Flat-Containing and Shift-Blocking Sets in \mathbb{F}_{2}^{n}

Vsevolod F. Lev
(Joint work with Aart Blokhuis)

The University of Haifa
Erdős Centennial - Budapest, July 2013

The Kakeya \& Nikodym Problems

The Kakeya Problem in the Vector Space V
How small can a subset $C \subseteq V$ be, given that C contains a line in every direction?
\square

The Kakeya \& Nikodym Problems

The Kakeya Problem in the Vector Space V How small can a subset $C \subseteq V$ be, given that C contains a line in every direction?

The "Dual" Problem (Concept)

How small can a subset $C \subseteq V$ be, given that C contains a line through every point of V ?
(We need $C=V$: for, if $v \notin C$, then C cannot contain a line through v.)

The Kakeya \& Nikodym Problems

The Kakeya Problem in the Vector Space V How small can a subset $C \subseteq V$ be, given that C contains a line in every direction?

The "Dual" Problem (Concept)

How small can a subset $C \subseteq V$ be, given that C contains a line through every point of V ?
(We need $C=V$: for, if $v \notin C$, then C cannot contain a line through v.) The refined dual problem(s):

The Nikodym Problem

How small can a subset
$C \subseteq V$ be, given that C contains a line through every point of C ?

The Kakeya \& Nikodym Problems

The Kakeya Problem in the Vector Space V How small can a subset $C \subseteq V$ be, given that C contains a line in every direction?

The "Dual" Problem (Concept)

How small can a subset $C \subseteq V$ be, given that C contains a line through every point of V ?
(We need $C=V$: for, if $v \notin C$, then C cannot contain a line through v.) The refined dual problem(s):

The Nikodym Problem
How small can a subset $C \subseteq V$ be, given that C contains a line through every point of C ?

We Study

How small can a subset $C \subseteq V$ be, given that through every $v \in V$ there is a line, entirely contained in C with the possible exception of the point v itself?

Complete Sets in \mathbb{F}_{2}^{n}

We focus on the case where $V=\mathbb{F}_{2}^{n}$, while working in the general settings of dimension- d subspaces (rather than just lines).

We want to color some of the points of \mathbb{F}_{2}^{n} say, green, so that through every point $v \in \mathbb{F}_{2}^{n}$ there is a d-flat which is entirely green - save, perhaps, for v itself. What is the smallest number of points to color?

Complete Sets in \mathbb{F}_{2}^{n}

We focus on the case where $V=\mathbb{F}_{2}^{n}$, while working in the general settings of dimension- d subspaces (rather than just lines).

We want to color some of the points of \mathbb{F}_{2}^{n} say, green, so that through every point $v \in \mathbb{F}_{2}^{n}$ there is a d-flat which is entirely green - save, perhaps, for v itself. What is the smallest number of points to color?

We call sets with this property d-complete, and denote by $\gamma_{n}(d)$ the smallest size of a d-complete set in \mathbb{F}_{2}^{n}.

Definition

For $0 \leq d \leq n$, a subset $C \subseteq \mathbb{F}_{2}^{n}$ is d-complete if for every $v \in \mathbb{F}_{2}^{n}$, there is a d-subspace $L_{v} \leq \mathbb{F}_{2}^{n}$ with $v+\left(L_{v} \backslash\{0\}\right) \subseteq C$. We let

$$
\gamma_{n}(d):=\min \left\{|C|: C \subseteq \mathbb{F}_{2}^{n} \text { is } d \text {-complete }\right\} .
$$

Complete Sets in \mathbb{F}_{2}^{n}

We focus on the case where $V=\mathbb{F}_{2}^{n}$, while working in the general settings of dimension- d subspaces (rather than just lines).

We want to color some of the points of \mathbb{F}_{2}^{n} say, green, so that through every point $v \in \mathbb{F}_{2}^{n}$ there is a d-flat which is entirely green - save, perhaps, for v itself. What is the smallest number of points to color?

We call sets with this property d-complete, and denote by $\gamma_{n}(d)$ the smallest size of a d-complete set in \mathbb{F}_{2}^{n}.

Definition

For $0 \leq d \leq n$, a subset $C \subseteq \mathbb{F}_{2}^{n}$ is d-complete if for every $v \in \mathbb{F}_{2}^{n}$, there is a d-subspace $L_{v} \leq \mathbb{F}_{2}^{n}$ with $v+\left(L_{v} \backslash\{0\}\right) \subseteq C$. We let

$$
\gamma_{n}(d):=\min \left\{|C|: C \subseteq \mathbb{F}_{2}^{n} \text { is } d \text {-complete }\right\} .
$$

Since $v+\left(L_{v} \backslash\{0\}\right) \subseteq C$ can be written as $L_{v} \backslash\{0\} \subseteq C+v$, a set $C \subseteq \mathbb{F}_{2}^{n}$ is d-complete iff every translate of C contains all non-zero vectors of some d-subspace.

An Alternative Viewpoint

Clearly, the set $B \subseteq \mathbb{F}_{2}^{n}$ of all "black" points (those not colored green) has the property that every translate $B+v$ avoids with some punctured linear subspace $L_{v} \backslash\{0\}$. We call such sets non-blocking.

