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Overview

B Regularity method

B Embedding graphs with vertices of unbounded degree

◦ A generalized version of the Blow-up Lemma

◦ More precisely, a blow-up lemma for arrangeable graphs:
with Julia Böttcher, Anusch Taraz and Andreas Würfl

B An application in Ramsey theory: by Julia Böttcher, Anusch Taraz
and Andreas Würfl
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graph G = (V, E) by ∆(G), that is, ∆(G) = maxv∈V deg(v).
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Maximum degree

Definition 1 (Maximum degree). We denote the maximum degree of a
graph G = (V, E) by ∆(G), that is, ∆(G) = maxv∈V deg(v).

Bounded maximum degree:

• (powers of) cycles

• F-factors

• grids

Unbounded maximum degree:

• trees

• planar graphs

• random graphs
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called a-arrangeable if there exists an ordering x1 ≺ · · · ≺ xn of V with
|NL(NR(xi))| ≤ a for all i = 1, . . . , n.
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Definition 2 (a-arrangeable; Chen and Schelp ’93). A graph G = (V, E) is
called a-arrangeable if there exists an ordering x1 ≺ · · · ≺ xn of V with
|NL(NR(xi))| ≤ a for all i = 1, . . . , n.

x1 xi xn

NR(xi)

NL(NR(xi))
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Arrangeability

• graphs with maximum degree ∆ are (∆(∆ − 1) + 1)-arrangeable

• trees are 1-arrangeable

• planar graphs are 761-arrangeable [Chen & Schelp ’93]

• planar graphs are 10-arrangeable [Kierstead & Trotter ’93]

• graphs with no Kp-subdivision are p8-arrangeable [Rödl & Thomas ’97]

• random graphs on n vertices with dn edges are almost surely 256d2-
arrangeable [Fox & Sudakov ’09]
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Bounded maximum degree vs bounded arrangeability

bounded arrangeability

bounded
maxi-
mum
degree

trees

planar graphs

K7-subdivision free graphs

random graphs
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The regularity method

Definition 3 ((ε, δ)-super-regular). Suppose ε and δ > 0. The graph G =

(V1 ∪ V2, E) with |V1| = |V2| = n is an (ε, δ)-super-regular pair if

B |d(W1,W2) − d(V1, V2)| ≤ ε for all W1 ⊆ V1, W2 ⊆ V2 with |W1|, |W2| ≥ εn,

B deg(v) ≥ δn for all v ∈ V1 ∪ V2.

V1 V2

W1
W2

d(W1,W2)

d(V1, V2)

d(W1,W2) =
e(W1,W2)

|W1||W2|

B “regularity”:
densities equally distributed

B “super-”:
high minimum degree



Regularity and Ramsey theory The regularity method
13

The regularity method

Theorem 4 (The Regularity Lemma (Szemerédi ’78)). For every ε > 0 and
m ∈ N there is M ∈ N such that every graph G = (V, E) can be partitioned
into V = V1 ∪ · · · ∪ Vk such that

B m ≤ k ≤M,

B |V1| ≤ |V2| ≤ · · · ≤ |Vk| ≤ |V1| + 1, and

B (Vi, Vj) is ε-regular for at least (1 − ε)
(
k
2

)
pairs ij ∈

(
[k]
2

)
.
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The regularity method

G

V1

V2

V3

V4

V5

ε-regular

V1 V2

W1
W2

d(W1,W2)

d(V1, V2)

d(W1,W2) =
e(W1,W2)

|W1||W2|



Regularity and Ramsey theory The Blow-up Lemma
15

The Blow-up Lemma



Regularity and Ramsey theory The Blow-up Lemma
15

The Blow-up Lemma
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Theorem 5 (The Blow-up Lemma (Komlós, Sárközy & Szemerédi ’97)).
For every δ > 0, ∆, r ∈ N there is ε > 0 such that the following holds. Let
G∗ = (V1 ∪ · · · ∪ Vr, E∗) and G = (V1 ∪ · · · ∪ Vr, E) be two graphs and
let R ⊆

