The regularity method and Ramsey theory

Y. Kohayakawa (São Paulo)

Erdős Centennial
Budapest

4 July 2013

Partially supported by grants \#2013/07699-0 and \#2009/17831-7 of the São Paulo Research Foundation (FAPESP) and a CAPES/DAAD PROBRAL grant

Paul Erdős at the U. of São Paulo, November 1994

RESENHAS

do Instituto de Matemática e Estatística
da Universidade de São Paulo
Special Number Dedicated to Professor Paul Erdốs

Resenhas IME-USP, Volume 2, Number 2, 1995

This number of Resenhas IME-USP is based on the meeting Semana de Combinatória (Instituto de Matemática e Estatística, USP, 9-11 November 1994), which was held in honour of Professor Paul Erdôs, on the occasion of his visit to our institute.

Table of contents

- Y. Kohayakawa and I. Simon, Foreword [HTML I PostScript file]
- Programme of the Semana de Combinatória [HTML I PostScript file]
- Paul Erdös, Some of my Favourite Problems in Number Theory, Combinatorics, and Geometry [Abstract I Full paper (PDF file)]
- Zara I. Abud and Francisco Miraglia, A Measure Theoretic Erdös-Rado Theorem [Abstract]
- O.T. Alas, On Independent Sets [Abstract]
- Clovis C. Gonzaga, On the Complexity of Linear Programming [Abstract]
- Sóstenes L. Lins, An Algorithm to Classify 3-Manifolds? [Abstract]
- Cláudio L. Lucchesi and Marcelo H. Carvalho, Bases for the Matching Lattice of Matching Covered Graphs [Abstract]
- Tomasz Luczak, On Sum-free Sets of Natural Numbers [Abstract]
- Nicolau C. Saldanha and Carlos Tomei, An Overview of Domino and Lozenge Tilings [Abstract]

SOME OF MY FAVOURITE PROBLEMS IN NUMBER THEORY, COMBINATORICS, AND GEOMETRY

Paul Erdős
To the memory of my old friend Professor George Svéd.
I heard of his untimely death while writing this paper.

Introduction

I wrote many papers on unsolved problems and I cannot avoid repetition, but I hope to include at least some problems which have not yet been published. I will start with some number theory.

I. Number theory

1. Let $1 \leq a_{1}<a_{2}<\cdots<a_{k} \leq n$ be a sequence of integers for which all the subset sums $\sum_{i=1}^{k} \varepsilon_{i} a_{i}\left(\varepsilon_{i}=0\right.$ or 1$)$ are distinct. The powers of 2 have of course

of some interest.

2. Covering congruences. This is perhaps my favourite problem. It is really surprising that it has not been asked before. A system of congruences

$$
\begin{equation*}
a_{i} \quad\left(\bmod n_{i}\right), \quad n_{1}<n_{2}<\cdots<n_{k} \tag{3}
\end{equation*}
$$

is called a covering system if every integer satisfies at least one of the congruences in (3). The simplest covering system is $0(\bmod 2), 0(\bmod 3), 1(\bmod 4), 5$ $(\bmod 6), 7(\bmod 12)$. The main problem is: Is it true that for every c one can find a covering system all whose moduli are larger than c ? I offer 1000 dollars for a proof or disproof.
3. Perhaps it is of some interest to relate the story of how I came to the problem of covering congruences. In 1934 Romanoff [57] proved that the lower density of the integers of the form $2^{k}+p$ (p prime) is positive. This was surprising since the number of sums $2^{k}+p \leq x$ is $c x$. Romanoff in a letter in 1934 asked me if there were infinitely many odd numbers not of the form $2^{k}+p$. Using covering congruences I proved in [27] that there is an arithmetic progression of odd numbers no term
of which is of the form $2^{k}+p$. Independently Van der Corput also proved that there are infinitely many odd numbers not of the form $2^{k}+p$. Crocker [16] proved
24. Erdős, P., A generalization of a theorem of Besicovitch, J. London Math. Soc. 11 (1936), 92-98.
25. _ , Integral distances, Bull. Amer. Math. Soc. 51 (1945), 996.
26. _ On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248-250.
27. \quad, On integers of the form $2^{k}+p$ and some related problems, Summa Brasiliensis Math. II (1950), 113-123.