Definition

For $0 \leq d \leq n$, a subset $B \subseteq \mathbb{F}_{2}^{n}$ is d-non-blocking if for every $v \in \mathbb{F}_{2}^{n}$, there is a co- d-subspace $L_{v} \leq \mathbb{F}_{2}^{n}$ with $(B+v) \cap\left(L_{v} \backslash\{0\}\right)=\varnothing$.
We let

$$
\beta_{n}(d):=\max \left\{|B|: B \subseteq \mathbb{F}_{2}^{n} \text { is } d \text {-non-blocking }\right\} .
$$

Thus, every $B \subseteq \mathbb{F}_{2}^{n}$ with $|B|>\beta_{n}(d)$ is guaranteed to have a translate

From the definitions, we have

An Alternative Viewpoint

Clearly, the set $B \subseteq \mathbb{F}_{2}^{n}$ of all "black" points (those not colored green) has the property that every translate $B+v$ avoids with some punctured linear subspace $L_{v} \backslash\{0\}$. We call such sets non-blocking.

Definition

For $0 \leq d \leq n$, a subset $B \subseteq \mathbb{F}_{2}^{n}$ is d-non-blocking if for every $v \in \mathbb{F}_{2}^{n}$, there is a co- d-subspace $L_{v} \leq \mathbb{F}_{2}^{n}$ with $(B+v) \cap\left(L_{v} \backslash\{0\}\right)=\varnothing$.
We let

$$
\beta_{n}(d):=\max \left\{|B|: B \subseteq \mathbb{F}_{2}^{n} \text { is } d \text {-non-blocking }\right\} .
$$

Thus, every $B \subseteq \mathbb{F}_{2}^{n}$ with $|B|>\beta_{n}(d)$ is guaranteed to have a translate

From the definitions, we have

An Alternative Viewpoint

Clearly, the set $B \subseteq \mathbb{F}_{2}^{n}$ of all "black" points (those not colored green) has the property that every translate $B+v$ avoids with some punctured linear subspace $L_{v} \backslash\{0\}$. We call such sets non-blocking.

Definition

For $0 \leq d \leq n$, a subset $B \subseteq \mathbb{F}_{2}^{n}$ is d-non-blocking if for every $v \in \mathbb{F}_{2}^{n}$, there is a co- d-subspace $L_{v} \leq \mathbb{F}_{2}^{n}$ with $(B+v) \cap\left(L_{v} \backslash\{0\}\right)=\varnothing$.
We let

$$
\beta_{n}(d):=\max \left\{|B|: B \subseteq \mathbb{F}_{2}^{n} \text { is } d \text {-non-blocking }\right\} .
$$

Thus, every $B \subseteq \mathbb{F}_{2}^{n}$ with $|B|>\beta_{n}(d)$ is guaranteed to have a translate blocking all co- d-subspaces of \mathbb{F}_{2}^{n}.
From the definitions, we have

$$
\beta_{n}(d)=2^{n}-\gamma_{n}(n-d) ;
$$

hence, all results can be equivalently stated in terms of either γ_{n} or β_{n}.

Basic Observations

$$
\begin{aligned}
& \gamma_{n}(d):=\min \left\{|C|: C \subseteq \mathbb{F}_{2}^{n} \text { is } d \text {-complete }\right\} \\
& \beta_{n}(d):=\max \left\{|B|: B \subseteq \mathbb{F}_{2}^{n} \text { is } d \text {-non-blocking }\right\}
\end{aligned}
$$

$$
\begin{gathered}
\beta_{n}(d)=2^{n}-\gamma_{n}(n-d) \\
0=\gamma_{n}(0)<\gamma_{n}(1) \leq \cdots \leq \gamma_{n}(n-1)<\gamma_{n}(n)=2^{n}, \\
0=\beta_{n}(0)<\beta_{n}(1) \leq \cdots \leq \beta_{n}(n-1)<\beta_{n}(n)=2^{n} .
\end{gathered}
$$

$\gamma_{n}(0)=0$ because $C=\varnothing$ is 0 -complete: every translate of \varnothing contains the punctured 0-dimensional subspace. $\beta_{n}(0)=0$ because no $B \neq \varnothing$ is 0 -non-blocking: there exists $v \in \mathbb{F}_{2}^{r}$ such that $B+v$ is not disjoint with the punctured
n-dimensional subspace.
$\gamma_{n}(d+1) \geq \gamma_{n}(d)$ because containing a $(d+1)$-subspace
requires a larger set C than containing a d-subspace.

Basic Observations

$$
\begin{aligned}
& \gamma_{n}(d):=\min \left\{|C|: C \subseteq \mathbb{F}_{2}^{n} \text { is } d \text {-complete }\right\} \\
& \beta_{n}(d):=\max \left\{|B|: B \subseteq \mathbb{F}_{2}^{n} \text { is } d \text {-non-blocking }\right\}
\end{aligned}
$$

$$
\begin{gathered}
\beta_{n}(d)=2^{n}-\gamma_{n}(n-d) \\
0=\gamma_{n}(0)<\gamma_{n}(1) \leq \cdots \leq \gamma_{n}(n-1)<\gamma_{n}(n)=2^{n}, \\
0=\beta_{n}(0)<\beta_{n}(1) \leq \cdots \leq \beta_{n}(n-1)<\beta_{n}(n)=2^{n} .
\end{gathered}
$$

- $\gamma_{n}(0)=0$ because $C=\varnothing$ is 0 -complete: every translate of \varnothing contains the punctured 0 -dimensional subspace.

$$
\text { Vsevolod F. Lev (The University of Haifa) Flat-Containing \& Shift-Blocking Sets in } \mathbb{F}_{2}^{n} \quad \text { Erdős Centennial - July } 2013 \quad 4 \text { / } 15
$$

