Numbers that become composite after changing one or two digits
 Sergei Konyagin

Summary

- Introduction
- Sketch of the proof of Theorem 1
- Sketch of the proof of Theorem 2
- Open questions

Introduction

It is easy to see that $N=200$ possesses the following property: if we replace any digit in the decimal expansion of N with $d \in\{0, \ldots, 9\}$, then the number created by this replacement is composite. Moreover, N shares this property with all numbers $10 M$ where M runs over a subset of \mathbb{N} of density 1 . A question if there exist numbers N possessing this property, coprime to 10, is more difficult. P. Erdős (1950) showed that there exists an infinite arithmetic progression of odd integers N with the property that $\left|N-2^{i}\right|$ is composite for every i.

Modifying this method F. Cohen and J.L. Selfridge (1975) exhibited an arithmetic progression of odd integers N such that $\left|N-2^{i}\right|$ and $N+2^{i}$ are both composite for every i. Therefore, if we replace any digit in the binary expansion of N, then the number created by this replacement is composite. A similar problem for decimal expansions was studied by M. Filaseta, M. Kozek, Ch. Nicol, and J. Selfridge (2011).

They proved that there are infinitely many composite natural numbers N, coprime to 10 , with the property that if we replace any digit in the decimal expansion of N with $d \in\{0, \ldots, 9\}$, then the number created by this replacement is composite. The aim of the talk is to give answers to two questions posed in their paper.

Theorem 1. For any base $b>1$ there are infinitely many primes p that are composite for every replacement of a digit.

Theorem 2. For any base $b>1$ the set of composite natural numbers N that remain composite when any one or two digits base b are changed has a positive lower density.

After giving the talk I have learned that Theorem 1 was proved by T. Tao (2011). moreover, he established the existence of the set of primes of related positive density possessing this property. However, for completeness I have preserved the sketch of the proof of Theorem 1 in this revision of my talk.

Sketch of the proof of Theorem 1

We take a large positive integer n, and we will seek for primes $N<b^{n}$ that become composite after changing one digit. We consider only N with

$$
\begin{equation*}
N \equiv 1(\bmod b) \tag{1}
\end{equation*}
$$

It suffices to check that N is a prime and that all positive integers of the form

$$
N^{\prime}=N+a b^{j}
$$

with $1 \leqslant|a|<b, 0 \leqslant j<n$, are composite.

We take a small number $\varepsilon>0$ depending on b. Let $m=\left[n^{\varepsilon}\right]$. For any a with $1 \leqslant|a|<b$, we consider an interval $I_{a}=\left[K_{a}, m K_{a}\right)$ so that these intervals split an interval $[7, M)$ for some M,

$$
\begin{equation*}
M<7 \times n^{2 b \varepsilon} \tag{2}
\end{equation*}
$$

Fix a. For a vector $\mathbf{u}=\left(u_{k}\right)_{k \in I_{a}}$ with $u_{k}=u_{k}^{(a)} \in \mathbb{Z}$ we denote

$$
\begin{gathered}
J(a, \mathbf{u})=\left\{j<n: \exists k \in I_{a}: j \equiv u_{k}(\bmod k)\right\} \\
J^{\prime}(a, \mathbf{u})=[0, n) \backslash J(a, \mathbf{u})
\end{gathered}
$$

By averaging arguments, there exists a vector \mathbf{u} with $\left|J^{\prime}(a, \mathbf{u})\right| \leqslant n / m$. Denote $J(a)=J(a, \mathbf{u}), J^{\prime}(a)=J\left(a^{\prime}, \mathbf{u}\right)$. So, we have

$$
\begin{equation*}
\left|J^{\prime}(a)\right| \leqslant n / m \tag{3}
\end{equation*}
$$

We observe that the numbers u_{k} have been chosen for all $k \in[7, M)$.