Overview

Overview

\triangleright Regularity method

Overview

\triangleright Regularity method
\triangleright Embedding graphs with vertices of unbounded degree

Overview

\triangleright Regularity method
\triangleright Embedding graphs with vertices of unbounded degree

- A generalized version of the Blow-up Lemma

Overview

\triangleright Regularity method
\triangleright Embedding graphs with vertices of unbounded degree

- A generalized version of the Blow-up Lemma
- More precisely, a blow-up lemma for arrangeable graphs: with Julia Böttcher, Anusch Taraz and Andreas Würfl

Overview

\triangleright Regularity method
\triangleright Embedding graphs with vertices of unbounded degree

- A generalized version of the Blow-up Lemma
- More precisely, a blow-up lemma for arrangeable graphs: with Julia Böttcher, Anusch Taraz and Andreas Würfl
\triangleright An application in Ramsey theory: by Julia Böttcher, Anusch Taraz and Andreas Würfl

Maximum degree

Definition 1 (Maximum degree). We denote the maximum degree of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ by $\Delta(\mathrm{G})$, that is, $\Delta(\mathrm{G})=\max _{v \in \mathrm{~V}} \operatorname{deg}(v)$.

Maximum degree

Definition 1 (Maximum degree). We denote the maximum degree of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ by $\Delta(\mathrm{G})$, that is, $\Delta(\mathrm{G})=\max _{v \in \mathrm{~V}} \operatorname{deg}(v)$.

Bounded maximum degree:

- (powers of) cycles
- F-factors
- grids

Unbounded maximum degree:

- trees
- planar graphs
- random graphs

Arrangeability

Arrangeability

Definition 2 (a-arrangeable; Chen and Schelp '93). A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is called a -arrangeable if there exists an ordering $x_{1} \prec \cdots \prec x_{\mathrm{n}}$ of V with $\left|N_{L}\left(N_{R}\left(x_{i}\right)\right)\right| \leq a$ for all $i=1, \ldots, n$.

Arrangeability

Definition 2 (a-arrangeable; Chen and Schelp '93). A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is called a -arrangeable if there exists an ordering $x_{1} \prec \cdots \prec x_{n}$ of V with $\left|N_{L}\left(N_{R}\left(x_{i}\right)\right)\right| \leq a$ for all $i=1, \ldots, n$.

Arrangeability

Arrangeability

- graphs with maximum degree Δ are $(\Delta(\Delta-1)+1)$-arrangeable

Arrangeability

- graphs with maximum degree Δ are $(\Delta(\Delta-1)+1)$-arrangeable
- trees are 1-arrangeable

Arrangeability

- graphs with maximum degree Δ are $(\Delta(\Delta-1)+1)$-arrangeable
- trees are 1-arrangeable
- planar graphs are 761-arrangeable [Chen \& Schelp '93]

Arrangeability

- graphs with maximum degree Δ are $(\Delta(\Delta-1)+1)$-arrangeable
- trees are 1-arrangeable
- planar graphs are 761-arrangeable [Chen \& Schelp '93]
- planar graphs are 10-arrangeable [Kierstead \& Trotter '93]

Arrangeability

- graphs with maximum degree Δ are $(\Delta(\Delta-1)+1)$-arrangeable
- trees are 1-arrangeable
- planar graphs are 761-arrangeable [Chen \& Schelp '93]
- planar graphs are 10-arrangeable [Kierstead \& Trotter '93]
- graphs with no K_{p}-subdivision are p^{8}-arrangeable [Rödl \& Thomas '97]