Basic Observations

$$
\begin{aligned}
& \gamma_{n}(d):=\min \left\{|C|: C \subseteq \mathbb{F}_{2}^{n} \text { is } d \text {-complete }\right\} \\
& \beta_{n}(d):=\max \left\{|B|: B \subseteq \mathbb{F}_{2}^{n} \text { is } d \text {-non-blocking }\right\}
\end{aligned}
$$

$$
\begin{gathered}
\beta_{n}(d)=2^{n}-\gamma_{n}(n-d) \\
0=\gamma_{n}(0)<\gamma_{n}(1) \leq \cdots \leq \gamma_{n}(n-1)<\gamma_{n}(n)=2^{n}, \\
0=\beta_{n}(0)<\beta_{n}(1) \leq \cdots \leq \beta_{n}(n-1)<\beta_{n}(n)=2^{n} .
\end{gathered}
$$

- $\gamma_{n}(0)=0$ because $C=\varnothing$ is 0 -complete: every translate of \varnothing contains the punctured 0 -dimensional subspace.
- $\beta_{n}(0)=0$ because no $B \neq \varnothing$ is 0 -non-blocking: there exists $v \in \mathbb{F}_{2}^{r}$ such that $B+v$ is not disjoint with the punctured n-dimensional subspace.
requires a larger set C than containing a d-subspace.

Basic Observations

$$
\begin{aligned}
& \gamma_{n}(d):=\min \left\{|C|: C \subseteq \mathbb{F}_{2}^{n} \text { is } d \text {-complete }\right\} \\
& \beta_{n}(d):=\max \left\{|B|: B \subseteq \mathbb{F}_{2}^{n} \text { is } d \text {-non-blocking }\right\}
\end{aligned}
$$

$$
\begin{gathered}
\beta_{n}(d)=2^{n}-\gamma_{n}(n-d) \\
0=\gamma_{n}(0)<\gamma_{n}(1) \leq \cdots \leq \gamma_{n}(n-1)<\gamma_{n}(n)=2^{n}, \\
0=\beta_{n}(0)<\beta_{n}(1) \leq \cdots \leq \beta_{n}(n-1)<\beta_{n}(n)=2^{n} .
\end{gathered}
$$

- $\gamma_{n}(0)=0$ because $C=\varnothing$ is 0 -complete: every translate of \varnothing contains the punctured 0 -dimensional subspace.
- $\beta_{n}(0)=0$ because no $B \neq \varnothing$ is 0 -non-blocking: there exists $v \in \mathbb{F}_{2}^{r}$ such that $B+v$ is not disjoint with the punctured n-dimensional subspace.
- $\gamma_{n}(d+1) \geq \gamma_{n}(d)$ because containing a ($d+1$)-subspace requires a larger set C than containing a d-subspace.

More Basics: Lines \& Hyperplanes

Claim
We have $\gamma_{n}(1)=\beta_{n}(1)=2$. Thus, $\gamma_{n}(n-1)=\beta_{n}(n-1)=2^{n}-2$.
$\gamma_{n}(1)=2$: a singleton set does not contain a punctured 1-flat through its unique element; hence, is not 1-complete. For any two-element set $C \subseteq \mathbb{F}_{2}^{n}$ and any $v \in \mathbb{F}_{2}^{n}$, there is a punctured 1 -flat through v, contained in C; hence, any 2 -element set is 1 -complete.

More Basics: Lines \& Hyperplanes

Claim

We have $\gamma_{n}(1)=\beta_{n}(1)=2$. Thus, $\gamma_{n}(n-1)=\beta_{n}(n-1)=2^{n}-2$.
$\gamma_{n}(1)=2$: a singleton set does not contain a punctured 1-flat through its unique element; hence, is not 1-complete. For any two-element set $C \subseteq \mathbb{F}_{2}^{n}$ and any $v \in \mathbb{F}_{2}^{n}$, there is a punctured 1 -flat through v, contained in C; hence, any 2 -element set is 1 -complete.
$\beta_{n}(1)=2$: if $B=\left\{b_{1}, b_{2}, b_{3}\right\} \subseteq \mathbb{F}_{2}^{n}$, then the translate
$B+\left(b_{1}+b_{2}+b_{3}\right)=\left\{b_{1}+b_{2}, b_{2}+b_{3}, b_{3}+b_{1}\right\}$ blocks every linear co-1-subspace (hyperplane): for, its three elements add up to 0 , so cannot be all contained in the complement of a hyperplane. Hence, $\beta_{n}(1)<3$.
On the other hand, for any two-element subset $B \subseteq \mathbb{F}_{2}^{n}$ there is a co- 1 -subspace, disjoint with $B \backslash\{0\}$; hence, every two-element set is 1 -non-blocking and $\beta_{n}(1) \geq 2$.

Yet More Basics: 2-flats \& co-2-flats

Theorem 1

$\gamma_{n}(2)$ is the smallest cardinality of a subset $C \subseteq \mathbb{F}_{2}^{n}$ with the property that every element of \mathbb{F}_{2}^{n} is a sum of three pairwise distinct elements of C. Consequently,

$$
\gamma_{n}(2)=\Theta\left(2^{n / 3}\right) .
$$

Proof.

A set $C \subseteq \mathbb{F}_{2}^{n}$ is 2-complete whenever for every $v \in \mathbb{F}_{2}^{n}$, there exist $c_{1}, c_{2}, c_{3} \in C$ such that $\left\{v, c_{1}, c_{2}, c_{3}\right\}$ is a 2 -flat. However, this is equivalent to $v=c_{1}+c_{2}+c_{3}$ and c_{1}, c_{2}, c_{3} being pairwise distinct.

