Flat-Containing and Shift-Blocking Sets in 7

Vsevolod F. Lev
(Joint work with Aart Blokhuis)

The University of Haifa

Erdés Centennial — Budapest, July 2013



The Kakeya & Nikodym Problems
The Kakeya Problem in the Vector Space V

How small can a subset C C V be, given that C contains a line
in every direction?
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The Kakeya & Nikodym Problems

The Kakeya Problem in the Vector Space V

How small can a subset C C V be, given that C contains a line
in every direction?

The “Dual” Problem (Concept)

How small can a subset C C V be, given that C contains a line
through every point of V' ?

v

(We need C = V: for, if v ¢ C, then C cannot contain a line through v.)
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The Kakeya & Nikodym Problems

The Kakeya Problem in the Vector Space V

How small can a subset C C V be, given that C contains a line
in every direction?

The “Dual” Problem (Concept)

How small can a subset C C V be, given that C contains a line
through every point of V' ?

<

(We need C = V: for, if v ¢ C, then C cannot contain a line through v.)
The refined dual problem(s):

The Nikodym Problem

How small can a subset
C C V be, given that C
contains a line through
every point of C?
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The Kakeya & Nikodym Problems

The Kakeya Problem in the Vector Space V

How small can a subset C C V be, given that C contains a line
in every direction?

The “Dual” Problem (Concept)

How small can a subset C C V be, given that C contains a line
through every point of V' ?

<

(We need C = V: for, if v ¢ C, then C cannot contain a line through v.)
The refined dual problem(s):

The Nikodym Problem | We Study

How small can a subset How small can a subset C C V be, given
C C V be, given that C that through every v € V there is a line,
contains a line through entirely contained in C with the possible
every point of C? exception of the point v itself?
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Complete Sets in FJ

We focus on the case where V = 7, while working in the general
settings of dimension-d subspaces (rather than just lines).

We want to color some of the points of IF] say, green, so that through
every point v € [FJ there is a d-flat which is entirely green — save,
perhaps, for v itself. What is the smallest number of points to color?
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Complete Sets in FJ
We focus on the case where V = 7, while working in the general
settings of dimension-d subspaces (rather than just lines).

We want to color some of the points of IF] say, green, so that through
every point v € [FJ there is a d-flat which is entirely green — save,
perhaps, for v itself. What is the smallest number of points to color?

We call sets with this property d-complete, and denote by ~v,(d) the
smallest size of a d-complete set in 7.

Definition

For 0 < d < n, asubset C C IF] is d-complete if for every v € FJ,

there is a d-subspace L, < F7 with v 4 (L, \ {0}) € C. We let
Ya(d) := min{|C|: C C F7 is d-complete}.
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Complete Sets in FJ
We focus on the case where V = 7, while working in the general
settings of dimension-d subspaces (rather than just lines).

We want to color some of the points of IF] say, green, so that through
every point v € [FJ there is a d-flat which is entirely green — save,
perhaps, for v itself. What is the smallest number of points to color?

We call sets with this property d-complete, and denote by ~v,(d) the
smallest size of a d-complete set in 7.

Definition

For 0 < d < n, asubset C C IF] is d-complete if for every v € FJ,

there is a d-subspace L, < F7 with v 4 (L, \ {0}) € C. We let
Ya(d) := min{|C|: C C F7 is d-complete}.

Since v + (Ly \ {0}) € C can be writtenas L, \ {0} C C+ v, a set
C C FJ is d-complete iff every translate of C contains all non-zero
vectors of some d-subspace.
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An Alternative Viewpoint

Clearly, the set B C IF] of all “black” points (those not colored green)
has the property that every translate B + v avoids with some punctured
linear subspace L, \ {0}. We call such sets non-blocking.

Definition
For 0 < d < n, asubset B C ] is d-non-blocking if for every v € 7,
there is a co-d-subspace L, < FJ with (B+ v)n (L, \ {0}) = @.
We let
Bn(d) := max{|B|: B C FJ is d-non-blocking}.
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An Alternative Viewpoint

Clearly, the set B C IF] of all “black” points (those not colored green)
has the property that every translate B + v avoids with some punctured
linear subspace L, \ {0}. We call such sets non-blocking.

Definition
For 0 < d < n, asubset B C ] is d-non-blocking if for every v € 7,
there is a co-d-subspace L, < FJ with (B+ v)n (L, \ {0}) = @.
We let
Bn(d) := max{|B|: B C FJ is d-non-blocking}.