Arrangeability

- graphs with maximum degree Δ are $(\Delta(\Delta-1)+1)$-arrangeable
- trees are 1-arrangeable
- planar graphs are 761-arrangeable [Chen \& Schelp '93]
- planar graphs are 10-arrangeable [Kierstead \& Trotter '93]
- graphs with no K_{p}-subdivision are p^{8}-arrangeable [Rödl \& Thomas '97]
- random graphs on n vertices with dn edges are almost surely $256 d^{2}$ arrangeable [Fox \& Sudakov '09]

Bounded maximum degree vs bounded arrangeability

The regularity method

Definition 3 (($\varepsilon, \delta)$-super-regular). Suppose ε and $\delta>0$. The graph $G=$ $\left(\mathrm{V}_{1} \cup \mathrm{~V}_{2}, \mathrm{E}\right)$ with $\left|\mathrm{V}_{1}\right|=\left|\mathrm{V}_{2}\right|=\mathrm{n}$ is an (ε, δ)-super-regular pair if
$\triangleright\left|d\left(W_{1}, W_{2}\right)-d\left(V_{1}, V_{2}\right)\right| \leq \varepsilon$ for all $W_{1} \subseteq V_{1}, W_{2} \subseteq V_{2}$ with $\left|W_{1}\right|,\left|W_{2}\right| \geq \varepsilon n$,
$\triangleright \operatorname{deg}(v) \geq \delta n$ for all $v \in \mathrm{~V}_{1} \cup \mathrm{~V}_{2}$.

$$
d\left(W_{1}, W_{2}\right)=\frac{e\left(W_{1}, W_{2}\right)}{\left|W_{1}\right|\left|W_{2}\right|}
$$

\triangleright "regularity": densities equally distributed
\triangleright "super-":
high minimum degree

The regularity method

Theorem 4 (The Regularity Lemma (Szemerédi '78)). For every $\varepsilon>0$ and $m \in \mathbb{N}$ there is $M \in \mathbb{N}$ such that every graph $G=(V, E)$ can be partitioned into $\mathrm{V}=\mathrm{V}_{1} \cup \cdots \cup \mathrm{~V}_{\mathrm{k}}$ such that
$\triangleright m \leq k \leq M$,
$\triangleright\left|\mathrm{V}_{1}\right| \leq\left|\mathrm{V}_{2}\right| \leq \cdots \leq\left|\mathrm{V}_{\mathrm{k}}\right| \leq\left|\mathrm{V}_{1}\right|+1$, and
$\triangleright\left(V_{i}, V_{j}\right)$ is ε-regular for at least $(1-\varepsilon)\binom{k}{2}$ pairs $i j \in\binom{[k]}{2}$.

The regularity method

$$
d\left(W_{1}, W_{2}\right)=\frac{e\left(W_{1}, W_{2}\right)}{\left|W_{1}\right|\left|W_{2}\right|}
$$

The Blow-up Lemma

The Blow-up Lemma

Theorem 5 (The Blow-up Lemma (Komlós, Sárközy \& Szemerédi '97)). For every $\delta>0, \Delta, r \in \mathbb{N}$ there is $\varepsilon>0$ such that the following holds.

The Blow-up Lemma

Theorem 5 (The Blow-up Lemma (Komlós, Sárközy \& Szemerédi '97)). For every $\delta>0, \Delta, r \in \mathbb{N}$ there is $\varepsilon>0$ such that the following holds. Let $\mathrm{G}^{*}=\left(\mathrm{V}_{1} \cup \cdots \cup \mathrm{~V}_{\mathrm{r}}, \mathrm{E}^{*}\right)$ and $\mathrm{G}=\left(\mathrm{V}_{1} \cup \cdots \cup \mathrm{~V}_{\mathrm{r}}, \mathrm{E}\right)$ be two graphs and let $\mathrm{R} \subseteq\binom{[\mathrm{rr}]}{2}$ be such that $\left(\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{j}}\right)$ is a complete bipartite graph in G^{*} and $\left(V_{i}, V_{j}\right)$ is an (ε, δ)-super-regular graph in G whenever $i j \in R$.