For $\beta_{n}(2)$, we have the estimates

[^0]
Yet More Basics: 2-flats \& co-2-flats

Theorem 1

$\gamma_{n}(2)$ is the smallest cardinality of a subset $C \subseteq \mathbb{F}_{2}^{n}$ with the property that every element of \mathbb{F}_{2}^{n} is a sum of three pairwise distinct elements of C. Consequently,

$$
\gamma_{n}(2)=\Theta\left(2^{n / 3}\right) .
$$

Proof.

A set $C \subseteq \mathbb{F}_{2}^{n}$ is 2-complete whenever for every $v \in \mathbb{F}_{2}^{n}$, there exist $c_{1}, c_{2}, c_{3} \in C$ such that $\left\{v, c_{1}, c_{2}, c_{3}\right\}$ is a 2 -flat. However, this is equivalent to $v=c_{1}+c_{2}+c_{3}$ and c_{1}, c_{2}, c_{3} being pairwise distinct.

For $\beta_{n}(2)$, we have the estimates

$$
\frac{3}{8}\left(n^{2}-6 n+9\right) \leq \beta_{n}(2) \leq \frac{1}{2}\left(n^{2}+n-6\right)
$$

(to be discussed later).

Submultiplicativity

Lemma

For any $n_{1}, n_{2} \geq d \geq 0$ we have

$$
\gamma_{n_{1}+n_{2}}(d) \leq \gamma_{n_{1}}(d) \gamma_{n_{2}}(d) .
$$

Sketch of the proof.

Let $n:=n_{1}+n_{2}$, write $\mathbb{F}_{2}^{n}=V_{1} \oplus V_{2}$ where $\operatorname{dim} V_{i}=n_{i}$, and find $C_{i} \subseteq V_{i}$ so that $\left|C_{i}\right|=\gamma_{i}(d)$ and C_{i} is d-complete in V_{i}. Then $C_{1}+C_{2}$ is d-complete in \mathbb{F}_{2}^{n}, whence

$$
\gamma_{n_{1}+n_{2}}(d) \leq\left|C_{1}+C_{2}\right|=\left|C_{1}\right|\left|C_{2}\right|=\gamma_{n_{1}}(d) \gamma_{n_{2}}(d) .
$$

Submultiplicativity

Lemma

For any $n_{1}, n_{2} \geq d \geq 0$ we have

$$
\gamma_{n_{1}+n_{2}}(d) \leq \gamma_{n_{1}}(d) \gamma_{n_{2}}(d)
$$

Sketch of the proof.

Let $n:=n_{1}+n_{2}$, write $\mathbb{F}_{2}^{n}=V_{1} \oplus V_{2}$ where $\operatorname{dim} V_{i}=n_{i}$, and find $C_{i} \subseteq V_{i}$ so that $\left|C_{i}\right|=\gamma_{i}(d)$ and C_{i} is d-complete in V_{i}. Then $C_{1}+C_{2}$ is d-complete in \mathbb{F}_{2}^{n}, whence

$$
\gamma_{n_{1}+n_{2}}(d) \leq\left|C_{1}+C_{2}\right|=\left|C_{1}\right|\left|C_{2}\right|=\gamma_{n_{1}}(d) \gamma_{n_{2}}(d)
$$

As a result, to any fixed $d \geq 1$ there corresponds some $\varkappa_{d} \in[0,1]$ such that $\gamma_{n}(d)=2^{\left(\varkappa_{d}+o(1)\right) n}$ as $n \rightarrow \infty$. We know that

- $x_{1}=0, \varkappa_{2}=1 / 3$;
- $3 / 8 \leq \varkappa_{3} \leq 3 / 7$;
- $\varkappa_{d}<1 / 2$ for all d.

Lower Bounds for γ_{n}, Upper Bounds for β_{n} (Non-Existence Results)
From the discussion above, $\gamma_{n}(3) \geq \gamma_{n}(2)=\Theta\left(2^{n / 3}\right)$.
Theorem 2
We have $\gamma_{n}(3)>c \cdot 2^{3 n / 8}$ with $c \approx 3.36$.
Consequently, $\gamma_{n}(d)>c \cdot 2^{3 n / 8}$ (and so $\varkappa_{d} \geq 3 / 8$) for $d \geq 3$.
For flats of dimension $d \gtrsim 0.073 n$, we can give a better bound.

We have

Equivalently,

Thus, $\beta_{n}(2) \leq 1+n+\binom{n}{2}$. (Further minor improvements are available.)

Lower Bounds for γ_{n}, Upper Bounds for β_{n}

 (Non-Existence Results)From the discussion above, $\gamma_{n}(3) \geq \gamma_{n}(2)=\Theta\left(2^{n / 3}\right)$.

Theorem 2

We have $\gamma_{n}(3)>c \cdot 2^{3 n / 8}$ with $c \approx 3.36$.
Consequently, $\gamma_{n}(d)>c \cdot 2^{3 n / 8}$ (and so $\varkappa_{d} \geq 3 / 8$) for $d \geq 3$.
For flats of dimension $d \gtrsim 0.073 n$, we can give a better bound.
Theorem 3
We have

$$
\gamma_{n}(d) \geq \sum_{j=0}^{d-1}\binom{n}{j} .
$$

Equivalently,

$$
\beta_{n}(d) \leq \sum_{j=0}^{d}\binom{n}{j} .
$$

Thus, $\beta_{n}(2) \leq 1+n+\binom{n}{2}$. (Further minor improvements are available.)