(
[r]
2

)
be such that (Vi, Vj) is a complete bipartite graph in G∗ and

(Vi, Vj) is an (ε, δ)-super-regular graph in G whenever ij ∈ R. If H with
∆(H) ≤ ∆ can be embedded into G∗ then it can also be embedded into G.
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The Blow-up Lemma

G∗

V1

V2

V3

V4

V5

G

V1

V2

V3

V4

V5

H

f∗ f
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Applications of the Blow-up Lemma

Do graphs with sufficiently high minimum degree contain. . .

B Pósa & Seymour ’74: r-th powers of Hamiltonian cycles?

B Bollobás ’78: spanning trees T with ∆(T) ≤ ∆?

B Alon & Yuster ’96: F-factors (for F fixed)?

Answer: Yes!

B Pioneers: Komlós, Sárközy &
Szemerédi

Spanning subgraphs with
constant maximum degree!
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The Blow-up Lemma for arrangeable graphs

Theorem 7 (A generalised Blow-up Lemma (Böttcher, K., Taraz & Würfl
’13+)). For every δ > 0, a, r ∈ N there is ε > 0 such that the following
holds.
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The Blow-up Lemma for arrangeable graphs

Theorem 7 (A generalised Blow-up Lemma (Böttcher, K., Taraz & Würfl
’13+)). For every δ > 0, a, r ∈ N there is ε > 0 such that the following
holds. Let G∗ = (V1∪· · ·∪Vr, E∗) and G = (V1∪· · ·∪Vr, E) be two graphs
and let R ⊆

(
[r]
2

)
be such that (Vi, Vj) is a complete bipartite graph in G∗

and (Vi, Vj) is an (ε, δ)-super-regular graph in G whenever ij ∈ R. If H with
∆(H) ≤ n1/2/ logn is a-arrangeable and can be embedded into G∗ then it
can also be embedded into G.

x1 xi xn

NR(xi)

NL(NR(xi))
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The embedding method

B randomized greedy embedding
along the arrangeable ordering

H G

(ε, δ)-super-regular

x2

x3

x5

x1

x4

x6
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The embedding method

B randomized; follow arrangeable
ordering

• C(x) =
⋂

y∈NL(x)

NG
(
f(y)

)
• guarantee candidate sets for

successors

H G

(ε, δ)-super-regular

x2

x3

x5

x1

x4

x6

f

C(x2) = C(x3)
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The embedding method

B randomized; follow arrangeable
ordering

• C(x) =
⋂

y∈NL(x)

NG
(
f(y)

)
• guarantee candidate sets for

successors

H G

(ε, δ)-super-regular

x2

x3
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The embedding method

B randomized; follow arrangeable
ordering

• C(x) =
⋂

y∈NL(x)

NG
(
f(y)

)
• guarantee candidate sets for

successors

H G

(ε, δ)-super-regular

x2

x3

x5

x1

x4

x6

C(x4) = ∅?
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The embedding method

B randomized; follow arrangeable
ordering

• C(x) =
⋂

y∈NL(x)

NG
(
f(y)

)
• guarantee candidate sets for

successors

• respect ONE successor with the
help of ε-regularity

H G

(ε, δ)-super-regular

x2

x3

x5

x1

x4

x6



Regularity and Ramsey theory The BlupL for arrangeable graphs
26

The embedding method

B randomized; follow arrangeable
ordering

• C(x) =
⋂

y∈NL(x)

NG
(
f(y)

)
• guarantee candidate sets for

successors

• respect ONE successor with the
help of ε-regularity

All but at most 2εn vertices in C(x3) have
the “correct” degree into C(x4).

H G

(ε, δ)-super-regular

x2

x3

x5

x1

x4

x6

|C(x4)|� 1
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Why does arrangeability help?