The Blow-up Lemma

Theorem 5 (The Blow-up Lemma (Komlós, Sárközy \& Szemerédi '97)). For every $\delta>0, \Delta, \mathrm{r} \in \mathbb{N}$ there is $\varepsilon>0$ such that the following holds. Let $\mathrm{G}^{*}=\left(\mathrm{V}_{1} \cup \cdots \cup \mathrm{~V}_{\mathrm{r}}, \mathrm{E}^{*}\right)$ and $\mathrm{G}=\left(\mathrm{V}_{1} \cup \cdots \cup \mathrm{~V}_{\mathrm{r}}, \mathrm{E}\right)$ be two graphs and let $\mathrm{R} \subseteq\binom{[\mathrm{rr}]}{2}$ be such that $\left(\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{j}}\right)$ is a complete bipartite graph in G^{*} and $\left(\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{j}}\right)$ is an (ε, δ)-super-regular graph in G whenever $\mathrm{ij} \in \mathrm{R}$. If H with $\Delta(\mathrm{H}) \leq \Delta$ can be embedded into G^{*} then it can also be embedded into G .

The Blow-up Lemma

Applications of the Blow-up Lemma

Applications of the Blow-up Lemma

Do graphs with sufficiently high minimum degree contain...

Applications of the Blow-up Lemma

Do graphs with sufficiently high minimum degree contain...
\triangleright Pósa \& Seymour '74: r-th powers of Hamiltonian cycles?

Applications of the Blow-up Lemma

Do graphs with sufficiently high minimum degree contain...
\triangleright Pósa \& Seymour '74: r-th powers of Hamiltonian cycles?
\triangleright Bollobás '78: spanning trees T with $\Delta(\mathrm{T}) \leq \Delta$?

Applications of the Blow-up Lemma

Do graphs with sufficiently high minimum degree contain...
\triangleright Pósa \& Seymour '74: r-th powers of Hamiltonian cycles?
\triangleright Bollobás '78: spanning trees T with $\Delta(\mathrm{T}) \leq \Delta$?
\triangleright Alon \& Yuster '96: F-factors (for F fixed)?

Applications of the Blow-up Lemma

Do graphs with sufficiently high minimum degree contain...
\triangleright Pósa \& Seymour '74: r-th powers of Hamiltonian cycles?
\triangleright Bollobás '78: spanning trees T with $\Delta(\mathrm{T}) \leq \Delta$?
\triangleright Alon \& Yuster '96: F-factors (for F fixed)?

Applications of the Blow-up Lemma

Do graphs with sufficiently high minimum degree contain...
\triangleright Pósa \& Seymour '74: r-th powers of Hamiltonian cycles?
\triangleright Bollobás '78: spanning trees T with $\Delta(\mathrm{T}) \leq \Delta$?
\triangleright Alon \& Yuster '96: F-factors (for F fixed)?

Answer: Yes!
\triangleright Pioneers: Komlós, Sárközy \& Szemerédi

Applications of the Blow-up Lemma

Do graphs with sufficiently high minimum degree contain...
\triangleright Pósa \& Seymour '74: r-th powers of Hamiltonian cycles?
\triangleright Bollobás '78: spanning trees T with $\Delta(\mathrm{T}) \leq \Delta$?
\triangleright Alon \& Yuster '96: F-factors (for F fixed)?

Answer: Yes!

\triangleright Pioneers: Komlós, Sárközy \& Szemerédi

Spanning subgraphs with constant maximum degree!

The Blow-up Lemma

The Blow-up Lemma

Theorem 6 (The Blow-up Lemma (Komlós, Sárközy \& Szemerédi '97)). For every $\delta>0, \Delta, r \in \mathbb{N}$ there is $\varepsilon>0$ such that the following holds.

