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The Kakeya & Nikodym Problems
The Kakeya Problem in the Vector Space V
How small can a subset C ⊆ V be, given that C contains a line
in every direction?

The “Dual” Problem (Concept)
How small can a subset C ⊆ V be, given that C contains a line
through every point of V?

(We need C = V : for, if v /∈ C, then C cannot contain a line through v .)
The refined dual problem(s):

The Nikodym Problem
How small can a subset
C ⊆ V be, given that C
contains a line through
every point of C?

We Study
How small can a subset C ⊆ V be, given
that through every v ∈ V there is a line,
entirely contained in C with the possible
exception of the point v itself?
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Complete Sets in Fn
2

We focus on the case where V = Fn
2, while working in the general

settings of dimension-d subspaces (rather than just lines).

We want to color some of the points of Fn
2 say, green, so that through

every point v ∈ Fn
2 there is a d-flat which is entirely green — save,

perhaps, for v itself. What is the smallest number of points to color?

We call sets with this property d-complete, and denote by γn(d) the
smallest size of a d-complete set in Fn

2.

Definition
For 0 ≤ d ≤ n, a subset C ⊆ Fn

2 is d-complete if for every v ∈ Fn
2,

there is a d-subspace Lv ≤ Fn
2 with v + (Lv \ {0}) ⊆ C. We let

γn(d) := min{|C| : C ⊆ Fn
2 is d-complete}.

Since v + (Lv \ {0}) ⊆ C can be written as Lv \ {0} ⊆ C + v , a set
C ⊆ Fn

2 is d-complete iff every translate of C contains all non-zero
vectors of some d-subspace.
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An Alternative Viewpoint
Clearly, the set B ⊆ Fn

2 of all “black” points (those not colored green)
has the property that every translate B + v avoids with some punctured
linear subspace Lv \ {0}. We call such sets non-blocking.

Definition
For 0 ≤ d ≤ n, a subset B ⊆ Fn

2 is d-non-blocking if for every v ∈ Fn
2,

there is a co-d-subspace Lv ≤ Fn
2 with (B + v) ∩ (Lv \ {0}) = ∅.

We let
βn(d) := max{|B| : B ⊆ Fn

2 is d-non-blocking}.

Thus, every B ⊆ Fn
2 with |B| > βn(d) is guaranteed to have a translate

blocking all co-d-subspaces of Fn
2.

From the definitions, we have

βn(d) = 2n − γn(n − d);

hence, all results can be equivalently stated in terms of either γn or βn.
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Basic Observations
γn(d) := min{|C| : C ⊆ Fn

2 is d-complete}
βn(d) := max{|B| : B ⊆ Fn

2 is d-non-blocking}

βn(d) = 2n − γn(n − d)

0 = γn(0) < γn(1) ≤ · · · ≤ γn(n − 1) < γn(n) = 2n,

0 = βn(0) < βn(1) ≤ · · · ≤ βn(n − 1) < βn(n) = 2n.

I γn(0) = 0 because C = ∅ is 0-complete: every translate of ∅
contains the punctured 0-dimensional subspace.

I βn(0) = 0 because no B 6= ∅ is 0-non-blocking: there exists
v ∈ Fr

2 such that B + v is not disjoint with the punctured
n-dimensional subspace.

I γn(d + 1) ≥ γn(d) because containing a (d + 1)-subspace
requires a larger set C than containing a d-subspace.
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More Basics: Lines & Hyperplanes
Claim
We have γn(1) = βn(1) = 2. Thus, γn(n − 1) = βn(n − 1) = 2n − 2.

γn(1) = 2: a singleton set does not contain a punctured 1-flat
through its unique element; hence, is not 1-complete.
For any two-element set C ⊆ Fn

2 and any v ∈ Fn
2, there

is a punctured 1-flat through v , contained in C; hence,
any 2-element set is 1-complete.