Thus, every B C FJ with |B| > s(d) is guaranteed to have a translate
blocking all co-d-subspaces of 7.

From the definitions, we have
Bn(d) = 2" = yn(n — d); )

hence, all results can be equivalently stated in terms of either v, or 5.
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Basic Observations
vn(d) := min{|C|: C C F3 is d-complete}
Bn(d) := max{|B|: B C F3 is d-non-blocking}

Bn(d) = 2" — yp(n — d)
0 =n(0) <vn(1) <+ <Ap(n—=1) <7n(n) =27,
0=0n(0) < Bn(1) < -+ < Bn(n—1) < Bn(n) =2".
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Basic Observations
vn(d) := min{|C|: C C F3 is d-complete}
Bn(d) := max{|B|: B C F3 is d-non-blocking}

Bn(d) = 2" = yn(n - d)

0 = 7n(0) < yn(1)
0 = 8n(0) < Ba(1)

n

< y(n—=1) <yn(n) =27,

S..
<< Bp(n—1) < Bn(n) =2".

» v7(0) = 0 because C = @ is 0-complete: every translate of @
contains the punctured 0-dimensional subspace.
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Basic Observations
vn(d) := min{|C|: C C F3 is d-complete}
Bn(d) := max{|B|: B C F7 is d-non-blocking}

Bn(d) = 2" — yp(n —d)
0 = n(0) < n(1) - <p(n—1) < yn(n) =2",
0 = 5n(0) < Bn(1) - < Bn(n—1) < Bn(n) =2".

S..
S..

» v7(0) = 0 because C = @ is 0-complete: every translate of @
contains the punctured 0-dimensional subspace.

» 5n(0) = 0 because no B # @ is 0-non-blocking: there exists
v € [} such that B + v is not disjoint with the punctured
n-dimensional subspace.
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Basic Observations
vn(d) := min{|C|: C C F3 is d-complete}
Bn(d) := max{|B|: B C F7 is d-non-blocking}

Bn(d) = 2" — yp(n —d)
0 = n(0) < n(1) - <p(n—1) < yn(n) =2",
0 = 5n(0) < Bn(1) - < Bn(n—1) < Bn(n) =2".

S..
S..

» v7(0) = 0 because C = @ is 0-complete: every translate of @
contains the punctured 0-dimensional subspace.

» 5n(0) = 0 because no B # @ is 0-non-blocking: there exists
v € [} such that B + v is not disjoint with the punctured
n-dimensional subspace.

» vp(d + 1) > v5(d) because containing a (d + 1)-subspace
requires a larger set C than containing a d-subspace.
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More Basics: Lines & Hyperplanes
Claim
We have y,(1) = pn(1) = 2. Thus, yo(n—1) = p(n—1) =2" - 2. J

~vn(1) = 2: a singleton set does not contain a punctured 1-flat
through its unique element; hence, is not 1-complete.
For any two-element set C C FJ and any v € F7, there
is a punctured 1-flat through v, contained in C; hence,
any 2-element set is 1-complete.
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More Basics: Lines & Hyperplanes
Claim
We have y,(1) = pn(1) = 2. Thus, yo(n—1) = p(n—1) =2" - 2. J

~vn(1) = 2: a singleton set does not contain a punctured 1-flat
through its unique element; hence, is not 1-complete.
For any two-element set C C FJ and any v € F7, there
is a punctured 1-flat through v, contained in C; hence,
any 2-element set is 1-complete.

if B= {by, bo, b3} C 7, then the translate

B+ (b1 + bo + b3) ={by + bo,bo + b3, b3 + b1} blocks
every linear co-1-subspace (hyperplane): for, its three
elements add up to 0, so cannot be all contained in the
complement of a hyperplane. Hence, 5,(1) < 3.

On the other hand, for any two-element subset B C F7
there is a co-1-subspace, disjoint with B\ {0}; hence,
every two-element set is 1-non-blocking and 5,(1) > 2.

I
n

(1)
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Yet More Basics: 2-flats & co-2-flats

Theorem 1

vn(2) is the smallest cardinality of a subset C C F7 with the property
that every element of ] is a sum of three pairwise distinct elements
of C. Consequently,

n(2) = ©(2").

Proof.

A set C C IF7 is 2-complete whenever for every v € 7, there exist
¢y, Co,c3 € Csuchthat {v,cq, o, 3} is a 2-flat. However, this is
equivalentto v = ¢ + ¢ + ¢3 and ¢y, ¢, ¢3 being pairwise distinct.