The Blow-up Lemma

Theorem 6 (The Blow-up Lemma (Komlós, Sárközy \& Szemerédi '97)). For every $\delta>0, \Delta, r \in \mathbb{N}$ there is $\varepsilon>0$ such that the following holds. Let $\mathrm{G}^{*}=\left(\mathrm{V}_{1} \cup \cdots \cup \mathrm{~V}_{\mathrm{r}}, \mathrm{E}^{*}\right)$ and $\mathrm{G}=\left(\mathrm{V}_{1} \cup \cdots \cup \mathrm{~V}_{\mathrm{r}}, \mathrm{E}\right)$ be two graphs and let $\mathrm{R} \subseteq\binom{[\mathrm{rr}]}{2}$ be such that $\left(\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{j}}\right)$ is a complete bipartite graph in G^{*} and $\left(V_{i}, V_{j}\right)$ is an (ε, δ)-super-regular graph in G whenever $i j \in R$.

The Blow-up Lemma

Theorem 6 (The Blow-up Lemma (Komlós, Sárközy \& Szemerédi '97)). For every $\delta>0, \Delta, r \in \mathbb{N}$ there is $\varepsilon>0$ such that the following holds. Let $\mathrm{G}^{*}=\left(\mathrm{V}_{1} \cup \cdots \cup \mathrm{~V}_{\mathrm{r}}, \mathrm{E}^{*}\right)$ and $\mathrm{G}=\left(\mathrm{V}_{1} \cup \cdots \cup \mathrm{~V}_{\mathrm{r}}, \mathrm{E}\right)$ be two graphs and let $\mathrm{R} \subseteq\binom{[\mathrm{rr}]}{2}$ be such that $\left(\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{j}}\right)$ is a complete bipartite graph in G^{*} and $\left(\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{j}}\right)$ is an (ε, δ)-super-regular graph in G whenever $\mathrm{ij} \in \mathrm{R}$. If H with $\Delta(\mathrm{H}) \leq \Delta$ can be embedded into G^{*}, then it can also be embedded into G .

The Blow-up Lemma for arrangeable graphs

The Blow-up Lemma for arrangeable graphs

Theorem 7 (A generalised Blow-up Lemma (Böttcher, K., Taraz \& Würfl '13+)). For every $\delta>0, a, r \in \mathbb{N}$ there is $\varepsilon>0$ such that the following holds.

The Blow-up Lemma for arrangeable graphs

Theorem 7 (A generalised Blow-up Lemma (Böttcher, K., Taraz \& Würfl '13+)). For every $\delta>0, a, r \in \mathbb{N}$ there is $\varepsilon>0$ such that the following holds. Let $\mathrm{G}^{*}=\left(\mathrm{V}_{1} \cup \cdots \cup \mathrm{~V}_{\mathrm{r}}, \mathrm{E}^{*}\right)$ and $\mathrm{G}=\left(\mathrm{V}_{1} \cup \cdots \cup \mathrm{~V}_{\mathrm{r}}, \mathrm{E}\right)$ be two graphs and let $R \subseteq\binom{[r]}{2}$ be such that $\left(\mathrm{V}_{i}, \mathrm{~V}_{\mathfrak{j}}\right)$ is a complete bipartite graph in G^{*} and $\left(\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{j}}\right)$ is an (ε, δ)-super-regular graph in G whenever $\mathrm{ij} \in \mathrm{R}$.

