The range of tree-indexed random walk

Jean-François Le Gall, Shen Lin

Institut universitaire de France et Université Paris-Sud Orsay

Erdös Centennial Conference July 2013

< 6 k

- A TE N A TE N

1. Introduction

Let $(X_n)_{n\geq 0}$ be a random walk in \mathbb{Z}^d :

$$X_n = Y_1 + Y_2 + \cdots + Y_n$$

where Y_1, Y_2, \ldots are independent and identically distributed with distribution μ .

The range \mathbf{R}_n is the number of distinct sites of the lattice visited by the random walk up to time *n*:

The Dvoretzky-Erdös asymptotics

An important result of Dvoretzky and Erdös in 1951 gives the asymptotics of R_n when $n \to \infty$, in the case of simple random walk (that is, if μ is uniform over neighbors of 0):

• if $d \ge 3$, • if d = 2, • if d = 2, • if d = 1, $n^{-1/2} \mathbf{R}_n \xrightarrow[n \to \infty]{\text{a.s.}} \mathcal{R}_t - \inf_{0 \le t \le 1} \mathcal{B}_t$,

where q_d is the probability that X never returns to its starting point, and $(B_t)_{t\geq 0}$ is a standard linear Brownian motion.

(Dvoretzky and Erdös point out that the method extends to the case when μ is centered with finite second moments)

Applying Kingman's subadditive ergodic theorem

The method of Dvoretzky and Erdös relies on estimating the first and second moment of \mathbf{R}_n .

When $d \ge 3$, a quicker proof follows from Kingman's subadditive ergodic theorem. Note that, for every $m, n \ge 0$,

$$\mathbf{R}_{n+m} \leq \mathbf{R}_n + \mathbf{R}_m \circ \theta_n$$

where θ_n is the usual shift on trajectories : $X_k \circ \theta_n = X_{n+k} - X_n$ (the number of sites visited between 0 and n + m is smaller than the number visited between 0 and *n* plus the number visited between *n* and n + m)

Kingman's theorem then gives immediately

$$\frac{1}{n} \mathbf{R}_n \xrightarrow[n \to \infty]{a.s.} q$$

where $q = \lim_{n \to \infty} \frac{1}{n} E[\mathbf{R}_n] = P(\text{no return to } 0)$ This applies to any random walk, and q > 0 iff X transient

Tree-indexed random walk

Question (Itai Benjamini): What is the analog of the Dvoretzky-Erdös asymptotics for a tree-indexed random walk? Consider

- a (random) discrete rooted tree T_n with *n* vertices;
- conditionally on *T_n*, a collection (*Y_e*)_{*e*∈*E*(*T*)} of independent r.v. distributed according to *μ*, indexed by the set of edges of *T_n*.

For every vertex v of T_n , set

$$X_{v} = \sum_{e:
ho \longrightarrow v} Y_{e}$$

where the sum is over all edges on the path from the root ρ to v. The range is $\mathcal{R}_n := \#\{X_v : v \text{ vertex of } \mathcal{T}_n\}$.

One expects \mathcal{R}_n to be smaller than \mathbf{R}_n (range of ordinary RW), because there are more self-intersections.

イロト 不得 トイヨト イヨト 二日

Tree-indexed random walk

Tree T_n

・ロト ・ 四ト ・ ヨト ・ ヨト

2

Galton-Watson trees

Let θ be a probability measure on $\mathbb{Z}_+ = \{0, 1, 2, \ldots\}$ such that:

•
$$\sum_{k=0}^{\infty} k \,\theta(k) = 1$$
 (criticality)
• $\sum_{k=0}^{\infty} k^2 \,\theta(k) < \infty$ (finite variance)

The Galton-Watson tree T with offspring distribution θ describes the genealogy of a Galton-Watson branching process with offspring distribution θ :

- the process starts with 1 ancestor at generation 0;
- each individual has k children with probability $\theta(k)$.

 \longrightarrow can be viewed as a rooted ordered tree (put an order on the children of each individual).