O]

4
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Yet More Basics: 2-flats & co-2-flats

Theorem 1

vn(2) is the smallest cardinality of a subset C C F7 with the property
that every element of ] is a sum of three pairwise distinct elements
of C. Consequently,

n(2) = 0(2"°).

Proof.

A set C C IF7 is 2-complete whenever for every v € 7, there exist
C1,Co, C3 € Csuch that {v, ¢y, ¢, c3} is a 2-flat. However, this is
equivalentto v = ¢; + ¢ + ¢3 and ¢y, ¢, ¢3 being pairwise distinct. [

4

For 8n(2), we have the estimates

g(n276n+9)§5n(2)§ (n*+n—6)

N —

(to be discussed later).
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Submultiplicativity

Lemma
Forany ny,n, > d > 0 we have

’)’n1+n2(d) < Yn (d)'ynz(d)‘

Sketch of the proof.
Let n:= ny + np, write FJ = V4 @ V> where dim V; = n;, and find
Ci C V; so that |Cj| = ~i(d) and C; is d-complete in V;. Then C; + C>
is d-complete in FJ, whence
Y+, (d) < |C1 + Ca| = |C1||Ca| = v, (d) 7, (d).
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Submultiplicativity

Lemma
For any ny,n> > d > 0 we have

’)/n1+n2(d) < Yn (d)’ynz(d)‘

Sketch of the proof.

Let n:= ny + np, write FJ = V4 @ V> where dim V; = n;, and find

Ci C V; so that |Cj| = ~i(d) and C; is d-complete in V;. Then C; + C>
is d-complete in FJ, whence

Y+ (d) < |Gy + Co| = [C|[Co| = vn, (d) V0, (d).

As a result, to any fixed d > 1 there corresponds some 4 € [0, 1]
such that yp(d) = 2(%+2(1)7 ag n — co. We know that

> 31 =0, %2:1/3;

» 3/8 <3 <3/7,;

> g < 1/2forall d.
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Lower Bounds for v,, Upper Bounds for 5,

(Non-Existence Results)

From the discussion above, ,(3) > vn(2) = ©(2"/3).

Theorem 2

We have ,(3) > ¢ - 23"/8 with ¢ ~ 3.36. J

Consequently, v,(d) > ¢ - 237/8 (and so », > 3/8) for d > 3.
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Lower Bounds for v,, Upper Bounds for 5,

(Non-Existence Results)

From the discussion above, y,(3) > 7n(2) = ©(2"/3).

Theorem 2
We have ,(3) > ¢ - 23"/8 with ¢ ~ 3.36. }

Consequently, v,(d) > ¢ - 237/8 (and so », > 3/8) for d > 3.

For flats of dimension d = 0.073n, we can give a better bound.

Theorem 3

We have _
y(d) > 70 (7).

Equivalently, J
Bn(d) < >0 (7)

Thus, 8,(2) <1+ n+ (3). (Further minor improvements are available.)
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Upper Bounds for ~,, Lower Bounds for 5,

Flats of Low Dimension

Theorem 4
We have
n(d) < Ky - 201/2=<a)n,

where g5 = 1/(2(29 — 1)) and Ky ~ 22°.

(As a particular case, vn(3) = O(2%7/7); that is, ;3 < 3/7.)
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Upper Bounds for ~,, Lower Bounds for 3,

Flats of Low Dimension

Theorem 4

We have
va(d) < Kg - o(1/2—eq)n.

where g5 = 1/(2(29 — 1)) and Ky ~ 22°.

(As a particular case, 7p(3) = O(28"/7); that is, »3 < 3/7.)
The double-exponential dependence of Ky on d makes Theorem 3
trivial for d 2 log n. A non-trivial estimate in this regime:

Theorem 5

We have
vn(d) < 20.5n+K(nd/log n)2/3

(with K absolute). Hence, if d = o(v/nlog n), then ,(d) < 2(03+o()n,
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Upper Bounds for ~,, Lower Bounds for 3,

Flats of Low Co-Dimension

Theorems 3 and 4 are of primary interest for flats of low dimension d.
For flats of low co-dimension we have the following estimates.
Theorem 6

We have

Ba(d) > (2:> %,Jd, 2<d<nj2

(In particular, 8n(2) > 3(n® —6n+9).)

Vsevolod F. Lev (The University of Haifa)
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Upper Bounds for ~,, Lower Bounds for 3,

Flats of Low Co-Dimension

Theorems 3 and 4 are of primary interest for flats of low dimension d.

For flats of low co-dimension we have the following estimates.

