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A (proper) k-coloring of a graph G = (V ,E ) is a function
f : V → {1, 2, . . . , k} such that f (u) 6= f (v) for each uv ∈ E .

A graph G is k-colorable if it has a k-coloring.
The chromatic number, χ(G ), of a graph G is the smallest k such
that G is k-colorable.

A graph G is k-critical if G is not (k − 1)-colorable, but every
proper subgraph of G is (k − 1)-colorable.

Every k-critical graph has chromatic number k and every
k-chromatic graph contains a k-critical subgraph.



Erdős on critical graphs

Dirac defined and started to use critical graphs in 1951-52.

Erdős wrote in 1989:
Dirac defined a k-chromatic graph to be vertex critical if the
omission of any vertex decreases the chromatic number and edge
critical if the removal of any edge decreases the chromatic number.
I immediately liked these concepts very much and in fact felt
somewhat foolish that I did not think of these natural and
obviously fruitful concepts before.



Erdős on critical graphs

Dirac defined and started to use critical graphs in 1951-52.
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Critical graphs

The only 1-critical graph is K1, and the only 2-critical graph is K2.
The only 3-critical graphs are the odd cycles.

For every k ≥ 4 and every n ≥ k + 2, there exists a k-critical
n-vertex graph.

Every k-critical graph is 2-connected and (k − 1)-edge-connected.



fk(n)

fk(n) — the minimum number of edges in a k-critical graph with n
vertices.

Since δ(G ) ≥ k − 1 for every k-critical graph G ,

fk(n) ≥ k − 1

2
n (1)

for all n ≥ k, n 6= k + 1.

Brooks’ Theorem implies that for k ≥ 4 and n ≥ k + 2, the
inequality in (1) is strict.



Dirac’s bound

Dirac in 1957 asked to determine fk(n) and proved that for k ≥ 4
and n ≥ k + 2,

fk(n) ≥ k − 1

2
n +

k − 3

2
. (2)

The result is tight for n = 2k − 1 and yields

fk(2k − 1) = k2 − k − 1.

Stiebitz and A.K. improved (2) to

fk(n) ≥ k − 1

2
n + k − 3 (3)

when n 6= 2k − 1, k .

This yields fk(2k) = k2 − 3 and fk(3k − 2) = 3k(k−1)
2 − 2.
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Gallai’s results and conjecture

Theorem 1 [Gallai, 1963] If k ≥ 4 and k + 2 ≤ n ≤ 2k − 1, then

fk(n) =
1

2
((k − 1)n + (n − k)(2k − n))− 1.

Theorem 2 [Gallai, 1963] For all k ≥ 4 and n ≥ k + 2,

fk(n) ≥ k − 1

2
n +

k − 3

2(k2 − 3)
n. (4)

Conjecture 1 [Gallai, 1963] If k ≥ 4 and n = 1 (mod k− 1), then

fk(n) = (k+1)(k−2)n−k(k−3)
2(k−1) .
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Hajós’ Construction

x

y

z

Figure: Choose a vertex x in one k-critical graph and an edge yz in the
other.



Hajós’ Construction-2
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Figure: Delete yz , split x and glue the two pieces of x to y and z . Call
the new graph H(G1,G2).



Ore’s Conjecture

Ore observed that Hajós’ construction implies

fk(n + k − 1) ≤ fk(n) + (k − 1)(
k

2
− 1

k − 1
), (5)

which yields that φk := limn→∞
fk (n)
n exists and satisfies

φk ≤
k

2
− 1

k − 1
. (6)

Gallai’s bound gives

φk ≥
1

2

(
k − 1 +

k − 3

k2 − 3

)
.

Ore (1967) conjectured that for every n ≥ k + 2, in (4) equality
holds.
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Other results

Krivelevich (1997), Stiebitz and A.K. (2003), Farzad and Molloy
(2009).

The problem of finding fk(n) is Problem 5.3 in the monograph of
Jensen and Toft and Problem 12 in their list of 25 pretty graph
colouring problems. It is a half of Problem P1 in the Handbook of
Graph Theory.