The Blow-up Lemma for arrangeable graphs

Theorem 7 (A generalised Blow-up Lemma (Böttcher, K., Taraz \& Würfl '13+)). For every $\delta>0, a, r \in \mathbb{N}$ there is $\varepsilon>0$ such that the following holds. Let $\mathrm{G}^{*}=\left(\mathrm{V}_{1} \cup \cdots \cup \mathrm{~V}_{\mathrm{r}}, \mathrm{E}^{*}\right)$ and $\mathrm{G}=\left(\mathrm{V}_{1} \cup \cdots \cup \mathrm{~V}_{\mathrm{r}}, \mathrm{E}\right)$ be two graphs and let $\mathrm{R} \subseteq\binom{[\mathrm{rr}]}{2}$ be such that $\left(\mathrm{V}_{\mathfrak{i}}, \mathrm{V}_{\mathfrak{j}}\right)$ is a complete bipartite graph in G^{*} and $\left(\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{j}}\right)$ is an (ε, δ)-super-regular graph in G whenever $\mathrm{ij} \in \mathrm{R}$. If H with $\Delta(\mathrm{H}) \leq \mathrm{n}^{1 / 2} / \log \mathrm{n}$ is a-arrangeable and can be embedded into G^{*} then it can also be embedded into G.

The embedding method

\triangleright randomized greedy embedding along the arrangeable ordering

(ε, δ)-super-regular

The embedding method

\triangleright randomized; follow arrangeable ordering

- $C(x)=\bigcap_{y \in N_{\mathrm{L}}(x)} N_{G}(f(y))$
- guarantee candidate sets for successors

(ε, δ)-super-regular

The embedding method

\triangleright randomized; follow arrangeable ordering

- $C(x)=\bigcap_{y \in N_{\mathrm{L}}(x)} N_{G}(f(y))$
- guarantee candidate sets for successors

(ε, δ)-super-regular

The embedding method

\triangleright randomized; follow arrangeable ordering

- $C(x)=\bigcap_{y \in N_{L}(x)} N_{G}(f(y))$
- guarantee candidate sets for successors

(ε, δ)-super-regular

The embedding method

\triangleright randomized; follow arrangeable ordering

- $C(x)=\bigcap_{y \in N_{\mathrm{L}}(x)} N_{G}(f(y))$
- guarantee candidate sets for successors

(ε, δ)-super-regular

The embedding method

\triangleright randomized; follow arrangeable ordering

- $C(x)=\bigcap_{y \in N_{L}(x)} N_{G}(f(y))$
- guarantee candidate sets for successors
- respect ONE successor with the help of ε-regularity

(ε, δ)-super-regular

The embedding method

\triangleright randomized; follow arrangeable ordering

- $C(x)=\bigcap_{y \in N_{L}(x)} N_{G}(f(y))$
- guarantee candidate sets for successors
- respect ONE successor with the help of ε-regularity

All but at most $2 \varepsilon n$ vertices in $C\left(x_{3}\right)$ have the "correct" degree into $C\left(x_{4}\right)$.

(ε, δ)-super-regular

Why does arrangeability help?

Have to respect all successors, even if their number is growing with n

Why does arrangeability help?

Have to respect all successors, even if their number is growing with n

Problem: each successor might exclude $2 \varepsilon n$ candidates

Why does arrangeability help?

Have to respect all successors, even if their number is growing with n

Problem: each successor might exclude $2 \varepsilon n$ candidates

Solution: the a-arrangeability of H

all successors of x_{i} have at most a predecessors in total
\Rightarrow these share at most $2^{\text {a }}$ different candidate sets
\Rightarrow we exclude at most 2^{a+1} हn candidates

The embedding method

(ε, δ)-super-regular

- randomized greedy embedding along the arrangeable ordering
- $C(x)=\bigcap_{y \in N_{L}(x)} N_{G}(f(y))$
- guarantee candidate sets for all successors

The embedding method

(ε, δ)-super-regular

- randomized greedy embedding along the arrangeable ordering
- $C(x)=\bigcap_{y \in N_{L}(x)} N_{G}(f(y))$
- guarantee candidate sets for all successors
\triangleright handle occupied candidate sets