βn(1) = 2: if B = {b1,b2,b3} ⊆ Fn
2, then the translate

B + (b1 + b2 + b3) = {b1 + b2,b2 + b3,b3 + b1} blocks
every linear co-1-subspace (hyperplane): for, its three
elements add up to 0, so cannot be all contained in the
complement of a hyperplane. Hence, βn(1) < 3.
On the other hand, for any two-element subset B ⊆ Fn

2
there is a co-1-subspace, disjoint with B \ {0}; hence,
every two-element set is 1-non-blocking and βn(1) ≥ 2.
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Yet More Basics: 2-flats & co-2-flats

Theorem 1
γn(2) is the smallest cardinality of a subset C ⊆ Fn

2 with the property
that every element of Fn

2 is a sum of three pairwise distinct elements
of C. Consequently,

γn(2) = Θ(2n/3).

Proof.
A set C ⊆ Fn

2 is 2-complete whenever for every v ∈ Fn
2, there exist

c1, c2, c3 ∈ C such that {v , c1, c2, c3} is a 2-flat. However, this is
equivalent to v = c1 + c2 + c3 and c1, c2, c3 being pairwise distinct.

For βn(2), we have the estimates
3
8

(n2 − 6n + 9) ≤ βn(2) ≤ 1
2

(n2 + n − 6)

(to be discussed later).
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Submultiplicativity
Lemma
For any n1,n2 ≥ d ≥ 0 we have

γn1+n2(d) ≤ γn1(d)γn2(d).

Sketch of the proof.
Let n := n1 + n2, write Fn

2 = V1 ⊕ V2 where dim Vi = ni , and find
Ci ⊆ Vi so that |Ci | = γi(d) and Ci is d-complete in Vi . Then C1 + C2
is d-complete in Fn

2, whence
γn1+n2(d) ≤ |C1 + C2| = |C1||C2| = γn1(d)γn2(d).

As a result, to any fixed d ≥ 1 there corresponds some κd ∈ [0,1]
such that γn(d) = 2(κd+o(1))n as n→∞. We know that
I κ1 = 0, κ2 = 1/3;
I 3/8 ≤ κ3 ≤ 3/7;
I κd < 1/2 for all d .
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Lower Bounds for γn, Upper Bounds for βn
(Non-Existence Results)

From the discussion above, γn(3) ≥ γn(2) = Θ(2n/3).

Theorem 2
We have γn(3) > c · 23n/8 with c ≈ 3.36.

Consequently, γn(d) > c · 23n/8 (and so κd ≥ 3/8) for d ≥ 3.

For flats of dimension d & 0.073n, we can give a better bound.

Theorem 3

Back

We have
γn(d) ≥

∑d−1
j=0

(n
j

)
.

Equivalently,
βn(d) ≤

∑d
j=0
(n

j

)
.

Thus, βn(2) ≤ 1 + n +
(n

2

)
. (Further minor improvements are available.)
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Upper Bounds for γn, Lower Bounds for βn
Flats of Low Dimension

Theorem 4

Back

We have
γn(d) < Kd · 2(1/2−εd )n.

where εd = 1/(2(2d − 1)) and Kd ≈ 22d
.

(As a particular case, γn(3) = O(23n/7); that is, κ3 ≤ 3/7.)

The double-exponential dependence of Kd on d makes Theorem 3
trivial for d & log n. A non-trivial estimate in this regime:

Theorem 5

Back

We have
γn(d) < 20.5n+K (nd/ log n)2/3

(with K absolute). Hence, if d = o(
√

n log n), then γn(d) < 2(0.5+o(1))n.
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Upper Bounds for γn, Lower Bounds for βn
Flats of Low Co-Dimension
Theorems 3 and 4 are of primary interest for flats of low dimension d .
For flats of low co-dimension we have the following estimates.

Theorem 6

Back

We have
βn(d) ≥

(
2d
d

)⌊ n
2d

⌋d
, 2 ≤ d ≤ n/2.

(In particular, βn(2) ≥ 3
8(n2 − 6n + 9).)

Theorem 7
Suppose that 0 ≤ d1 ≤ n1 ≤ d1 + d , . . . ,0 ≤ dk ≤ nk ≤ dk + d are
integers with n1 + · · ·+ nk ≤ n and d1 + · · ·+ dk ≤ d . Then

βn(d) ≥
(

n1

d1

)
· · ·
(

nk

dk

)
.