Theorem 6
We have

Ba(d) > (2:> %’Jd, 2<d<nj2

(In particular, 8n(2) > 3(n® —6n+9).)

Theorem 7

Supposethat0 < d; <m <dy+d,...,0<dx <nx,<dyx+dare
integers with ny +---+ ng <nand d; +--- + dx < d. Then
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Upper Bounds for v,, Lower Bounds for 5,

Flats of Low Co-Dimension

Theorems 3 and 4 are of primary interest for flats of low dimension d.

For flats of low co-dimension we have the following estimates.

Theorem 6
We have

Ba(d) > (ij’) %’Jd, 2<d<nj2

(In particular, 8n(2) > 3(n® —6n+9).)

Theorem 7

Supposethat0 < d; <m <dy+d,...,0<dx <nx,<dyx+dare
integers with ny +---+ ng <nand d; +--- + dx < d. Then

As a corollary, if d/\/n — oo, then g,(d) > (Z)1+O(1)'
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Proof of Theorem 3

To prove: By(d) < Y24 (7)
Notation: L4 := {P € Fa[xy,...,Xp]: Pis multilinear, deg P < d}
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Proof of Theorem 3

To prove: By(d) < Y24 (7)
Notation: L, 4 :={P € Fa[xy,...,Xa]: Pis multilinear, deg P < d}

Fix a d-non-blocking set B C F7 with |B| = 3,(d). To every b € B there
corresponds a co-d-flat F, C FJ with F, 1 B = {b}. For every such flat,
find a polynomial Py, € £, g With P, = 1£,. These |B| polynomials are
linearly independent: for, if

ZbengPb - 07
then

and choosing z € Byields e; = 0 (as z ¢ Fp, for b # z). It follows that

d
Bl <dimLog =Y <7>

j=0
[
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Proof of Theorems 4 and 5
Wanted: a d-complete set C C FJ of size |C| < 2(0-5+0(1)n

Fix a linear code S < [FJ' of dimension d so that its length m is small
(as a function of d), while its minimum distance p is (0.5 4 o(1))m.
Also, fix a decomposition F§ = @i, V; with dim V; = n/m, and set

C:= U(s1,...,sm)eS\{0} @i: 5=0 Vii
thus, |C| < (|S| — 1)2(m—m(n/m) < 2(05+o(1)n Why is C d-complete?
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Proof of Theorems 4 and 5
Wanted: a d-complete set C C FJ of size |C| < 2(0-5+0(1)n

Fix a linear code S < [FJ' of dimension d so that its length m is small
(as a function of d), while its minimum distance p is (0.5 4 o(1))m.
Also, fix a decomposition F§ = @i, V; with dim V; = n/m, and set

C:= U(s1,...,sm)eS\{0} @i: 5=0 Vii
thus, |C| < (|S| — 1)2(m—m(n/m) < 2(05+o(1)n Why is C d-complete?

Given a vector v = vy 4 --- + vy € FJ (with v; € V;), consider the linear
subspace

Ly :={sivi+ -+ SmVm: (S1,...,Sm) € S}.
We have v + (L, \ {0}) € C. Hence, if dim L, = d, then C contains a
punctured d-flat through v, and we are done. But if dim L, < d, then

there exists (s1,...,5m) € S\ {0} with syv4 + -+ 4+ SpViy = 0. In this
case v € ;. s,—o Vi, the right-hand side being a subspace contained
in C, and “normally” of dimension at least d. O
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Proof of Theorem 6
Wanted: a d-non-blocking set B C F2 of size |B| > (39) | & |°

Write F3 = V4 @ - -- @ Voq With dim V; = 4, fix bases ¢; C V;, and let
B:={ej+ +e,:1<ih<--<ig<2d, g €¢};

thus, |B| = (29) (). Why is B a d-non-blocking set?
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Proof of Theorem 6

Wanted: a d-non-blocking set B C F2 of size |B| > (39) | & |°

Write F3 = V4 @ - -- @ Voq With dim V; = 4, fix bases ¢; C V;, and let
B:={ej+ +e,:1<ih<--<ig<2d, g €¢};
thus, |B| = (29) (). Why is B a d-non-blocking set?

Consider v =vqy +--- 4+ vog € FJ (v; € V}):

In any case, we have codimF, < d,v e F,,and (F,\ {v})NB= 2.
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Proof of Theorem 6

Wanted: a d-non-blocking set B C F2 of size |B| > (39) | & |°

Write F3 = V4 @ - -- @ Voq With dim V; = 4, fix bases ¢; C V;, and let
B .= {6/1 + -t ey 1<ih<---<lig<2d, e € e,-/.};
thus, |B| = (29) (). Why is B a d-non-blocking set?