The embedding method

(ε, δ)-super-regular

- randomized greedy embedding along the arrangeable ordering
- $C(x)=\bigcap_{y \in N_{L}(x)} N_{G}(f(y))$
- guarantee candidate sets for all successors
\triangleright handle occupied candidate sets
\triangleright finish the embedding with a König-Hall type argument

The auxiliary graphs

\triangleright finish the embedding by a König-Hall type argument
(ε, δ)-super-regular

The auxiliary graphs

\triangleright finish the embedding by a König-Hall type argument

The auxiliary graphs:
$F_{i}=\left(X_{i} \cup V_{i}, E_{i}\right)$ with $\{x, v\} \in E_{i}$ if and only if $v \in C(x)$.

The auxiliary graphs

- are weighted- ε^{\prime}-regular
(ε, δ)-super-regular

The auxiliary graphs

\triangleright finish the embedding by a König-Hall type argument

The auxiliary graphs:
$F_{i}=\left(X_{i} \cup V_{i}, E_{i}\right)$ with $\{x, v\} \in E_{i}$ if and only if $v \in C(x)$.

The auxiliary graphs

- are weighted- ε^{\prime}-regular and
- have linear minimum degree

The auxiliary graphs

(ε, δ)-super-regular
\triangleright finish the embedding by a König-Hall type argument

The auxiliary graphs:
$F_{i}=\left(X_{i} \cup V_{i}, E_{i}\right)$ with $\{x, v\} \in E_{i}$ if and only if $v \in C(x)$.

The auxiliary graphs

- are weighted- ε^{\prime}-regular and
- have linear minimum degree with positive probability.

An application in Ramsey theory

$\mathrm{R}(\mathrm{H})=$ two-colour Ramsey number of H

An application in Ramsey theory

$\mathrm{R}(\mathrm{H})=$ two-colour Ramsey number of H

Theorem 8 (Böttcher, Taraz \& Würfl '13+). Almost every planar graph H is such that $\mathrm{R}(\mathrm{H}) \leq 12|\mathrm{H}|$.

An application in Ramsey theory (background)

An application in Ramsey theory (background)

\triangleright A conjecture of Burr and Erdős (1975):

An application in Ramsey theory (background)

\triangleright A conjecture of Burr and Erdős (1975): proved by Chvátal, Rödl, Szemerédi \& Trotter '83 (regularity method): $\mathrm{R}(\mathrm{H}) \leq \mathrm{C}|\mathrm{H}|$ if $\Delta(\mathrm{H}) \leq \Delta$, where $\mathrm{C}=\mathrm{C}(\Delta)$

An application in Ramsey theory (background)

\triangleright A conjecture of Burr and Erdős (1975): proved by Chvátal, Rödl, Szemerédi \& Trotter '83 (regularity method): $\mathrm{R}(\mathrm{H}) \leq \mathrm{C}|\mathrm{H}|$ if $\Delta(\mathrm{H}) \leq \Delta$, where $C=C(\Delta)$
\triangleright Value of C: Graham, Rödl \& Ruciński '00, Conlon, Fox \& Sudakov '12

An application in Ramsey theory (background)

\triangleright A conjecture of Burr and Erdős (1975): proved by Chvátal, Rödl, Szemerédi \& Trotter ' 83 (regularity method): $\mathrm{R}(\mathrm{H}) \leq \mathrm{C}|\mathrm{H}|$ if $\Delta(\mathrm{H}) \leq \Delta$, where $C=C(\Delta)$
\triangleright Value of C: Graham, Rödl \& Ruciński '00, Conlon, Fox \& Sudakov '12
\triangleright Chen and Schelp '93: $\mathrm{R}(\mathrm{H}) \leq \mathrm{C}|\mathrm{H}|$ for all planar graphs H

An application in Ramsey theory (background)