Upper Bounds for γ_{n}, Lower Bounds for β_{n}

Flats of Low Dimension

Theorem 4

We have

$$
\gamma_{n}(d)<K_{d} \cdot 2^{\left(1 / 2-\varepsilon_{d}\right) n} .
$$

where $\varepsilon_{d}=1 /\left(2\left(2^{d}-1\right)\right)$ and $K_{d} \approx 2^{2^{d}}$.
(As a particular case, $\gamma_{n}(3)=O\left(2^{3 n / 7}\right)$; that is, $\varkappa_{3} \leq 3 / 7$.)
The double-exponential dependence of K_{d} on d makes Theorem 3 trivial for $d \gtrsim \log n$. A non-trivial estimate in this regime:

Thenrem 5
We have

Upper Bounds for γ_{n}, Lower Bounds for β_{n}

Flats of Low Dimension
Theorem 4
We have

$$
\gamma_{n}(d)<K_{d} \cdot 2^{\left(1 / 2-\varepsilon_{d}\right) n}
$$

where $\varepsilon_{d}=1 /\left(2\left(2^{d}-1\right)\right)$ and $K_{d} \approx 2^{2^{d}}$.
(As a particular case, $\gamma_{n}(3)=O\left(2^{3 n / 7}\right)$; that is, $\varkappa_{3} \leq 3 / 7$.)
The double-exponential dependence of K_{d} on d makes Theorem 3 trivial for $d \gtrsim \log n$. A non-trivial estimate in this regime:

Theorem 5
We have

$$
\gamma_{n}(d)<2^{0.5 n+K(n d / \log n)^{2 / 3}}
$$

(with K absolute). Hence, if $d=o(\sqrt{n} \log n)$, then $\gamma_{n}(d)<2^{(0.5+o(1)) n}$.

Upper Bounds for γ_{n}, Lower Bounds for β_{n}

Flats of Low Co-Dimension

Theorems 3 and 4 are of primary interest for flats of low dimension d. For flats of low co-dimension we have the following estimates.

Theorem 6
We have

$$
\beta_{n}(d) \geq\binom{ 2 d}{d}\left\lfloor\frac{n}{2 d}\right\rfloor^{d}, 2 \leq d \leq n / 2
$$

(In particular, $\beta_{n}(2) \geq \frac{3}{8}\left(n^{2}-6 n+9\right)$.)

Suppose that $0 \leq d_{1} \leq n_{1} \leq d_{1}+d$, integers with $n_{1}+\cdots+n_{k} \leq n$ and d_{1}

Upper Bounds for γ_{n}, Lower Bounds for β_{n}

Flats of Low Co-Dimension

Theorems 3 and 4 are of primary interest for flats of low dimension d. For flats of low co-dimension we have the following estimates.

Theorem 6
We have

$$
\beta_{n}(d) \geq\binom{ 2 d}{d}\left\lfloor\frac{n}{2 d}\right\rfloor^{d}, 2 \leq d \leq n / 2 .
$$

(In particular, $\beta_{n}(2) \geq \frac{3}{8}\left(n^{2}-6 n+9\right)$.)

Theorem 7

Suppose that $0 \leq d_{1} \leq n_{1} \leq d_{1}+d, \ldots, 0 \leq d_{k} \leq n_{k} \leq d_{k}+d$ are integers with $n_{1}+\cdots+n_{k} \leq n$ and $d_{1}+\cdots+d_{k} \leq d$. Then

$$
\beta_{n}(d) \geq\binom{ n_{1}}{d_{1}} \cdots\binom{n_{k}}{d_{k}}
$$

[^1]
Upper Bounds for γ_{n}, Lower Bounds for β_{n}

Flats of Low Co-Dimension

Theorems 3 and 4 are of primary interest for flats of low dimension d. For flats of low co-dimension we have the following estimates.

Theorem 6

We have

$$
\beta_{n}(d) \geq\binom{ 2 d}{d}\left\lfloor\frac{n}{2 d}\right\rfloor^{d}, 2 \leq d \leq n / 2 .
$$

(In particular, $\beta_{n}(2) \geq \frac{3}{8}\left(n^{2}-6 n+9\right)$.)

Theorem 7

Suppose that $0 \leq d_{1} \leq n_{1} \leq d_{1}+d, \ldots, 0 \leq d_{k} \leq n_{k} \leq d_{k}+d$ are integers with $n_{1}+\cdots+n_{k} \leq n$ and $d_{1}+\cdots+d_{k} \leq d$. Then

$$
\beta_{n}(d) \geq\binom{ n_{1}}{d_{1}} \cdots\binom{n_{k}}{d_{k}}
$$

As a corollary, if $d / \sqrt{n} \rightarrow \infty$, then $\beta_{n}(d)>\binom{n}{d}^{1+o(1)}$.

```
- Theorem 3
```


Proof of Theorem 3

To prove: $\beta_{n}(d) \leq \sum_{j=0}^{d}\binom{n}{j}$
Notation: $\mathcal{L}_{n, d}:=\left\{P \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]: P\right.$ is multilinear, $\left.\operatorname{deg} P \leq d\right\}$