Theorem 3 [Yancey and A.K.] If k ≥ 4 and G is k-critical, then

|E (G )| ≥
⌈
(k+1)(k−2)|V (G)|−k(k−3)

2(k−1)

⌉
. In other words, if k ≥ 4 and

n ≥ k , n 6= k + 1, then

fk(n) ≥ F (k, n) :=

⌈
(k + 1)(k − 2)n − k(k − 3)

2(k − 1)

⌉
. (7)

This proves Conjecture 1 in full and implies that Ore’s Conjecture
holds for every n ≡ 1 mod k − 1 (n > 1).

Corollary 1: For every k ≥ 4 and n ≥ k + 2,

0 ≤ fk(n)− F (k, n) ≤ k(k − 1)

8
− 1.

In particular, φk = k
2 −

1
k−1 and f4(n) = F (4, n) for every n ≥ 6.
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Extremal graphs

A k-extremal graph is a k-critical graph G such that
|E (G )| = (k+1)(k−2)|V (G)|−k(k−3)

2(k−1) .

Kk is k-extremal.

If G1 and G2 are k-extremal, then H(G1,G2) is k-extremal.
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If G1 and G2 are k-extremal, then H(G1,G2) is k-extremal.

A graph is k-Ore if it is obtained by a sequence of Hajos’
constructions from a set of copies of Kk .

By above, every k-Ore graph is k-extremal.

So, for every k ≥ 4, there are infinitely many k-extremal graphs.
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Theorem 4 [Yancey and A.K.] Let k ≥ 4 and G be a k-critical
graph. Then G is k-extremal if and only if it is a k-Ore graph.
Moreover, if G is not a k-Ore graph, then

|E (G )| ≥ (k2−k−2)|V (G)|−yk
2(k−1) , where yk = max{2k − 6, k2− 5k + 2}.

This gives a slightly better approximation for fk(n) and adds new
cases where we now know the exact values of fk(n). In particular,
we know f5(n) for every n ≥ 7.

The value of yk in Theorem 4 is best possible in the sense that, as
observed by Bjarne Toft, for every k ≥ 4, there exists an infinite

family of 3-connected graphs with |E (G )| = (k2−k−2)|V (G)|−yk
2(k−1) .
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Planar graphs

Grötzsch’s Theorem Every planar triangle-free graph is
3-colorable.

Theorem 5 [Jensen and Thomassen] If a graph G is obtained from
a planar triangle-free graph H by adding a vertex of degree at most
3, then G is 3-colorable.

There are infinitely many 4-critical graphs obtained from a planar
triangle-free graph by adding a vertex of degree 5.
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A sharpening of Theorem 5

Theorem 6 [Borodin, A.K., Lidický and Yancey] If a graph G is
obtained from a planar triangle-free graph H by adding a vertex of
degree at most 4, then G is 3-colorable.

Proof: Let G be a smallest counter-example. Then G is 4-critical
and so 2-connected. Let v be the vertex added to a planar
triangle-free H. Suppose G has n vertices and e edges. Suppose H
has f faces, n′ vertices and e ′ edges.
Clearly, n′ = n − 1 and e ′ ≥ e − 4.

By Theorem 3,
e ≥ (5n − 2)/3. (8)

Folklore observation: H has no 4-faces.
Then 2e ′ ≥ 5f . Plug this into Euler’s Formula n′ − e ′ + f = 2:

n′ − e ′ +
2e ′

5
≥ 2, i.e. (n − 1)− 2 ≥ 3(e − 4)

5
.

So, 5n − 3 ≥ 3e, a contradiction to (6).
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Proof of the folklore observation
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Grünbaum–Aksenov Theorem

Theorem 7 [Grünbaum–Aksenov] Every planar graph with at most
three triangles is 3-colorable.

K4 shows that “three” in Theorem 7 cannot be replaced by “four”.

But maybe there are not many plane 4-critical graphs with exactly
four triangles (4, 4-graphs, for short)?

It turned out that there are many.
Havel in 1969 presented a 4, 4-graph H1 in which the four triangles
had no common vertices.



