## FROM INTERSECTION

## TO CAPACITY

JÁNOS KÖRNER Sapienza University Rome, Italy Erdős-Ko-Rado (1961)

A set family  $\mathcal{F} \subseteq 2^{[n]}$  is intersecting if

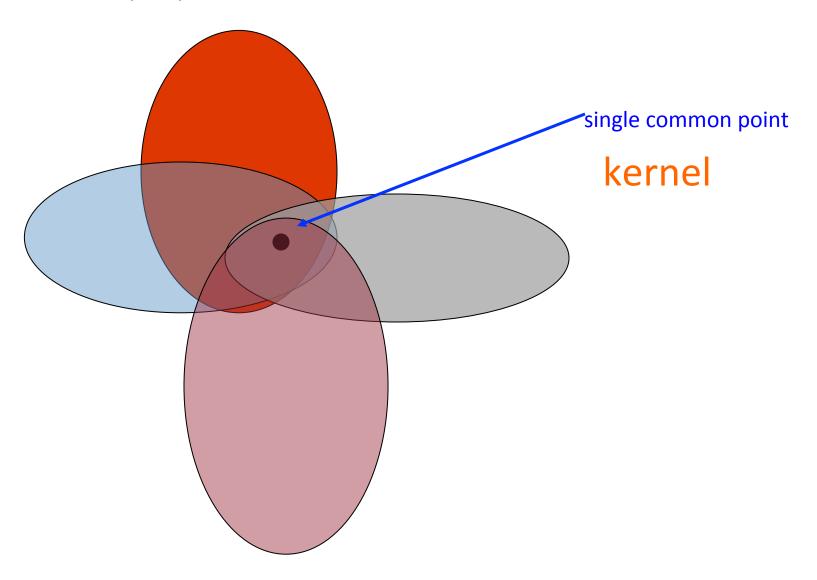
$$A \in \mathcal{F}$$
,  $B \in \mathcal{F} \Rightarrow A \cap B \neq \emptyset$ 

$$M(k,n)=\max\{|C|; C\subseteq \binom{[n]}{k}, C \text{ intersecting}\}$$

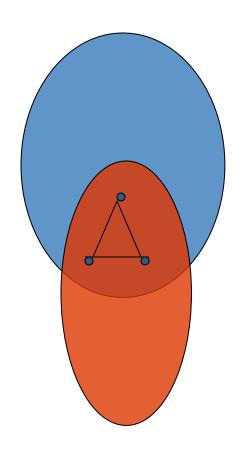
Theorem EKR

$$M(k,n) = \binom{n}{k}$$
 if  $k > n/2$   $\binom{n-1}{k-1}$  else

EKR: Unique optimal construction



#### Intersection problems



Simonovits-Sós (1976)

How many graphs with vertex set [n] can be found with their pairwise intersection containing a triangle?

Conjecture Simonovits - Sós:

Unique optimum: All graphs w. a fixed triangle

Proved: David Ellis, Ehud Friedgut, Yuval Filmus (2011)

Dual formulation: union-closed families

 $\mathcal{F}$  family of all graphs G on [n] with  $\alpha(G) \geq 3$ 

 $C \subseteq \mathcal{F}$  is union-closed if the pairwise union of its elements is in  $\mathcal{F}$ 

max |C| achieved by all graphs containing a fixed induced stable set of 3 vertices

#### Kernel structure

A family of strings (e. g. graphs described by the characteristic vectors of their edge set) is a kernel structure if

for a set of coordinates they all have the same projection.

Extremal union-closed families often have a kernel structure.

Two-family generalization

 ${\mathcal F}$  and  ${\mathcal G}$  not necessarily distinct graph families on [n]

Let  $M(\mathcal{F}, \mathcal{G})$  be the maximum cardinality of a  $C \subseteq \mathcal{F}$ 

such that for any two distinct  $A \in C$ ,  $B \in C$ 

$$A \cup B \in G$$

If  $\mathcal{F}=\mathcal{G}$ , then  $M(\mathcal{F},\mathcal{F})$  is the largest cardinality of a union-closed graph family in  $\mathcal{F}$ .

However,  ${\mathcal F}$  and  ${\mathcal G}$  are arbitrary and can be very different.