Have to respect all successors, even if their number is growing with n

Problem: each successor might exclude 2εn candidates

Solution: the a-arrangeability of H

x1 xi xn

NR(xi)

NL(NR(xi))

all successors of xi have at most a predecessors in total⇒ these share at most 2a different candidate sets⇒ we exclude at most 2a+1εn candidates
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The embedding method
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x1

x4

x6
H G

x2

x3

x5

H G

x2

x3

x5

• randomized greedy embedding
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⋂

y∈NL(x)

NG(f(y))

• guarantee candidate sets for all
successors
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The embedding method

(ε, δ)-super-regular

x1

x4

x6
H G

x2

x3

x5

H G

x2

x3

x5

• randomized greedy embedding
along the arrangeable ordering

• C(x) =
⋂

y∈NL(x)

NG(f(y))

• guarantee candidate sets for all
successors

B handle occupied candidate sets

B finish the embedding with a
König–Hall type argument



Regularity and Ramsey theory The BlupL for arrangeable graphs
29

The auxiliary graphs

X1

V1

F1

x
v

H G

(ε, δ)-super-regular

x1

x6

x2

x3

x5

B finish the embedding by a
König–Hall type argument
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x1

x6

x2

x3

x5

B finish the embedding by a
König–Hall type argument

The auxiliary graphs:
Fi = (Xi ∪ Vi, Ei) with {x, v} ∈ Ei if
and only if v ∈ C(x).

The auxiliary graphs
◦ are weighted-ε ′-regular
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The auxiliary graphs

X1

V1

F1

x
v

H G

(ε, δ)-super-regular

x1

x6

x2

x3

x5

B finish the embedding by a
König–Hall type argument

The auxiliary graphs:
Fi = (Xi ∪ Vi, Ei) with {x, v} ∈ Ei if
and only if v ∈ C(x).

The auxiliary graphs
◦ are weighted-ε ′-regular and
◦ have linear minimum degree

with positive probability.
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An application in Ramsey theory

R(H) = two-colour Ramsey number of H

Theorem 8 (Böttcher, Taraz & Würfl ’13+). Almost every planar graph H is
such that R(H) ≤ 12 |H|.
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B Value of C: Graham, Rödl & Ruciński ’00, Conlon, Fox & Sudakov ’12

B Chen and Schelp ’93: R(H) ≤ C|H| for all planar graphs H



Regularity and Ramsey theory The BlupL for arrangeable graphs
31

An application in Ramsey theory (background)
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B Value of C: Graham, Rödl & Ruciński ’00, Conlon, Fox & Sudakov ’12

B Chen and Schelp ’93: R(H) ≤ C|H| for all planar graphs H

B Allen, Brightwell & Skokan ’10+: for every ∆, for every large enough
planar graph H with ∆(H) ≤ ∆, we have R(H) ≤ 12|H|
◦ McDiarmid & Reed: typical planar H = Hn:



Regularity and Ramsey theory The BlupL for arrangeable graphs
31

An application in Ramsey theory (background)
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An application in Ramsey theory (background)

B A conjecture of Burr and Erdős (1975): proved by Chvátal, Rödl,
Szemerédi & Trotter ’83 (regularity method): R(H) ≤ C|H| if ∆(H) ≤ ∆,
where C = C(∆)

B Value of C: Graham, Rödl & Ruciński ’00, Conlon, Fox & Sudakov ’12

B Chen and Schelp ’93: R(H) ≤ C|H| for all planar graphs H

B Allen, Brightwell & Skokan ’10+: for every ∆, for every large enough
planar graph H with ∆(H) ≤ ∆, we have R(H) ≤ 12|H|
◦ McDiarmid & Reed: typical planar H = Hn: ∆(H) = Θ(logn)

B Böttcher, Taraz & Würfl make use of the arrangeable blow-up lemma
to obtain R(H) ≤ 12|H| for almost every planar H
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