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SOME OF MY FAVOURITE PROBLEMS IN NUMBER
THEORY, COMBINATORICS, AND GEOMETRY

PauL ERDOS

To the memory of my old friend Professor George Svéd.
I heard of his untimely death while writing this paper.

INTRODUCTION

I wrote many papers on unsolved problems and I cannot avoid repetition, but I
hope to include at least some problems which have not yet been published. I will
start with some number theory.

I. NUMBER THEORY
1. Let 1 < a; < az < -+ < ar < n be a sequence of integers for which all the

subset sums Zle g;a; (£, = 0 or 1) are distinct. The powers of 2 have of course

' "~ A1 7 - - 1
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of some interest.

2. Covering congruences. This is perhaps my favourite problem. It is really sur-
prising that it has not been asked before. A system of congruences

a; (mod n;), ny<ng <--<ng (3)

is called a covering system if every integer satisfies at least one of the congru-
ences in (3). The simplest covering system is 0 (mod 2), 0 (mod 3), 1 (mod 4), 5
(mod 6), 7 (mod 12). The main problem is: Is it true that for every ¢ one can find
a covering system all whose moduli are larger than ¢? I offer 1000 dollars for a
proof or disproof.

- - - L - .. —~ - -
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3. Perhaps it is of some interest to relate the story of how I came to the problem
of covering congruences. In 1934 Romanoff [57] proved that the lower density of
the integers of the form 2% + p (p prime) is positive. This was surprising since the
number of sums 28 +p < z is ez. Romanoff in a letter in 1934 asked me if there were
infinitely many odd numbers not of the form 2% + p. Using covering congruences
I proved in [27] that there is an arithmetic progression of odd numbers no term

of which is of the form 2* + p. Independently Van der Corput also proved that
there are infinitely many odd numbers not of the form 2% +p. Crocker [16] proved

24. Erdés, P., A generalization of a theorem of Besicovitch, J. London Math. Soc. 11 (1936),

02-98.
25. , Integral distances, Bull. Amer. Math. Soc. 51 (1945), 996.
26. , On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248-250.
27. ., On integers of the form 2% +p and some related problems, Summa Brasiliensis Math.

II (1950), 113-123.
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Overview

> Regularity method

> Embedding graphs with vertices of unbounded degree

o A generalized version of the Blow-up Lemma

o More precisely, a blow-up lemma for arrangeable graphs:
with Julia Bottcher, Anusch Taraz and Andreas Wurfl

> An application in Ramsey theory: by Julia Bottcher, Anusch Taraz
and Andreas Wurfl
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Maximum degree

Definition 1 (Maximum degree). We denote the maximum degree of a
graph G = (V,E) by A(G), that is, A(G) = max,,cy deg(v).

Bounded maximum degree: Unbounded maximum degree:
e (powers of) cycles e trees
e F-factors e planar graphs
e Qrids e random graphs

NN
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Arrangeability

Definition 2 (a-arrangeable; Chen and Schelp ’93). A graph G = (V,E) is
called a-arrangeable if there exists an ordering x; < --- < xn of V with
IN{ (Nr(xi))| <aforalli=1,...,n.

NL(Ng(xi))

X1

NR(x)
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Arrangeability

e graphs with maximum degree A are (A(A — 1) + 1)-arrangeable

e trees are 1-arrangeable

e planar graphs are 761-arrangeable [Chen & Schelp '93]

e planar graphs are 10-arrangeable [Kierstead & Trotter '93]

e graphs with no Ky-subdivision are p3-arrangeable [Rédl & Thomas '97]

e random graphs on n vertices with dn edges are almost surely 256d2-
arrangeable [Fox & Sudakov '09]
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Bounded maximum degree vs bounded arrangeability
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The regularity method

Definition 3 ((e, 8)-super-regular). Suppose ¢ and 6 > 0. The graph G =
(V1 U Vo, BE) with V4] = |V,| =n is an (e, d)-super-regular pair if

> |d(W1,W3) —d(Vi, V)| < e forall Wy C Vi, W, C V) with Wy, W3] > en,

> deg(v) > on forallv e V; U V,.

W > “regularity”:
1 d(Wy, W;) , densities equally distributed
> “super-":
d(V1, V2) high minimum degree
V1 V)
e(W1, W,
d(Wi, W) = W4, W)

IW1[[W;|
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The regularity method

Theorem 4 (The Regularity Lemma (Szemerédi '78)). For every ¢ > 0 and
m € N there is M € N such that every graph G = (V, E) can be partitioned
inftoV =V;U---UVy such that

> m< k<M,
> Vil < Vo < < W < Vil + 1, and

> (Vi, V) Is e-regular for at least (1 — e)(]g) pairs ij € (Dz‘]).
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The regularity method

V3
G
|44 d(Wq, w
v, W) .
d(vaZ)
\%Z Vi V2
Vs
e(W1,W3)
AWy, W) =
Vi W Wl = il

e-regular
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The Blow-up Lemma

Theorem 5 (The Blow-up Lemma (Komlos, Sarkozy & Szemeredi '97)).
Forevery 6 > 0, A, r € N there is ¢ > 0 such that the following holds. Let
G*=(VyuUu---UV,E*)and G = (VyU--- UV, E) be two graphs and
let R C @) be such that (Vi, V;) is a complete bipartite graph in G* and
(V3 Vj) is an (e, d)-super-regular graph in G whenever ij € R. If H with
A(H) < A can be embedded into G* then it can also be embedded into G.