Let  $\mathcal{F} = \mathcal{F}(n, k)$  be the family of all graphs on [n] with at least k connected components.

G the connected graphs on [n]

The graphs in  $\mathcal{F}$  are very disconnected and thus very different from the connected graphs in  $\mathcal{G}$ .

What is the value of  $M(\mathcal{F}, \mathcal{G})$ ?

Theorem (Cohen, Fachini, K., (2013+))

$$\lim_{n\to\infty} 1/n \log_2 M(\mathcal{F}(n,k), \mathcal{G}) = h(1/k)$$

where  $h(t) = -\log_2 t - \log_2 (1-t)$  is the binary entropy function.

Theorem (Cohen, Fachini, K., (2013+))

$$\lim_{n\to\infty} 1/n \log_2 M(\mathcal{F}(n,k), \mathcal{G}) = h(1/k)$$

where  $h(t) = -\log_2 t - \log_2 (1-t)$  is the binary entropy function.

## Sketch of proof:



### Claim:

$$M(\mathcal{F}(n,k), \mathcal{G}) \leq \sum_{i=1}^{n/k} \binom{n}{i} \leq$$

$$\leq \exp_2 \left[ nh(1/k) \right]$$

W. l. o. g. suppose optimal

 $C \subseteq \mathcal{F}$  (n,k) consists of complements of complete k-partite graphs.

Every component uniquely belongs to its graph.

Thus each graph has a clique of size  $\leq n/k$  of its own.

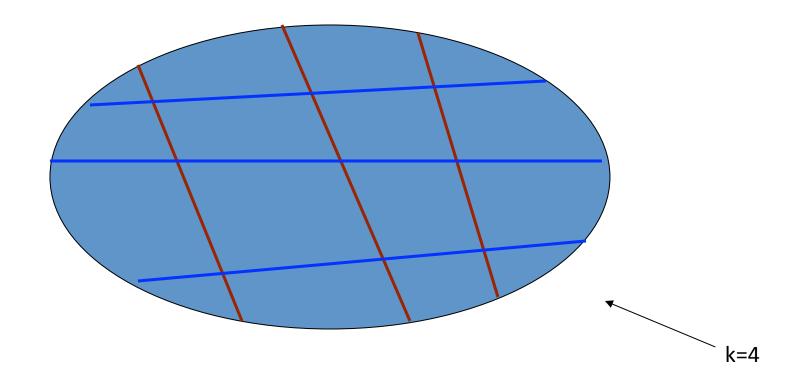
$$\downarrow$$

$$|C| \le \exp_2[nh(1/k)]$$



Example: two qualitatively independent k-partitions:

The union graph is connected.



Less is needed.

$$x \in [k]^n$$
,  $y \in [k]^n$ 

Characteristic vectors of two partitions representing graphs

Sufficient condition for the union to be connected:

For all 
$$A \subseteq [k] \exists i$$
  $X_i \subseteq A$   $Y_i \notin A$ 



$$\mathbf{x} \in [\mathbf{k}]^n$$
,  $\mathbf{y} \in [\mathbf{k}]^n$ 

Characteristic vectors of two partitions representing graphs

Sufficient condition for the union to be connected:



For all 
$$A \subseteq [k] \exists i$$
  $X_i \subseteq A$   $Y_i \notin A$ 

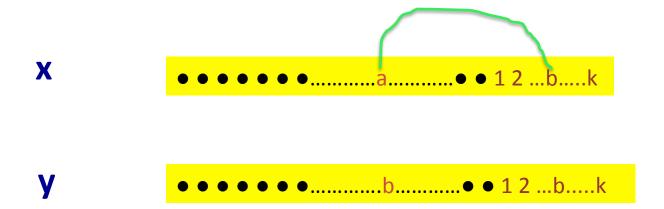
 $a \in A$ 

b∉A

$$\geq$$

$$\mathbf{x} \in [\mathbf{k}]^n$$
,  $\mathbf{y} \in [\mathbf{k}]^n$ 

x<sub>i</sub> of class a and the class b of x connected in y as vertices of its same class b



A maximum cardinality set of sequences with this property can be constructed using the

capacity result for graph families of Gargano-K-vaccaro

23 the family of all bipartite complete graphs on [k]

 $C_n \subseteq [k]^{n-k}$  a clique in the (n-k)'th power of all the graphs in 25

Adding the postfix 12...k to the strings in *C* we get the desired construction of graphs.