Fix a d-non-blocking set $B \subseteq \mathbb{F}_{2}^{n}$ with $|B|=\beta_{n}(d)$. To every $b \in B$ there corresponds a co- d-flat $F_{b} \subseteq \mathbb{F}_{2}^{n}$ with $F_{b} \cap B=\{b\}$. For every such flat, find a polynomial $P_{b} \in \mathcal{L}_{n, d}$ with $P_{b}=1_{F_{b}}$. These $|B|$ polynomials are linearly independent: for, if

then

$$
\sum_{b \in B} \varepsilon_{b} 1_{F_{b}}(z)=0, z \in \mathbb{F}_{2}^{n}
$$

and choosing $z \in B$ yields $\varepsilon_{z}=0$ (as $z \notin F_{b}$ for $b \neq z$). It follows that

$$
|B| \leq \operatorname{dim} \mathcal{L}_{n, d}=\sum_{j=0}^{d}\binom{n}{j}
$$

Proof of Theorem 3

To prove: $\beta_{n}(d) \leq \sum_{j=0}^{d}\binom{n}{j}$
Notation: $\mathcal{L}_{n, d}:=\left\{P \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]: P\right.$ is multilinear, $\left.\operatorname{deg} P \leq d\right\}$

Fix a d-non-blocking set $B \subseteq \mathbb{F}_{2}^{n}$ with $|B|=\beta_{n}(d)$. To every $b \in B$ there corresponds a co- d-flat $F_{b} \subseteq \mathbb{F}_{2}^{n}$ with $F_{b} \cap B=\{b\}$. For every such flat, find a polynomial $P_{b} \in \mathcal{L}_{n, d}$ with $P_{b}=1_{F_{b}}$. These $|B|$ polynomials are linearly independent: for, if

$$
\sum_{b \in B} \varepsilon_{b} P_{b}=0
$$

then

$$
\sum_{b \in B} \varepsilon_{b} 1_{F_{b}}(z)=0, z \in \mathbb{F}_{2}^{n}
$$

and choosing $z \in B$ yields $\varepsilon_{z}=0$ (as $z \notin F_{b}$ for $b \neq z$). It follows that

$$
|B| \leq \operatorname{dim} \mathcal{L}_{n, d}=\sum_{j=0}^{d}\binom{n}{j}
$$

Proof of Theorems 4 and 5

Wanted: a d-complete set $C \subseteq \mathbb{F}_{2}^{n}$ of size $|C| \lesssim 2^{(0.5+o(1)) n}$

Fix a linear code $S<\mathbb{F}_{2}^{m}$ of dimension d so that its length m is small (as a function of d), while its minimum distance μ is $(0.5+o(1)) m$. Also, fix a decomposition $\mathbb{F}_{2}^{n}=\bigoplus_{i=1}^{m} V_{i}$ with $\operatorname{dim} V_{i}=n / m$, and set

$$
C:=\bigcup_{\left(s_{1}, \ldots, s_{m}\right) \in S \backslash\{0\}} \bigoplus_{i: s_{i}=0} V_{i}
$$

thus, $|C| \leq(|S|-1) 2^{(m-\mu)(n / m)} \lesssim 2^{(0.5+o(1)) n}$. Why is $C d$-complete?

Proof of Theorems 4 and 5

Wanted: a d-complete set $C \subseteq \mathbb{F}_{2}^{n}$ of size $|C| \lesssim 2^{(0.5+o(1)) n}$

Fix a linear code $S<\mathbb{F}_{2}^{m}$ of dimension d so that its length m is small (as a function of d), while its minimum distance μ is $(0.5+o(1)) m$. Also, fix a decomposition $\mathbb{F}_{2}^{n}=\bigoplus_{i=1}^{m} V_{i}$ with $\operatorname{dim} V_{i}=n / m$, and set

$$
C:=\bigcup_{\left(s_{1}, \ldots, s_{m}\right) \in S \backslash\{0\}} \bigoplus_{i: s_{i}=0} V_{i}
$$

thus, $|C| \leq(|S|-1) 2^{(m-\mu)(n / m)} \lesssim 2^{(0.5+o(1)) n}$. Why is $C d$-complete?
Given a vector $v=v_{1}+\cdots+v_{m} \in \mathbb{F}_{2}^{n}$ (with $v_{i} \in V_{i}$), consider the linear subspace

$$
L_{v}:=\left\{s_{1} v_{1}+\cdots+s_{m} v_{m}:\left(s_{1}, \ldots, s_{m}\right) \in S\right\}
$$

We have $v+\left(L_{v} \backslash\{0\}\right) \subseteq C$. Hence, if $\operatorname{dim} L_{v}=d$, then C contains a punctured d-flat through v, and we are done. But if $\operatorname{dim} L_{v}<d$, then there exists $\left(s_{1}, \ldots, s_{m}\right) \in S \backslash\{0\}$ with $s_{1} v_{1}+\cdots+s_{m} v_{m}=0$. In this case $v \in \bigoplus_{i: s_{i}=0} V_{i}$, the right-hand side being a subspace contained in C, and "normally" of dimension at least d.

Proof of Theorem 6

Wanted: a d-non-blocking set $B \subseteq \mathbb{F}_{2}^{n}$ of size $|B| \geq\binom{ 2 d}{d}\left\lfloor\frac{n}{2 d}\right\rfloor^{d}$
Write $\mathbb{F}_{2}^{n}=V_{1} \oplus \cdots \oplus V_{2 d}$ with dim $V_{i}=\frac{n}{2 d}$, fix bases $\mathfrak{e}_{i} \subseteq V_{i}$, and let

$$
B:=\left\{e_{i_{1}}+\cdots+e_{i_{d}}: 1 \leq i_{1}<\cdots<i_{d} \leq 2 d, \quad e_{i_{j}} \in \mathfrak{e}_{i_{j}}\right\} ;
$$

thus, $|B|=\binom{2 d}{d}\left(\frac{n}{2 d}\right)^{d}$. Why is B a d-non-blocking set?