Let $q(k)$ be any prime divisor of $b^{k}-1$ such that $q(k)$ does not divide any $b^{k^{\prime}}-1$ with $0<k^{\prime}<k$. For any $k \geqslant 7$ such $q(k)$ does exist by Bang's theorem (moreover, it exists for any $k \geqslant 3$ if $b>2$). We require the following congruences for N

$$
\begin{equation*}
\forall a \forall k \in I_{a} N+a b^{u_{k}} \equiv 0(\bmod q(k)) . \tag{4}
\end{equation*}
$$

Thus, we have that for all a and $j \in J(a)$ the number $N^{\prime}=N+a b^{j}$ is composite provided that $N^{\prime} \neq q(k)$ for $7 \leqslant k<M$. Observe that

$$
\begin{equation*}
\prod_{7 \leqslant k<M} q(k)<q^{M^{2}}<q^{n^{5 b \varepsilon}} \tag{5}
\end{equation*}
$$

We choose ε so small that $5 b \varepsilon<0.9$.

We take L so that

$$
\begin{equation*}
\pi(L)=[2 b n / m]+b+M \tag{6}
\end{equation*}
$$

and associate with any a and $j \in J^{\prime}(a)$ a prime $q(a, j) \in(b, L]$ distinct from all primes $q(k), 7 \leqslant k<M$. By (6) the numbers $q(a, j)$ can be chosen distinct. Now we require the following congruences for N

$$
\begin{equation*}
\forall a \forall j \in J^{\prime}(a) N+a b^{j} \equiv 0(\bmod q(a, j)) \tag{7}
\end{equation*}
$$

So, the number $N^{\prime}=N+a b^{j}$ is composite provided that $N^{\prime}>L$.

Let \mathcal{N} be the set of all positive integers $N<b^{n}$ satisfying (1), (4), and (7). Clearly, \mathcal{N} is an arithmetic progression with the difference

$$
D=b \prod_{7 \leqslant k<M} q(k) \prod_{a} \prod_{j \in J^{\prime}(a)} q(a, j) .
$$

Taking $\varepsilon=1 /(8 b)$ and recalling (2) and (5) we conclude

$$
\begin{equation*}
D \leqslant \exp \left(n^{1-\varepsilon / 2}\right) \tag{8}
\end{equation*}
$$

For all $N \in \mathcal{N}$, with a few exceptions, all positive numbers $N^{\prime}=N+a b^{j}$ with $1 \leqslant|a|<b, 0 \leqslant j<n$, are composite. One can take a subprogression $\mathcal{N}^{\prime} \subset \mathcal{N}$ with the difference D^{2} without exceptions. By (8) and Linnik's theorem, $\mathcal{N}^{\prime} \cap\left[1, b^{n}\right)$ contains a prime, and we are done.

Sketch of the proof of Theorem 2

We take a large positive integer n, and we will seek for many positive integers $N<b^{n}$ that remain composite when any two digits base b are changed. We consider only N with

$$
\begin{equation*}
N \equiv 0(\bmod b) \tag{9}
\end{equation*}
$$

It suffices to check that all positive integers of the form

$$
N^{\prime}=N+a_{1}+a_{2} b^{j}
$$

with $0 \leqslant a_{1}<b,\left|a_{2}\right|<b, 0 \leqslant j<n$, are composite.

We take a small number $\varepsilon>0$ depending on b. Let $L=\left[(1 / \varepsilon)^{2 b^{2}}\right]$. For any a_{1} and a_{2} with $0 \leqslant a_{1}<b,\left|a_{2}\right|<b$ we consider an interval $I_{a_{1}, a_{2}}=\left[K_{a_{1}, a_{2}}, K_{a_{1}, a_{2}} / \varepsilon\right)$ so that these intervals split an interval $[L, M)$ for some

$$
\begin{equation*}
M \leqslant L^{2} . \tag{10}
\end{equation*}
$$

Fix a_{1} and a_{2}. Denote

$$
J\left(a_{1}, a_{2}\right)=\left\{j<n: \exists k \in I_{a_{1}, a_{2}}: j \equiv u_{k}(\bmod k)\right\}
$$

for appropriate (randomly chosen) u_{k},

$$
J^{\prime}\left(a_{1}, a_{2}\right)=[0, n) \backslash J\left(a_{1}, a_{2}\right)
$$