#### By theorem Gargano-K- Vaccaro

$$\exists C_{n}$$
, n=1,2,... with

$$n^{-1} \log_2 |C_n| \gtrsim \min_{\{A \subseteq [k]\}} h(|A|/k)$$

$$=h(1/k)$$

\_\_\_\_

#### Examples of other pairs of graph families

 $\mathcal{F}_{n}$  all the Hamilton paths in  $K_{n}$ 

 $\mathcal{G}$  graphs on [n] containing  $K_4$ 

Theorem (K-Messuti-Simonyi (2012))

$$\exp_2([n/4]) \le M(\mathcal{F}_n, G) \le (n+1)^2 (3/2)^{(n-1)}$$

#### Open problem

 $\mathcal{F}_{n}$  all the Hamilton paths in  $K_{n}$ 

 $\mathcal{G}$  graphs on [n] containing  $K_3$ 

$$M(\mathcal{F}_n, \mathcal{G})=?$$

many more...

#### Examples of other pairs of graph families

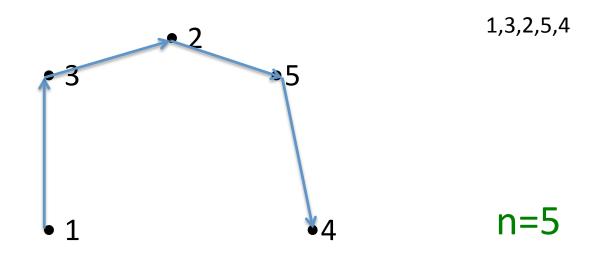
 $\mathcal{F}_{n}$  all the graphs of constant degree 2 on [n]

G graphs of maximum degree  $\geq 4$ 

Theorem (K-Muzi (2013+))

 $n![(n/3)!]^{-1} 6^{-n/3} \le M(\mathcal{F}_n, \mathcal{G}) \le n![(n/3)!]^{-1} e^{\sqrt{n}}$ 

#### More relations to graph capacity problems



Permutation of  $[n] \leftrightarrow$  Hamilton path in  $K_n$ 

Q: How many Hamilton paths in K<sub>n</sub> such that any two differ in some specific way?

### Permutation language:

How many permutations of [n] can we have so that

any two differ in some specific way?

$$C \subseteq S_n$$
  $\pi \in C$ ,  $\rho \in C$ ,  $\pi \neq \rho$ 

$$\exists i \in [n] \qquad |\pi(i) - \rho(i)| = 1$$

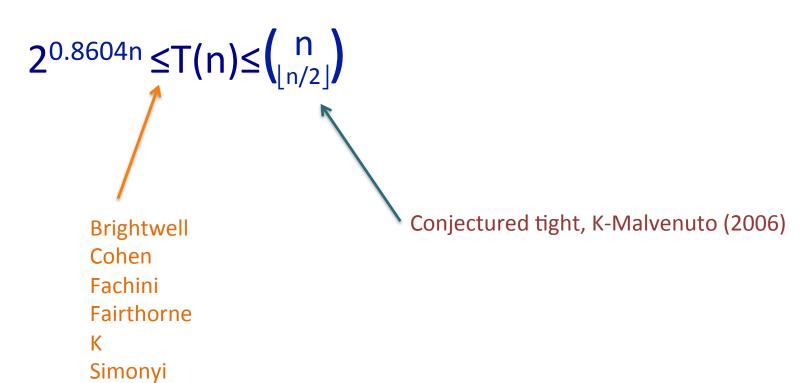
$$T(n)=max |C|$$

(K-Malvenuto, 2006)

#### **Current bounds**

Tóth

(2011)



Generalization: permutation capacity of infinite graphs

G infinite graph, V(G)=N (natural numbers)

$$C \subseteq S_n$$
  $\pi \in C$ ,  $\rho \in C$ ,  $\pi \neq \rho$   
 $\exists i \in [n] \{\pi(i), \rho(i)\} \in E(G)$ 

This generalizes Shannon capacity.

# THE END