < h \le t^{*}} \| w \overrightarrow{\Delta}_{h\phi}^{k} f \|_{L_{p}[-1,-1+12t^{*}]} \\ &+ \sup_{0 < h \le t^{**}} \| w \overleftarrow{\Delta}_{h\phi}^{k} f \|_{L_{p}[1-12t^{**},1]}, \end{split}$$

where

$$t^* := \begin{cases} A(kt)^{1/(1-\beta(-1))}, & \text{if } \beta(-1) < 1\\ 0, & \text{if } \beta(-1) \ge 1, \end{cases}$$

and, analogously,

$$t^{**} := \begin{cases} A(kt)^{1/(1-\beta(1))}, & \text{if } \beta(1) < 1\\ 0, & \text{if } \beta(1) \ge 1, \end{cases}$$

D. Leviatan (Tel Aviv University)

Weighted D-T moduli revisited and applied

They called the first term "the main part modulus" and denoted it

$$\Omega_{\phi}^{k}(f,t)_{w,p} := \sup_{0 < h \le t} \|w\Delta_{h\phi}^{k}f\|_{L_{p}[t^{*},1-t^{**}]}.$$

21

They called the first term "the main part modulus" and denoted it

$$\Omega_{\phi}^{k}(f,t)_{w,p} := \sup_{0 < h \le t} \|w\Delta_{h\phi}^{k}f\|_{L_{p}[t^{*},1-t^{**}]}.$$

• They proved that the K-functional

$$K_{k,\phi}(f,t^k)_{w,p} := \inf_{g^{(k-1)} \in AC_{(loc)}} \left(\| (f-g)w \|_p + t^k \| w\phi^k g^{(k)} \|_p \right),$$

21

is equivalent to $\omega_{\phi}^k(f,t)_{w,p}$.

Budapest July 1st-5th, 2013 Joint work with I D. Leviatan (Tel Aviv University) Weighted D-T moduli revisited and applied

If we take $\phi(x)=\varphi(x):=\sqrt{1-x^2}$ and $w(x)=\varphi^r(x),$ the weighted DT moduli become,

If we take $\phi(x)=\varphi(x):=\sqrt{1-x^2}$ and $w(x)=\varphi^r(x),$ the weighted DT moduli become,

By the above we conclude that

Theorem

If $f \in \mathbf{B}_p^r$, then

$$\omega_{k,r}^{\varphi}(f^{(r)},t)_p \sim \omega_{\varphi}^k(f^{(r)},t)_{\varphi^r,p}.$$

Comparing definitions

Recall that

$$\omega_{k,r}^{\varphi}(f^{(r)},t)_p := \sup_{0 < h \le t} \|\mathcal{W}_{kh}^r(\cdot)\Delta_{h\varphi(\cdot)}^k(f^{(r)},\cdot)\|_p,$$

where

$$\mathcal{W}_{\delta}(x) := \begin{cases} \left((1 - x - \delta\varphi(x)/2)(1 + x - \delta\varphi(x)/2) \right)^{1/2}, \\ 1 \pm x - \delta\varphi(x)/2 \in [-1, 1], \\ 0, & \text{otherwise.} \end{cases}$$

Comparing definitions

Recall that

$$\omega_{k,r}^{\varphi}(f^{(r)},t)_p := \sup_{0 < h \le t} \|\mathcal{W}_{kh}^r(\cdot)\Delta_{h\varphi(\cdot)}^k(f^{(r)},\cdot)\|_p,$$

where

$$\mathcal{W}_{\delta}(x) := \begin{cases} \left((1 - x - \delta\varphi(x)/2)(1 + x - \delta\varphi(x)/2) \right)^{1/2}, \\ 1 \pm x - \delta\varphi(x)/2 \in [-1, 1], \\ 0, & \text{otherwise.} \end{cases}$$

• And compare with: take $t^* := 2k^2t^2$ and A is an absolute constant (for example, A = 12),

D. Leviatan (Tel Aviv University)

Weighted D-T moduli revisited

Ditzian and Totik were interested in the degree of weighted polynomial approximation (with weight w^p), and proved that for f such that $wf \in L_p[-1,1]$, we have

$$E_n(f)_{w,p} \le c \int_0^{1/n} \left(\Omega_\phi^r(f,\tau)_{w,p}/\tau\right) d\tau, \quad n \ge r.$$

21

Ditzian and Totik were interested in the degree of weighted polynomial approximation (with weight w^p), and proved that for f such that $wf \in L_p[-1, 1]$, we have

$$E_n(f)_{w,p} \le c \int_0^{1/n} (\Omega_\phi^r(f,\tau)_{w,p} / \tau) \, d\tau, \quad n \ge r.$$

Here

$$E_n(f)_{w,p} := \inf_{p_n \in \mathbb{P}_n} \|w(f - p_n)\|_p.$$

Ditzian and Totik were interested in the degree of weighted polynomial approximation (with weight w^p), and proved that for f such that $wf \in L_p[-1, 1]$, we have

$$E_n(f)_{w,p} \le c \int_0^{1/n} (\Omega_\phi^r(f,\tau)_{w,p} / \tau) \, d\tau, \quad n \ge r.$$