Grünbaum–Aksenov Theorem
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Havel used the quasi-edge H0 = H0(u, v) (on the left):
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Figure: A quasi-edge H0 and 4, 4-graphs H1 and H2.

Sachs in 1972 asked whether it is true that in every non-3-colorable
planar graph G with exactly four triangles and no separating
triangles, these triangles can be partitioned into two pairs so that
in each pair the distance between the triangles is less than two.
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Aksenov and Mel’nikov in 1978 answered to the question in the
negative by constructing a 4, 4-graph H2 (on the right):
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Figure: A quasi-edge H0 and 4, 4-graphs H1 and H2.

Moreover, they constructed two infinite series of 4, 4-graphs.



Question of Erdős

According to a survey of Steinberg,
Erdős in 1990 asked for description of 4, 4-graphs again.

Thomas and Walls constructed an infinite family T W of
4, 4-graphs that have no 4-faces (we will call 4, 4-graphs with no
4-faces 4, 4, 4f -graphs):

Figure: Smallest Thomas-Walls graphs.

Note that H1 is a 4, 4, 4f -graph but is not in T W. Graph H2 is not
a 4, 4, 4f -graph.
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4-Ore graphs

First we describe the family P4,4,4 of all 4, 4, 4f -graphs.

Recall that a graph is 4-Ore if it is obtained from a set of copies of
K4 by a sequence of the above Hajos’ constructions. Every 4-Ore
graph is 4-critical.

By Euler’s Formula, every 4, 4, 4f -graph is a 4-Ore graph.

On the other hand,

Theorem 8 [Borodin, Dvǒrák, A. K., Lidický, and Yancey] Every
4-Ore graph has at least four triangles. Moreover, a 4-Ore graph G
has exactly four triangles if and only if G is a 4, 4, 4f -graph.
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A characterization of 4, 4, 4f -graphs
Theorem 9 [B-D-K-L-Y] Every 4, 4, 4f -graph is either in T W or is
obtained from a graph in T W by replacing one or both diamond
edges by the Havel’s quasi-edge H0.

u

v
H0

v1

u1

r

u2

v2

s

H1

r1

r2r3

r4

r5 r6
s1

s2s3

s4

s5 s6

H2



A characterization of 4, 4, 4f -graphs
Theorem 9 [B-D-K-L-Y] Every 4, 4, 4f -graph is either in T W or is
obtained from a graph in T W by replacing one or both diamond
edges by the Havel’s quasi-edge H0.

u

v
H0

v1

u1

r

u2

v2

s

H1

r1

r2r3

r4

r5 r6
s1

s2s3

s4

s5 s6

H2



Example: A 4, 4-graph with no 5-faces
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Patches

A patch P is a subgraph of a plane graph such that
a) the boundary of P is a 6-cycle CP = (x , z ′, y , x ′, z , y ′), all
vertices on CP and inside CP are in P;
b) vertices x ′, y ′, z ′ have no neighbors outside of P,
c) all faces inside CP are 4-faces.

Observation: If G is a 4, 4-graph and a vertex x ∈ V (G ) has
exactly 3 neighbors, x , y and z , then the graph Gv obtained from
G − v by inserting a patch P with CP = (x , z ′, y , x ′, z , y ′) where
x , y , z are old and x ′, y ′, z ′ are new vertices is again a 4, 4-graph.



Examples
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Main result

Theorem 10 [B-D-K-L-Y] A plane 4-critical graph has exactly four
3-cycles if and only if it is obtained from a 4, 4, 4f -graph by
replacing several (maybe zero) non-adjacent 3-vertices with
patches.

This fully answers the question of Erdős from 1990.

So, Sachs had right intuition in 1972: his question has positive
answer if we replace “less than two” with “at most two”.

Aksenov and Mel’nikov in 1979 conjectured, in particular, that H1

is the unique smallest 4, 4-graph with the minimum distance 1
between triangles and H2 is the unique smallest 4, 4-graph with the
minimum distance 2 between triangles. Our description confirms
this.
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