 θ critical $\Rightarrow \mathcal{T}$ is finite a.s. Notation: $\#\mathcal{T}$ is the number of vertices of \mathcal{T}

< ロ > < 同 > < 回 > < 回 >

Galton-Watson trees

Let θ be a probability measure on $\mathbb{Z}_+ = \{0, 1, 2, \ldots\}$ such that:

•
$$\sum_{k=0}^{\infty} k \,\theta(k) = 1$$
 (criticality)
• $\sum_{k=0}^{\infty} k^2 \,\theta(k) < \infty$ (finite variance)

The Galton-Watson tree \mathcal{T} with offspring distribution θ describes the genealogy of a Galton-Watson branching process with offspring distribution θ :

- the process starts with 1 ancestor at generation 0;
- each individual has k children with probability $\theta(k)$.

 \longrightarrow can be viewed as a rooted ordered tree (put an order on the children of each individual).

 θ critical $\Rightarrow \mathcal{T}$ is finite a.s. Notation: $\#\mathcal{T}$ is the number of vertices of \mathcal{T}

< 回 > < 三 > < 三 >

Galton-Watson trees with a fixed progeny

Let \mathcal{T} be a θ -Galton-Watson tree, For every $n \ge 1$ such that $P(\#\mathcal{T} = n) > 0$, let

$$\mathcal{T}_n \stackrel{(d)}{=} \mathcal{T}$$
 conditioned on $\#\mathcal{T} = n$

Then T_n is a random tree with *n* vertices.

This setting includes many "combinatorial trees" (meaning that T_n is then uniformly distributed on a certain class of discrete trees):

- θ(k) = 2^{-k-1}: T_n is uniform in the class of rooted ordered trees with *n* vertices;
- $\theta(0) = \theta(2) = \frac{1}{2}$: \mathcal{T}_n is uniform in the class of binary trees with *n* vertices;
- θ Poisson : T_n is uniform in the class of Cayley trees with n vertices.

Galton-Watson trees with a fixed progeny

Let \mathcal{T} be a θ -Galton-Watson tree, For every $n \ge 1$ such that $P(\#\mathcal{T} = n) > 0$, let

$$\mathcal{T}_n \stackrel{(\mathrm{d})}{=} \mathcal{T}$$
 conditioned on $\#\mathcal{T} = n$

Then T_n is a random tree with *n* vertices.

This setting includes many "combinatorial trees" (meaning that T_n is then uniformly distributed on a certain class of discrete trees):

- θ(k) = 2^{-k-1} : T_n is uniform in the class of rooted ordered trees with *n* vertices;
- $\theta(0) = \theta(2) = \frac{1}{2}$: \mathcal{T}_n is uniform in the class of binary trees with *n* vertices;
- θ Poisson : T_n is uniform in the class of Cayley trees with n vertices.

イロト 不得 トイヨト イヨト 二日

The range of tree-indexed random walk

- T_n is a θ -Galton-Watson tree conditioned to have *n* vertices;
- conditionally on *T_n*, (*X_v*)<sub>*v*∈*V*(*T_n*) is random walk with jump distribution µ indexed by *T_n*, and *R_n* = #{*X_v* : *v* ∈ *V*(*T_n*)}.
 </sub>

Theorem

Suppose μ is centered with sufficiently high moments:

1) if
$$d \ge 5$$
,

if
$$d = 4$$
, and $\theta(k) = 2^{-k-1}$,
where $\sigma^2 = (\det(cov(\mu)))^{1/4}$

$$\frac{1}{n} \mathcal{R}_n \xrightarrow[n \to \infty]{(P)} c_{\mu,\theta} > 0$$

$$\frac{\log n}{n} \mathcal{R}_n \xrightarrow[n \to \infty]{(P)} 8 \pi^2 \sigma^4,$$

if $d \leq 3$, $n^{-d/4} \mathcal{R}_n \xrightarrow[n \to \infty]{(d)} c_{\mu,\theta} \operatorname{Leb}(\operatorname{supp}(\mathcal{I}))$

where *I* is ISE (Integrated Super-Brownian Excursion).