Here

$$E_n(f)_{w,p} := \inf_{p_n \in \mathbb{P}_n} \|w(f - p_n)\|_p.$$

• They could not show that

$$E_n(f)_{w,p} \le c\omega_{\phi}^r(f, 1/n)_{w,p}, \quad n \ge r.$$

D. Leviatan (Tel Aviv University) Weighted D-T moduli revisited and applied / 21

Ditzian and Totik were interested in the degree of weighted polynomial approximation (with weight w^p), and proved that for f such that $wf \in L_p[-1, 1]$, we have

$$E_n(f)_{w,p} \le c \int_0^{1/n} (\Omega_\phi^r(f,\tau)_{w,p} / \tau) \, d\tau, \quad n \ge r.$$

Here

$$E_n(f)_{w,p} := \inf_{p_n \in \mathbb{P}_n} \|w(f - p_n)\|_p.$$

They could not show that

$$E_n(f)_{w,p} \le c\omega_{\phi}^r(f, 1/n)_{w,p}, \quad n \ge r.$$

Neither can we!

D. Leviatan (Tel Aviv University) Weighted D-T moduli revisited and applied / 21

Weighted polynomial approximation - continued

But we can show,

Theorem

Let 0 < l < r, and assume that $f^{(l-1)}$ is locally absolutely continuous in (-1,1) and $w\phi^l f^{(l)} \in L_p[-1,1]$. Then

$$E_n(f)_{w,p} \le cn^{-l}\omega_{\phi}^{r-l}(f^{(l)}, 1/n)_{w\phi^l,p}, \quad n \ge r.$$

Weighted polynomial approximation - continued

But we can show,

Theorem

Let 0 < l < r, and assume that $f^{(l-1)}$ is locally absolutely continuous in (-1,1) and $w\phi^l f^{(l)} \in L_p[-1,1]$. Then

$$E_n(f)_{w,p} \le cn^{-l}\omega_{\phi}^{r-l}(f^{(l)}, 1/n)_{w\phi^l, p}, \quad n \ge r.$$

• Hence, in particular, we have

Theorem

Let $0 < l < r < \alpha$, and assume that $f^{(l-1)}$ is locally absolutely continuous in (-1,1) and $w\phi^l f^{(l)} \in L_p[-1,1]$, and $\omega_{\phi}^{r-l}(f^{(l)},t)_{w\phi^l,p} = O(t^{\alpha-l})$, then

$$E_n(f)_{w,p} \le cn^{-\alpha}, \quad n \ge r.$$

D. Leviatan (Tel Aviv University)

Conversely,

Theorem

Let $r \in \mathbb{N}_0$, $k \in \mathbb{N}$ and $r < \alpha < r + k$, and let f be such that $wf \in L_p[-1,1]$. If

(*)
$$E_n(f)_{w,p} \le M n^{-\alpha}, \quad n \ge 1,$$

then $f^{(r-1)}$ is locally absolutely continuous in (-1,1) and

$$(**) \qquad \qquad \omega^k_\phi(f^{(r)},t)_{w\phi^r,p} \leq c(M,l,\alpha)t^{\alpha-r}, \quad t>0.$$

D. Leviatan (Tel Aviv University) Weighted D-T moduli revisited and applied / 21

It follows by Ditzian and Totik that (*) implies,

$$\omega_{\phi}^{r+k}(f,t)_{w,p} \le c(M,\alpha)t^{\alpha}, \quad t > 0.$$

It follows by Ditzian and Totik that (*) implies,

$$\omega_{\phi}^{r+k}(f,t)_{w,p} \le c(M,\alpha)t^{\alpha}, \quad t > 0.$$

• However, we have no way to conclude (**) from this, as we have the hierarchy,

$$\omega_{\phi}^{r+k}(f,t)_{w,p} \le ct^r \omega_{\phi}^k(f^{(r)},t)_{w\phi^r,p}, \quad t>0,$$

21

(in the wrong direction).

Concluding corollary

Corollary

Let $r \in \mathbb{N}_0$, $k \in \mathbb{N}$ and $\alpha > 0$, be such that $r < \alpha < r + k$. Assume w is a weight as above, and let $wf \in L_p[-1,1]$. If

$$E_n(f)_{w,p} \le n^{-\alpha}, \quad n \ge N,$$

for some $N \ge k + r$, then

$$\omega_{\phi}^{k}(f^{(r)},t)_{w\phi^{r},p} \leq c(w,\alpha,k,r)t^{\alpha-r} + c(w,N,k,r)t^{k}E_{k+r}(f)_{w,p}, \quad t > 0.$$

Moreover, if N = k + r, then

$$\omega_{\phi}^{k}(f^{(r)},t)_{w\phi^{r},p} \leq c(w,\alpha,k,r)t^{\alpha-r}, \quad t > 0.$$

THANK YOU

D. Leviatan (Tel Aviv University) Weighted D-T moduli revisited and applied

Budapest July 1st-5th, 2013 Joint work with H