Consider v =vqy +--- 4+ vog € FJ (v; € V}):
» If ve B, thenwe let F, := {u € FJ: suppv C supp u}.

In any case, we have codimF, < d,v e F,,and (F,\ {v})NB= 2.
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Proof of Theorem 6

Wanted: a d-non-blocking set B C F2 of size |B| > (39) | & |°

Write F3 = V4 @ - -- @ Voq With dim V; = 4, fix bases ¢; C V;, and let
B:={e,+ --+e,:1<ih<---<ig<2d, e,-/.ee,-/.};

thus, |B| = (29) (). Why is B a d-non-blocking set?

Consider v =vqy +--- 4+ vog € FJ (v; € V}):

» If ve B, thenwe let F, := {u € FJ: suppv C supp u}.

» if | supp v;| > 2 for some i € [1,2d], then we find E C supp v; with
|E|=2,and let F, := {u € F}: E C supp u}.

In any case, we have codimF, < d,v e F,,and (F,\ {v})NnB= 2.
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Proof of Theorem 6

Wanted: a d-non-blocking set B C F2 of size |B| > (39) | & |°

Write F3 = V4 @ - -- @ Voq With dim V; = 4, fix bases ¢; C V;, and let
B:={e,+ --+e,:1<ih<---<ig<2d, e,-/.Ee,-/.};
thus, |B| = (29) (). Why is B a d-non-blocking set?

Consider v =vqy +--- 4+ vog € FJ (v; € V}):
» If ve B, thenwe let F, := {u € FJ: suppv C supp u}.
» if |supp v;| > 2 for some i € [1,2d], then we find E C supp v; with
|E| =2,and let F, := {u € FJ: E C supp u}.
» if v ¢ Band |suppvj| <1 foreachie[1,2d], then there exists
I € [1,2d] with |/| = d + 1 and | supp v;| being equal to each other
for all i € I. In this case, we let F, be the subspace of all those
u € F7 with | supp v;| (7 € /) all of the same parity.
In any case, we have codimF, < d,v e F,,and (F,\ {v})NnB= 2.
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Summary

A subset C C V is d-complete if through every v € V
passes a d-flat contained in C U {v}.

A subset B C V is d-non-blocking if through every v € V
passes is a co-d-flat disjoint with B\ {v}.

Letting
n(d) := min{|C|: C C F} is d-complete},
Bn(d) := max{|B|: B C F7 is d-non-blocking},
we have

Bn(d) = 2" — yn(n — d),
0 = vn(0) < vn(1

) - < yp(n—1) < ya(n) = 2",
0 = Bn(0) < Bn(1)

S..
< < Bp(n—1) < Ba(n) =2".

A number of upper and lower bounds for these quantities are obtained.
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The First Asymptotically Open Case

What is the smallest possible size of a 3-complete set?

We know that y,(3) = 2(*+0(1)7 with 3/8 < »3 < 3/7.
What is the exact value of s3?

Stated notation-free way:

How large must a subset of IF] be
given that it contains a punctured 3-flat
through every point of F5?
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Thank you!
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Lower Bounds for v,, Upper Bounds for 5,

(Non-Existence Results)

For flats of dimension d = 0.073n, we can give a better bound.
Theorem 3
We have _

(d) = 3750 (7).

Equivalently,
Bn(d) < S0 (7).

Thus, 8,(2) <1+ n+ (3). (Further minor improvements are available.)
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Upper Bounds for ~,, Lower Bounds for 3,

Flats of Low Dimension

Theorem 4

We have
vn(d) < Kg - o(1/2—eq)n.

where eg = 1/(2(29 — 1)) and Ky ~ 22°.

(As a particular case, vn(3) = O(2%"/7); that is, »3 < 3/7.)

The double-exponential dependence of Ky on d makes Theorem 3
trivial for d 2 log n. A non-trivial estimate in this regime:

Theorem 5

We have
vn(d) < 20.5n+K(nd/ log n)2/3

(with K absolute). Hence, if d = o(v/nlog n), then y,(d) < 2(05+o()n,
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Upper Bounds for v,, Lower Bounds for 5,

Flats of Low Co-Dimension

Theorems 3 and 4 are of primary interest for flats of low dimension d.
For flats of low co-dimension we have the following estimates.

Theorem 6

We have - o
Ba(d) > (d> {Z/J ,2<d<n/2

(In particular, 8n(2) > 3(n® —6n+9).)
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