The range of tree-indexed random walk

- T_n is a θ -Galton-Watson tree conditioned to have *n* vertices;
- conditionally on *T_n*, (*X_v*)_{*v*∈*V*(*T_n*)} is random walk with jump distribution μ indexed by *T_n*, and *R_n* = #{*X_v* : *v* ∈ *V*(*T_n*)}.

Theorem

Suppose μ is centered with sufficiently high moments:

4 (1) × 4 (2) × 4 (2) × 4 (2) ×

Remarks on the main theorem

• Results are similar to those for ordinary random walk, BUT

the critical dimension is now d = 4

Note that max{ $|X_v|$: v vertex of T_n } ~ $n^{1/4}$ (Janson-Marckert)

- Above the critical dimension, the range grows linearly (can again be viewed as a consequence of Kingman's theorem, but this is less immediate!)
- At the critical dimension d = 4, the proof is more involved (our method only works for θ geometric)
- Below the critical dimension, the result is related to the "invariance principles" connecting branching random walk with super-Brownian motion
- The convergence of ¹/_n R_n to a constant c_{µ,θ} ≥ 0 extends to much more general θ and µ.

< 日 > < 同 > < 回 > < 回 > < 回 > <

3

Remarks on the main theorem

Results are similar to those for ordinary random walk, BUT

the critical dimension is now d = 4

Note that max{ $|X_v|$: v vertex of T_n } ~ $n^{1/4}$ (Janson-Marckert)

- Above the critical dimension, the range grows linearly (can again be viewed as a consequence of Kingman's theorem, but this is less immediate!)
- At the critical dimension *d* = 4, the proof is more involved (our method only works for θ geometric)
- Below the critical dimension, the result is related to the "invariance principles" connecting branching random walk with super-Brownian motion
- The convergence of ¹/_n R_n to a constant c_{µ,θ} ≥ 0 extends to much more general θ and µ.

3

2. The linear growth of \mathcal{R}_n

KEY IDEA: Apply Kingman's ergodic theorem

BUT: needs to find a suitable shift transformation on an appropriate space of trees, and a corresponding invariant probability measure.

The space of trees \mathbb{T} : consists of infinite trees \mathcal{T} having

- a "spine" with infinitely many vertices labeled 0, -1, -2, ...
- attached to each vertex -k of the spine, a finite rooted ordered tree T_k
- We assume that there are infinitely many vertices not on the spine.

2. The linear growth of \mathcal{R}_n

KEY IDEA: Apply Kingman's ergodic theorem

BUT: needs to find a suitable shift transformation on an appropriate space of trees, and a corresponding invariant probability measure.

The space of trees \mathbb{T} : consists of infinite trees $\mathcal T$ having

- a "spine" with infinitely many vertices labeled 0, -1, -2, ...
- attached to each vertex -k of the spine, a finite rooted ordered tree T_k
- We assume that there are infinitely many vertices not on the spine.

The shift on infinite trees

Let $\mathcal{T} \in \mathbb{T}$ be an infinite tree, let u_1, u_2, \ldots be the vertices of \mathcal{T} not belonging to the spine enumerated in lexicographical order (considering successively the subtrees $\mathcal{T}_0, \mathcal{T}_1, \ldots$ in this order)

Define the shift $\tau(\mathcal{T})$ by declaring that the top of the spine of $\tau(\mathcal{T})$ is u_1 and removing the vertices of the spine of \mathcal{T} that are not ancestors of u_1 (i.e. the vertices $0, -1, \ldots, -k+1$, if u_1 lies in \mathcal{T}_k)

同下 4 三下 4 三

The shift on infinite trees

Illustration of the shift: The red vertex (the first one not on the spine) becomes the top of the spine when applying the shift.