Proof of Theorem 6

Wanted: a d-non-blocking set $B \subseteq \mathbb{F}_{2}^{n}$ of size $|B| \geq\binom{ 2 d}{d}\left\lfloor\frac{n}{2 d}\right\rfloor^{d}$
Write $\mathbb{F}_{2}^{n}=V_{1} \oplus \cdots \oplus V_{2 d}$ with dim $V_{i}=\frac{n}{2 d}$, fix bases $\mathfrak{e}_{i} \subseteq V_{i}$, and let

$$
B:=\left\{e_{i_{1}}+\cdots+e_{i_{d}}: 1 \leq i_{1}<\cdots<i_{d} \leq 2 d, \quad e_{i_{j}} \in \mathfrak{e}_{i_{j}}\right\} ;
$$

thus, $|B|=\binom{2 d}{d}\left(\frac{n}{2 d}\right)^{d}$. Why is B a d-non-blocking set?
Consider $v=v_{1}+\cdots+v_{2 d} \in \mathbb{F}_{2}^{n}\left(v_{i} \in V_{i}\right)$:
\square

In any case, we have codim $F_{v} \leq d, v \in F_{v}$, and $\left(F_{v} \backslash\{v\}\right) \cap B=\varnothing$.

Proof of Theorem 6

Wanted: a d-non-blocking set $B \subseteq \mathbb{F}_{2}^{n}$ of size $|B| \geq\binom{ 2 d}{d}\left\lfloor\frac{n}{2 d}\right\rfloor^{d}$
Write $\mathbb{F}_{2}^{n}=V_{1} \oplus \cdots \oplus V_{2 d}$ with dim $V_{i}=\frac{n}{2 d}$, fix bases $\mathfrak{e}_{i} \subseteq V_{i}$, and let

$$
B:=\left\{e_{i_{1}}+\cdots+e_{i_{d}}: 1 \leq i_{1}<\cdots<i_{d} \leq 2 d, e_{i_{j}} \in \mathfrak{e}_{i_{j}}\right\} ;
$$

thus, $|B|=\binom{2 d}{d}\left(\frac{n}{2 d}\right)^{d}$. Why is B a d-non-blocking set?
Consider $v=v_{1}+\cdots+v_{2 d} \in \mathbb{F}_{2}^{n}\left(v_{i} \in V_{i}\right)$:

- If $v \in B$, then we let $F_{v}:=\left\{u \in \mathbb{F}_{2}^{n}: \operatorname{supp} v \subseteq \operatorname{supp} u\right\}$.

In any case, we have codim $F_{v} \leq d, v \in F_{v}$, and $\left(F_{v} \backslash\{v\}\right) \cap B=\varnothing$.

Proof of Theorem 6

Wanted: a d-non-blocking set $B \subseteq \mathbb{F}_{2}^{n}$ of size $|B| \geq\binom{ 2 d}{d}\left\lfloor\frac{n}{2 d}\right\rfloor^{d}$
Write $\mathbb{F}_{2}^{n}=V_{1} \oplus \cdots \oplus V_{2 d}$ with $\operatorname{dim} V_{i}=\frac{n}{2 d}$, fix bases $\mathfrak{e}_{i} \subseteq V_{i}$, and let

$$
B:=\left\{e_{i_{1}}+\cdots+e_{i_{d}}: 1 \leq i_{1}<\cdots<i_{d} \leq 2 d, e_{i_{j}} \in \mathfrak{e}_{i_{j}}\right\} ;
$$

thus, $|B|=\binom{2 d}{d}\left(\frac{n}{2 d}\right)^{d}$. Why is B a d-non-blocking set?
Consider $v=v_{1}+\cdots+v_{2 d} \in \mathbb{F}_{2}^{n}\left(v_{i} \in V_{i}\right)$:

- If $v \in B$, then we let $F_{v}:=\left\{u \in \mathbb{F}_{2}^{n}: \operatorname{supp} v \subseteq \operatorname{supp} u\right\}$.
- if $\left|\operatorname{supp} v_{i}\right| \geq 2$ for some $i \in[1,2 d]$, then we find $E \subseteq \operatorname{supp} v_{i}$ with $|E|=2$, and let $F_{v}:=\left\{u \in \mathbb{F}_{2}^{n}: E \subseteq \operatorname{supp} u\right\}$.

In any case, we have codim $F_{v} \leq d, v \in F_{v}$, and $\left(F_{v} \backslash\{v\}\right) \cap B=\varnothing$.

Proof of Theorem 6

Wanted: a d-non-blocking set $B \subseteq \mathbb{F}_{2}^{n}$ of size $|B| \geq\binom{ 2 d}{d}\left\lfloor\frac{n}{2 d}\right\rfloor^{d}$
Write $\mathbb{F}_{2}^{n}=V_{1} \oplus \cdots \oplus V_{2 d}$ with $\operatorname{dim} V_{i}=\frac{n}{2 d}$, fix bases $\mathfrak{e}_{i} \subseteq V_{i}$, and let

$$
B:=\left\{e_{i_{1}}+\cdots+e_{i_{d}}: 1 \leq i_{1}<\cdots<i_{d} \leq 2 d, e_{i_{j}} \in \mathfrak{e}_{i_{j}}\right\} ;
$$

thus, $|B|=\binom{2 d}{d}\left(\frac{n}{2 d}\right)^{d}$. Why is B a d-non-blocking set?
Consider $v=v_{1}+\cdots+v_{2 d} \in \mathbb{F}_{2}^{n}\left(v_{i} \in V_{i}\right)$:

- If $v \in B$, then we let $F_{v}:=\left\{u \in \mathbb{F}_{2}^{n}: \operatorname{supp} v \subseteq \operatorname{supp} u\right\}$.
- if $\left|\operatorname{supp} v_{i}\right| \geq 2$ for some $i \in[1,2 d]$, then we find $E \subseteq \operatorname{supp} v_{i}$ with $|E|=2$, and let $F_{v}:=\left\{u \in \mathbb{F}_{2}^{n}: E \subseteq \operatorname{supp} u\right\}$.
- if $v \notin B$ and $\left|\operatorname{supp} v_{i}\right| \leq 1$ for each $i \in[1,2 d]$, then there exists $I \in[1,2 d]$ with $|I|=d+1$ and $\left|\operatorname{supp} v_{i}\right|$ being equal to each other for all $i \in I$. In this case, we let F_{v} be the subspace of all those $u \in \mathbb{F}_{2}^{n}$ with $\left|\operatorname{supp} v_{i}\right|(i \in I)$ all of the same parity. In any case, we have codim $F_{v} \leq d, v \in F_{v}$, and $\left(F_{v} \backslash\{v\}\right) \cap B=\varnothing$.

Summary

A subset $C \subseteq V$ is d-complete if through every $v \in V$ passes a d-flat contained in $C \cup\{v\}$.

A subset $B \subseteq V$ is d-non-blocking if through every $v \in V$ passes is a co- d-flat disjoint with $B \backslash\{v\}$.

Letting

$$
\begin{aligned}
& \gamma_{n}(d):=\min \left\{|C|: C \subseteq \mathbb{F}_{2}^{n} \text { is } d \text {-complete }\right\} \\
& \beta_{n}(d):=\max \left\{|B|: B \subseteq \mathbb{F}_{2}^{n} \text { is } d \text {-non-blocking }\right\}
\end{aligned}
$$

we have

$$
\begin{gathered}
\beta_{n}(d)=2^{n}-\gamma_{n}(n-d) \\
0=\gamma_{n}(0)<\gamma_{n}(1) \leq \cdots \leq \gamma_{n}(n-1)<\gamma_{n}(n)=2^{n} \\
0=\beta_{n}(0)<\beta_{n}(1) \leq \cdots \leq \beta_{n}(n-1)<\beta_{n}(n)=2^{n}
\end{gathered}
$$

A number of upper and lower bounds for these quantities are obtained.

The First Asymptotically Open Case

What is the smallest possible size of a 3 -complete set?
We know that $\gamma_{n}(3)=2^{\left(\varkappa_{3}+o(1)\right) n}$ with $3 / 8 \leq \varkappa_{3} \leq 3 / 7$.
What is the exact value of x_{3} ?

Stated notation-free way:

How large must a subset of \mathbb{F}_{2}^{n} be given that it contains a punctured 3 -flat through every point of \mathbb{F}_{2}^{n} ?

Thank you!

Lower Bounds for γ_{n}, Upper Bounds for β_{n}

 (Non-Existence Results)From the discussion above, $\gamma_{n}(3) \geq \gamma_{n}(2)=\Theta\left(2^{n / 3}\right)$.

We have $\gamma_{n}(3)>c \cdot 2^{3 n / 8}$ with $c \approx 3.36$.

For flats of dimension $d \gtrsim 0.073 n$, we can give a better bound.
Theorem 3
We have

$$
\gamma_{n}(d) \geq \sum_{j=0}^{d-1}\binom{n}{j} .
$$

Equivalently,

$$
\beta_{n}(d) \leq \sum_{j=0}^{d}\binom{n}{j} .
$$

Thus, $\beta_{n}(2) \leq 1+n+\binom{n}{2}$. (Further minor improvements are available.)

Upper Bounds for γ_{n}, Lower Bounds for β_{n}

Flats of Low Dimension
Theorem 4
We have

$$
\gamma_{n}(d)<K_{d} \cdot 2^{\left(1 / 2-\varepsilon_{d}\right) n}
$$

where $\varepsilon_{d}=1 /\left(2\left(2^{d}-1\right)\right)$ and $K_{d} \approx 2^{2^{d}}$.
(As a particular case, $\gamma_{n}(3)=O\left(2^{3 n / 7}\right)$; that is, $\varkappa_{3} \leq 3 / 7$.)
The double-exponential dependence of K_{d} on d makes Theorem 3 trivial for $d \gtrsim \log n$. A non-trivial estimate in this regime:

Theorem 5
We have

$$
\gamma_{n}(d)<2^{0.5 n+K(n d / \log n)^{2 / 3}}
$$

(with K absolute). Hence, if $d=o(\sqrt{n} \log n)$, then $\gamma_{n}(d)<2^{(0.5+o(1)) n}$.

Upper Bounds for γ_{n}, Lower Bounds for β_{n}

Flats of Low Co-Dimension
Theorems 3 and 4 are of primary interest for flats of low dimension d. For flats of low co-dimension we have the following estimates.

Theorem 6
We have

$$
\beta_{n}(d) \geq\binom{ 2 d}{d}\left\lfloor\frac{n}{2 d}\right\rfloor^{d}, 2 \leq d \leq n / 2
$$

(In particular, $\beta_{n}(2) \geq \frac{3}{8}\left(n^{2}-6 n+9\right)$.)

Suppose that $0 \leq d_{1} \leq n_{1} \leq d_{1}+d$, integers with $n_{1}+\cdots+n_{k} \leq n$ and d_{1}

[^0]: (to be discussed later).

[^1]: As a corollary, if $d / \sqrt{n} \rightarrow \infty$, then