As a corollary, if d/
√

n→∞, then βn(d) >
(n

d

)1+o(1). Theorem 3

Vsevolod F. Lev (The University of Haifa) Flat-Containing & Shift-Blocking Sets in Fn
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Suppose that 0 ≤ d1 ≤ n1 ≤ d1 + d , . . . ,0 ≤ dk ≤ nk ≤ dk + d are
integers with n1 + · · ·+ nk ≤ n and d1 + · · ·+ dk ≤ d . Then

βn(d) ≥
(

n1

d1

)
· · ·
(

nk

dk

)
.

As a corollary, if d/
√

n→∞, then βn(d) >
(n

d

)1+o(1). Theorem 3
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Proof of Theorem 3
To prove: βn(d) ≤

∑d
j=0
(n

j

)
Notation: Ln,d := {P ∈ F2[x1, . . . , xn] : P is multilinear, deg P ≤ d}

Fix a d-non-blocking set B ⊆ Fn
2 with |B| = βn(d). To every b ∈ B there

corresponds a co-d-flat Fb ⊆ Fn
2 with Fb ∩ B = {b}. For every such flat,

find a polynomial Pb ∈ Ln,d with Pb = 1Fb . These |B| polynomials are
linearly independent: for, if ∑

b∈B εbPb = 0,

then ∑
b∈B εb1Fb (z) = 0, z ∈ Fn

2,

and choosing z ∈ B yields εz = 0 (as z /∈ Fb for b 6= z). It follows that

|B| ≤ dimLn,d =
d∑

j=0

(
n
j

)
.
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2 Erdős Centennial – July 2013 11 / 15



Proof of Theorem 3
To prove: βn(d) ≤

∑d
j=0
(n

j

)
Notation: Ln,d := {P ∈ F2[x1, . . . , xn] : P is multilinear, deg P ≤ d}

Fix a d-non-blocking set B ⊆ Fn
2 with |B| = βn(d). To every b ∈ B there

corresponds a co-d-flat Fb ⊆ Fn
2 with Fb ∩ B = {b}. For every such flat,

find a polynomial Pb ∈ Ln,d with Pb = 1Fb . These |B| polynomials are
linearly independent: for, if ∑

b∈B εbPb = 0,

then ∑
b∈B εb1Fb (z) = 0, z ∈ Fn

2,

and choosing z ∈ B yields εz = 0 (as z /∈ Fb for b 6= z). It follows that

|B| ≤ dimLn,d =
d∑

j=0

(
n
j

)
.

Vsevolod F. Lev (The University of Haifa) Flat-Containing & Shift-Blocking Sets in Fn
2 Erdős Centennial – July 2013 11 / 15



Proof of Theorems 4 and 5 Theorems 4 and 5

Wanted: a d-complete set C ⊆ Fn
2 of size |C| . 2(0.5+o(1))n

Fix a linear code S < Fm
2 of dimension d so that its length m is small

(as a function of d), while its minimum distance µ is (0.5 + o(1))m.
Also, fix a decomposition Fn

2 =
⊕m

i=1 Vi with dim Vi = n/m, and set
C :=

⋃
(s1,...,sm)∈S\{0}

⊕
i : si=0 Vi ;

thus, |C| ≤ (|S| − 1)2(m−µ)(n/m) . 2(0.5+o(1))n. Why is C d-complete?

Given a vector v = v1 + · · ·+ vm ∈ Fn
2 (with vi ∈ Vi ), consider the linear

subspace
Lv := {s1v1 + · · ·+ smvm : (s1, . . . , sm) ∈ S}.

We have v + (Lv \ {0}) ⊆ C. Hence, if dim Lv = d , then C contains a
punctured d-flat through v , and we are done. But if dim Lv < d , then
there exists (s1, . . . , sm) ∈ S \ {0} with s1v1 + · · ·+ smvm = 0. In this
case v ∈

⊕
i : si=0 Vi , the right-hand side being a subspace contained

in C, and “normally” of dimension at least d . �

Vsevolod F. Lev (The University of Haifa) Flat-Containing & Shift-Blocking Sets in Fn
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Proof of Theorem 6 Theorem 6

Wanted: a d-non-blocking set B ⊆ Fn
2 of size |B| ≥

(2d
d

) ⌊ n
2d

⌋d

Write Fn
2 = V1 ⊕ · · · ⊕ V2d with dim Vi = n

2d , fix bases ei ⊆ Vi , and let

B := {ei1 + · · ·+ eid : 1 ≤ i1 < · · · < id ≤ 2d , eij ∈ eij};

thus, |B| =
(2d

d

)( n
2d

)d . Why is B a d-non-blocking set?