The invariant measure

Define a probability measure \mathbf{P}_{θ} on \mathbb{T} : Under \mathbf{P}_{θ} ,

- the subtree attached at the top of the spine is a θ-Galton-Watson tree;
- each vertex of the spine other than 0 has k children (not on the spine) with probability

 $\theta([k+1,\infty))$

 these children, and their descendants, then reproduce according to the offspring distribution θ.

Proposition

The probability measure ${f P}_ heta$ is invariant (and ergodic) under the shift au

The proof is easy by a direct verification.

Remark. This result only requires the fact that θ is critical.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The invariant measure

Define a probability measure \mathbf{P}_{θ} on \mathbb{T} : Under \mathbf{P}_{θ} ,

- the subtree attached at the top of the spine is a θ-Galton-Watson tree;
- each vertex of the spine other than 0 has k children (not on the spine) with probability

 $\theta([k+1,\infty))$

• these children, and their descendants, then reproduce according to the offspring distribution θ .

Proposition

The probability measure $\mathbf{P}_{ heta}$ is invariant (and ergodic) under the shift au

The proof is easy by a direct verification.

Remark. This result only requires the fact that θ is critical.

-

Trees with spatial positions

If $\mathcal{T} \in \mathbb{T}$ is an infinite tree, define the μ -random walk $(X_v)_{v \in V(\mathcal{T})}$ indexed by \mathcal{T} by imposing that:

- the increments along edges (oriented from the "bottom" of the spine) are independent and distributed according to μ
- the spatial position X_0 at the top of the spine is 0

Fact

The law of the pair consisting of a tree distributed according to \mathbf{P}_{θ} and the associated μ -random walk is again invariant under the shift τ .

(To define spatial positions of the shifted tree $\tau(\mathcal{T})$ one translates the spatial positions of the corresponding vertices of \mathcal{T} so that the position of the top of the spine is again 0 in $\tau(\mathcal{T})$)

3

Linear growth of the range

Assumptions:

• \mathcal{T} is distributed according to \mathbf{P}_{θ} ;

• conditionally on \mathcal{T} , $(X_{\nu})_{\nu \in \mathcal{T}}$ is the μ -random walk indexed by \mathcal{T} .

Let u_1, u_2, \ldots be the vertices of \mathcal{T} not on the spine, enumerated in lexicographical order, and

$$R_n = \#\{X_{u_1}, X_{u_2}, \dots, X_{u_n}\}$$

Theorem

There exists a constant $c_{\mu,\theta} \in [0,1]$ such that

$$rac{1}{n} R_n \stackrel{\mathrm{a.s.}}{\underset{n
ightarrow \infty}{\longrightarrow}} c_{\mu, heta}$$

Proof. Just apply Kingman's subadditive ergodic theorem!

Remark. The theorem requires no assumption on μ or θ , except the fact that the offspring distribution θ is critical.

Positivity of the limiting constant

Assume that the random walk $(S_j)_{j\geq 0}$ with jump distribution μ is transient (otherwise $c_{\mu,\theta} = 0$). Let :

- G_{μ} Green function of S
- g_{θ} generating function of θ

Proposition

Assume that

$$\prod_{j=1}^\infty \Big(rac{1-g_ heta((1-G_\mu(S_j))_+)}{G_\mu(S_j)}\Big)>0 \quad a.s.$$

Then $c_{\mu,\theta} > 0$.

Corollary

Suppose that μ is centered and has finite moments of order d – 1.

- If θ has finite variance, $c_{\mu,\theta} > 0$ if $d \ge 5$,
- If θ is in the domain of attraction of a stable distribution with index $\alpha \in (1, 2)$, then $c_{\mu, \theta} > 0$ if $d > \frac{2\alpha}{\alpha 1}$.

From the infinite tree to trees with a given size

Need an argument to derive the result for Galton-Watson trees with a fixed progeny from the case of the infinite tree.

From an infinite tree distributed according to \mathbf{P}_{θ} can obtain a sequence $\mathcal{T}_{(1)}, \mathcal{T}_{(2)}, \ldots$ of independent θ -Galton-Watson trees: \longrightarrow consider the subtrees branching off the children of the vertices of the series

the spine.