We have

$$
\begin{equation*}
\left|J^{\prime}\left(a_{1}, a_{2}\right)\right| \ll \varepsilon n \tag{11}
\end{equation*}
$$

Let $q(k)$ be any prime divisor of $b^{k}-1$ such that $q(k)$ does not divide any $b^{k^{\prime}}-1$ with $0<k^{\prime}<k$. We get from standard arguments

$$
\begin{equation*}
\sum_{L \leqslant k \leqslant L^{2}} \frac{1}{q(k)} \ll 1 \tag{12}
\end{equation*}
$$

Let N satisfy

$$
\begin{equation*}
\forall a_{1}, a_{2} \forall k \in I_{a_{1}, a_{2}} N+a_{1}+a_{2} q^{u_{k}} \equiv 0(\bmod q(k)) . \tag{13}
\end{equation*}
$$

Thus, for all a_{1}, a_{2} and $j \in J\left(a_{1}, a_{2}\right)$ the number $N^{\prime}=N+a_{1}+a_{2} b^{j}$ is composite provided that $N^{\prime}>\max _{k} q(k)$. Let \mathcal{N} be the set of all positive integers $N<b^{n}$ satisfying (9) and (13). Clearly, \mathcal{N} is an arithmetic progression with difference

$$
D=b \prod_{L \leqslant k<M} q(k) .
$$

By Brun - Titcmarsh theorem and (12), for any fixed a_{1}, a_{2} and $j \in J^{\prime}\left(a_{1}, a_{2}\right)$ the number of primes of the form $N+a_{1}+a_{2} b^{j}, N \in \mathcal{N}$, is

$$
\ll S:=\frac{b^{n}}{\varphi(D) \log \left(b^{n} / D\right)} \ll \frac{b^{n}}{n D}
$$

Now we can estimate, by (11), the number T of such $N \in \mathcal{N}$ that $N+a_{1}+a_{2} b^{j}$ is prime for at least one a_{1}, a_{2} and $j \in J^{\prime}\left(a_{1}, a_{2}\right)$:

$$
T \ll 2 b^{2} \varepsilon n S \ll 2 b^{2} \varepsilon \frac{b^{n}}{D}
$$

Taking $\varepsilon=c b^{-2}$ for sufficiently small $c>0$, we get $T \leqslant \frac{b^{n}}{2 D}$. Thus, at least $\frac{b^{n}}{3 D}$ values of N are desirable.

The above arguments give a double exponential estimate for the density δ of the set of numbers N satisfying the theorem

$$
\delta \gg \exp \left(-\exp \left(C b^{2} \log b\right)\right)
$$

Open questions

By heuristic arguments, we can expect that Theorems 1 and 2 are sharp in the following sense.

Conjecture 1. For any base $b>1$ there are finitely many natural numbers N, $(N, b)=1$ that are composite for every replacement of one or two digits.

It looks that it is very hard to prove it even if we allow to replace a bounded number of digits. Maybe, a local version of the conjecture is more feasible.

Conjecture 2. There is an absolute constant C such that for any base $b>1$, any natural number M and any sufficiently large natural number N one can get after replacement at most C digits of N a number coprime to M.
M. Filaseta has informed me about the following challenging question.

Conjecture 3. For any natural number M there is a natural number n such that $5 \times 2^{n}+1$ is coprime to M.

If we replace 5 by 3 or 7 , there is nothing to prove. Say, for any odd M

$$
3 \times 2^{M!}+1 \equiv 4(\bmod M)
$$