Consider v = v1 + · · ·+ v2d ∈ Fn
2 (vi ∈ Vi):

I If v ∈ B, then we let Fv := {u ∈ Fn
2 : supp v ⊆ supp u}.

I if | supp vi | ≥ 2 for some i ∈ [1,2d ], then we find E ⊆ supp vi with
|E | = 2, and let Fv := {u ∈ Fn

2 : E ⊆ supp u}.
I if v /∈ B and | supp vi | ≤ 1 for each i ∈ [1,2d ], then there exists

I ∈ [1,2d ] with |I| = d + 1 and | supp vi | being equal to each other
for all i ∈ I. In this case, we let Fv be the subspace of all those
u ∈ Fn

2 with | supp vi | (i ∈ I) all of the same parity.
In any case, we have codim Fv ≤ d , v ∈ Fv , and (Fv \ {v}) ∩ B = ∅.
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Summary
A subset C ⊆ V is d-complete if through every v ∈ V
passes a d-flat contained in C ∪ {v}.

A subset B ⊆ V is d-non-blocking if through every v ∈ V
passes is a co-d-flat disjoint with B \ {v}.

Letting
γn(d) := min{|C| : C ⊆ Fn

2 is d-complete},
βn(d) := max{|B| : B ⊆ Fn

2 is d-non-blocking},

we have

βn(d) = 2n − γn(n − d),

0 = γn(0) < γn(1) ≤ · · · ≤ γn(n − 1) < γn(n) = 2n,

0 = βn(0) < βn(1) ≤ · · · ≤ βn(n − 1) < βn(n) = 2n.

A number of upper and lower bounds for these quantities are obtained.
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The First Asymptotically Open Case

What is the smallest possible size of a 3-complete set?

We know that γn(3) = 2(κ3+o(1))n with 3/8 ≤ κ3 ≤ 3/7.
What is the exact value of κ3?

Stated notation-free way:

How large must a subset of Fn
2 be

given that it contains a punctured 3-flat
through every point of Fn

2?
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2 Erdős Centennial – July 2013 15 / 15



Thank you!
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Lower Bounds for γn, Upper Bounds for βn
(Non-Existence Results)

From the discussion above, γn(3) ≥ γn(2) = Θ(2n/3).

Theorem 2
We have γn(3) > c · 23n/8 with c ≈ 3.36.

Consequently, γn(d) > c · 23n/8 (and so κd ≥ 3/8) for d ≥ 3.

For flats of dimension d & 0.073n, we can give a better bound.

Theorem 3 Back

We have
γn(d) ≥

∑d−1
j=0

(n
j

)
.

Equivalently,
βn(d) ≤

∑d
j=0
(n

j

)
.

Thus, βn(2) ≤ 1 + n +
(n

2

)
. (Further minor improvements are available.)

Vsevolod F. Lev (The University of Haifa) Flat-Containing & Shift-Blocking Sets in Fn
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Upper Bounds for γn, Lower Bounds for βn
Flats of Low Dimension

Theorem 4 Back

We have
γn(d) < Kd · 2(1/2−εd )n.

where εd = 1/(2(2d − 1)) and Kd ≈ 22d
.

(As a particular case, γn(3) = O(23n/7); that is, κ3 ≤ 3/7.)

The double-exponential dependence of Kd on d makes Theorem 3
trivial for d & log n. A non-trivial estimate in this regime:

Theorem 5 Back

We have
γn(d) < 20.5n+K (nd/ log n)2/3

(with K absolute). Hence, if d = o(
√

n log n), then γn(d) < 2(0.5+o(1))n.
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Upper Bounds for γn, Lower Bounds for βn
Flats of Low Co-Dimension
Theorems 3 and 4 are of primary interest for flats of low dimension d .
For flats of low co-dimension we have the following estimates.

Theorem 6 Back
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βn(d) ≥

(
2d
d

)⌊ n
2d

⌋d
, 2 ≤ d ≤ n/2.

(In particular, βn(2) ≥ 3
8(n2 − 6n + 9).)
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