If $k_n = \min\{j : \#(\mathcal{T}_{(j)}) \ge n\}$, then $\mathcal{T}_{(k_n)}$ is a θ -Galton-Watson tree conditioned to have at least *n* vertices.

- Can derive from the theorem an analogous result for a θ-Galton-Watson tree conditioned to have at least *n* vertices. (this requires limit theorems for the contour of a sequence of independent GW trees, cf Duquesne-LG)
- An absolute continuity argument allows one to deal with a θ-Galton-Watson tree conditioned to have exactly n vertices

< 日 > < 同 > < 回 > < 回 > < 回 > <

3. The critical dimension d = 4

Assumptions.

• $\theta(k) = 2^{-k-1}$ (geometric).

• μ is symmetric and has small exponential moments.

Set $\sigma^2 = (\det(\operatorname{cov}(\mu))^{1/4}$.

IDEA: Use the path-valued Markov chain called the discrete snake to generate the spatial positions of an infinite tree distributed according to \mathbf{P}_{θ} .

 \longrightarrow Then exploit the Markovian properties of the discrete snake to derive the needed estimates.

(If θ is not geometric, the discrete snake approach does not work and things become more complicated!)

A (20) A (20) A (20) A (20)

The discrete snake

The discrete snake is a Markov chain with values in the set ${\cal W}$ of all semi-infinite discrete paths

$$w: (-\infty, \zeta] \cap \mathbb{Z} \longrightarrow \mathbb{Z}^4$$

where $\zeta = \zeta_{(w)} \in \mathbb{Z}$ is called the lifetime of w.

Transition kernel. Suppose that $W_0 = w$:

• With probability $\frac{1}{2}$,

$$\zeta_{(W_1)} = \zeta_{(w)} - \mathbf{1},$$

• $W_1(k) = w(k)$ for all $k \le \zeta_{(w)} - 1$.

(the last step of w is removed)

• With probability $\frac{1}{2}$,

$$\zeta_{(W_1)} = \zeta_{(w)} + 1$$

•
$$W_1(k) = w(k)$$
 for all $k \leq \zeta_{(w)}$

• $W_1(\zeta_{(w)}+1) - W_1(\zeta_{(w)})$ has law μ

(one step is added to *w* using the jump distribution μ)

Transition kernel of the discrete snake

Jean-François Le Gall (Université Paris-Sud) The range of tree-indexed random walk Erdös Centennial Conference 21 / 26

A key estimate

Suppose that $\zeta_{(W_0)} = 0$ and $(W_0(-k))_{k \ge 0}$ is distributed as a random walk with jump distribution μ started from 0.

Write $\widehat{W}_k := W_k(\zeta_{(W_k)})$ for the terminal point of W_k (the "head of the discrete snake")

Lemma

We have

$$\lim_{n\to\infty} (\log n) \ P(\widehat{W}_k \neq \widehat{W}_0 \text{ for all } k = 1, 2, \dots, n) = 4\pi^2 \sigma^4.$$

Remark. Analogous result for a (centered, finite variance) random walk S on \mathbb{Z}^2 started from 0,

 $\lim_{n\to\infty} (\log n) P(S_k \neq 0 \text{ for all } k = 1, 2, \dots, n) = c > 0$

This is much easier to prove than the lemma.

< ロ > < 同 > < 回 > < 回 >

A key estimate

Suppose that $\zeta_{(W_0)} = 0$ and $(W_0(-k))_{k \ge 0}$ is distributed as a random walk with jump distribution μ started from 0.

Write $\widehat{W}_k := W_k(\zeta_{(W_k)})$ for the terminal point of W_k (the "head of the discrete snake")

Lemma

We have

$$\lim_{n\to\infty} (\log n) \ P(\widehat{W}_k \neq \widehat{W}_0 \text{ for all } k = 1, 2, \dots, n) = 4\pi^2 \sigma^4.$$

Remark. Analogous result for a (centered, finite variance) random walk *S* on \mathbb{Z}^2 started from 0,

$$\lim_{n\to\infty} (\log n) P(S_k \neq 0 \text{ for all } k = 1, 2, \dots, n) = c > 0$$

This is much easier to prove than the lemma.