15
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The Blow-up Lemma

H

- ~
- ~
- ~
- ~
- ~
- ~
- ~
- ~
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Applications of the Blow-up Lemma

Do graphs with sufficiently high minimum degree contain. ..
> Pdsa & Seymour '74: r-th powers of Hamiltonian cycles?
> Bollobas '78: spanning trees T with A(T) < A?

> Alon & Yuster '96: F-factors (for F fixed)?

Answer: Yes!

> Pioneers: Komlds, Sarkdzy &
Szemerédi

VANVIANVIAN

Spanning subgraphs with
constant maximum degree!
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The Blow-up Lemma for arrangeable graphs

Theorem 7 (A generalised Blow-up Lemma (Bottcher, K., Taraz & Wurfl
'13+)). For every 6 > 0, a, r € N there is ¢ > 0 such that the following
holds.
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The Blow-up Lemma for arrangeable graphs

Theorem 7 (A generalised Blow-up Lemma (Bottcher, K., Taraz & Wurfl
'13+)). For every 6 > 0, a, r € N there is ¢ > 0 such that the following
holds. Let G* = (ViU---UVy, E*)and G = (VJU---U V4, E) be two graphs
and let R C @) be such that (Vi, V) is a complete bipartite graph in G*
and (Vi, V) is an (e, d)-super-regular graph in G whenever ij € R.
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The Blow-up Lemma for arrangeable graphs

Theorem 7 (A generalised Blow-up Lemma (Bottcher, K., Taraz & Wurfl
'13+)). For every 6 > 0, a, r € N there is ¢ > 0 such that the following
holds. Let G* = (ViU---UVy, E*)and G = (VJU---U V4, E) be two graphs
and let R C @) be such that (Vi, V) is a complete bipartite graph in G*
and (Vi, V) is an (¢, d)-super-regular graph in G whenever ij € R. If H with
A(H) < n'/2/10gn is a-arrangeable and can be embedded into G* then it
can also be embedded into G.

N (Nr(xi))

X1

NRr(x)
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The embedding method

H

> randomized greedy embedding
along the arrangeable ordering
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The embedding method

H

> randomized; follow arrangeable
ordering

e C(x)= [ Ng(f(y))
YENL(x)

e guarantee candidate sets for
successors

Clx2) = Cl(x3)

(e, 0)-super-regular
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The embedding method

> randomized; follow arrangeable H G
ordering
e C(x)= (1 Na(f(y)
YENL(x)
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The embedding method

> randomized; follow arrangeable H G
ordering
e C(x)= (1 Na(f(y)
YENL(x)
-

e guarantee candidate sets for
successors

e respect ONE successor with the
help of e-regularity

ég

(e, 0)-super-regular
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The embedding method

> randomized; follow arrangeable H

ordering

e C(x)= () Ng(f(y))
YEN (x)

e guarantee candidate sets for
successors

e respect ONE successor with the
help of e-regularity

3
All but at most 2en vertices in C(x3) have é
the “correct” degree into C(x4).

Clxg) > 1

(e, 0)-super-regular
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Why does arrangeability help?

Have to respect all successors, even if their number is growing with n
Problem: each successor might exclude 2en candidates

Solution: the a-arrangeability of H

NL(NRr(x4))

i w *n

NRr(x)

all successors of x; have at most a predecessors in total
= these share at most 29 different candidate sets
— we exclude at most 2¢t1en candidates
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G e randomized greedy embedding

along the arrangeable ordering

e C(x)= (] Ngl(f(y))
YEN (x)

e guarantee candidate sets for all
SUCCEeSSOrs

(e, 0)-super-regular
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The embedding method

G e randomized greedy embedding

along the arrangeable ordering
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The embedding method

G

e randomized greedy embedding
along the arrangeable ordering

e C(x)= (] Ngl(f(y))
YEN (x)

e guarantee candidate sets for all
SUCCEeSSOrs

> handle occupied candidate sets

> finish the embedding with a
Konig—Hall type argument

(e, 0)-super-regular
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The auxiliary graphs

> finish the embedding by a
Konig—Hall type argument

X1
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The auxiliary graphs
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The auxiliary graphs

> finish the embedding by a
Vi Konig—Hall type argument
e | The auxiliary graphs:

F, Fi = (Xj UV, Eq) with {x,v} € Ey if
and only if v € C(x).

The auxiliary graphs
o are weighted-¢’-regular and
o have linear minimum degree
with positive probability.
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An application in Ramsey theory

R(H) = two-colour Ramsey number of H

Theorem 8 (Boticher, Taraz & Wurfl '13+). Almost every planar graph H is
such that R(H) < 12 |H|.
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An application in Ramsey theory (background)

> A conjecture of Burr and Erdos (1975): proved by Chvatal, Rédl,
Szemerédi & Trotter 83 (regularity method): R(H) < C/H|if A(H) < A,
where C = C(A)

> Value of C: Graham, Rdd| & Rucinski ’00, Conlon, Fox & Sudakov ’12
> Chen and Schelp '93: R(H) < C|H| for all planar graphs H

> Allen, Brightwell & Skokan ’10+: for every A, for every large enough
planar graph H with A(H) < A, we have R(H) < 12|H]

o McDiarmid & Reed: typical planar H = H™: A(H) = ©(logn)

> Bottcher, Taraz & Wurfl make use of the arrangeable blow-up lemma
to obtain R(H) < 12|H| for almost every planar H
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Manuscripts

> http://arxiv.org/abs/1305.2059

> http://arxiv.org/abs/1305.2078


http://arxiv.org/abs/1305.2059
http://arxiv.org/abs/1305.2078