A D N A B N A B N A B N

Application of the key estimate 1 Set $R_n = \#\{\widehat{W}_0, \widehat{W}_1, \dots, \widehat{W}_n\}$. Then,

$$E[R_n] = E\left[\sum_{j=0}^n \mathbf{1}_{\{\widehat{W}_k \neq \widehat{W}_j, \text{ for all } k=j+1,\dots,n\}}\right]$$
$$= \sum_{j=0}^n P\left[\widehat{W}_k \neq \widehat{W}_j, \text{ for all } k=j+1,\dots,n\right]$$
$$= \sum_{j=0}^n P\left[\widehat{W}_k \neq \widehat{W}_0, \text{ for all } k=1,\dots,n-j-1\right]$$

by stationarity. The lemma now gives

$$\lim_{n\to\infty}\frac{\log n}{n}E[R_n]=4\pi^2\sigma^4.$$

< 回 > < 三 > < 三 >

Application of the key estimate 2

By similar arguments,

$$\lim_{n\to\infty} \left(\frac{\log n}{n}\right)^2 E[(R_n)^2] = (4\pi^2\sigma^4)^2.$$

Suffices to get

$$\frac{\log n}{n} R_n \xrightarrow[n \to \infty]{L^2} 4\pi^2 \sigma^4.$$

 \longrightarrow This gives the desired asymptotics for the range of random walk indexed by the infinite geometric tree.

 \rightarrow Technical work (more difficult than in the supercritical case) is needed to get the asymptotics for a tree with fixed size *n*.

Ideas of the proof of the main estimate 1 We aim at proving that

$$P(\widehat{W}_k \neq \widehat{W}_0 \text{ for all } k = 1, 2, ..., n) \underset{n \to \infty}{\sim} \frac{4\pi^2 \sigma^4}{\log n}.$$

Start from the identity

$$\begin{split} \mathbf{H} &= \sum_{k=0}^{n} P(\widehat{W}_{k} = 0; \widehat{W}_{\ell} \neq 0, \forall \ell \in \{k+1, \dots, n\}) \\ &= \sum_{k=0}^{n} E\Big[\mathbf{1}_{\{\widehat{W}_{k} = 0\}} P_{W_{k}}(\widehat{W}_{\ell} \neq 0, \forall \ell \in \{1, \dots, n-k\})\Big] \quad (Markov) \\ &= \sum_{k=0}^{n} E\Big[\mathbf{1}_{\{\widehat{W}_{k} = 0\}} P_{W_{0}}(\widehat{W}_{\ell} \neq 0, \forall \ell \in \{1, \dots, n-k\})\Big]. \end{split}$$

(symmetry argument: (W_0, W_k) and (W_k, W_0) have the same distribution under $P(\cdot | \widehat{W}_k = 0)$)

Jean-François Le Gall (Université Paris-Sud)

Ideas of the proof of the main estimate 2 It follows that

$$1 = E\left[E_{W_0}\left[\sum_{k=0}^n \mathbf{1}_{\{\widehat{W}_k=0\}}\right] P_{W_0}(\widehat{W}_\ell \neq 0, \forall \ell \in \{1, \ldots, n-k\})\right].$$

Direct calculations show that

$$E\Big[\sum_{k=0}^{n}\mathbf{1}_{\{\widehat{W}_{k}=0\}}\Big] \underset{n\to\infty}{\sim} \frac{\log n}{4\pi^{2}\sigma^{4}}.$$

Needs to verify that

$$E_{W_0}\Big[\sum_{k=0}^n \mathbf{1}_{\{\widehat{W}_k=0\}}\Big]$$

is very concentrated near its mean:

 \longrightarrow First get a continuous version of this concentration property involving Brownian motion

 \rightarrow Then use a strong invariance principle (Komlós-Major-Tusnády and Zaitsev) to complete the proof.