\triangleright A conjecture of Burr and Erdős (1975): proved by Chvátal, Rödl, Szemerédi \& Trotter '83 (regularity method): $\mathrm{R}(\mathrm{H}) \leq \mathrm{C}|\mathrm{H}|$ if $\Delta(\mathrm{H}) \leq \Delta$, where $\mathrm{C}=\mathrm{C}(\Delta)$
\triangleright Value of C: Graham, Rödl \& Ruciński '00, Conlon, Fox \& Sudakov '12
\triangleright Chen and Schelp '93: $\mathrm{R}(\mathrm{H}) \leq \mathrm{C}|\mathrm{H}|$ for all planar graphs H
\triangleright Allen, Brightwell \& Skokan '10+: for every Δ, for every large enough planar graph H with $\Delta(\mathrm{H}) \leq \Delta$, we have $\mathrm{R}(\mathrm{H}) \leq 12|\mathrm{H}|$

An application in Ramsey theory (background)

\triangleright A conjecture of Burr and Erdős (1975): proved by Chvátal, Rödl, Szemerédi \& Trotter '83 (regularity method): $\mathrm{R}(\mathrm{H}) \leq \mathrm{C}|\mathrm{H}|$ if $\Delta(\mathrm{H}) \leq \Delta$, where $\mathrm{C}=\mathrm{C}(\Delta)$
\triangleright Value of C: Graham, Rödl \& Ruciński '00, Conlon, Fox \& Sudakov '12
\triangleright Chen and Schelp '93: $\mathrm{R}(\mathrm{H}) \leq \mathrm{C}|\mathrm{H}|$ for all planar graphs H
\triangleright Allen, Brightwell \& Skokan '10+: for every Δ, for every large enough planar graph H with $\Delta(\mathrm{H}) \leq \Delta$, we have $\mathrm{R}(\mathrm{H}) \leq 12|\mathrm{H}|$

- McDiarmid \& Reed: typical planar $\mathrm{H}=\mathrm{H}^{\mathrm{n}}$:

An application in Ramsey theory (background)

\triangleright A conjecture of Burr and Erdős (1975): proved by Chvátal, Rödl, Szemerédi \& Trotter '83 (regularity method): $\mathrm{R}(\mathrm{H}) \leq \mathrm{C}|\mathrm{H}|$ if $\Delta(\mathrm{H}) \leq \Delta$, where $\mathrm{C}=\mathrm{C}(\Delta)$
\triangleright Value of C: Graham, Rödl \& Ruciński '00, Conlon, Fox \& Sudakov '12
\triangleright Chen and Schelp '93: $\mathrm{R}(\mathrm{H}) \leq \mathrm{C}|\mathrm{H}|$ for all planar graphs H
\triangleright Allen, Brightwell \& Skokan '10+: for every Δ, for every large enough planar graph H with $\Delta(\mathrm{H}) \leq \Delta$, we have $\mathrm{R}(\mathrm{H}) \leq 12|\mathrm{H}|$

- McDiarmid \& Reed: typical planar H $=\mathrm{H}^{\mathrm{n}}: \quad \Delta(\mathrm{H})=\Theta(\log n)$

An application in Ramsey theory (background)

\triangleright A conjecture of Burr and Erdős (1975): proved by Chvátal, Rödl, Szemerédi \& Trotter ' 83 (regularity method): $\mathrm{R}(\mathrm{H}) \leq \mathrm{C}|\mathrm{H}|$ if $\Delta(\mathrm{H}) \leq \Delta$, where $\mathrm{C}=\mathrm{C}(\Delta)$
\triangleright Value of C: Graham, Rödl \& Ruciński '00, Conlon, Fox \& Sudakov '12
\triangleright Chen and Schelp '93: $\mathrm{R}(\mathrm{H}) \leq \mathrm{C}|\mathrm{H}|$ for all planar graphs H
\triangleright Allen, Brightwell \& Skokan '10+: for every Δ, for every large enough planar graph H with $\Delta(\mathrm{H}) \leq \Delta$, we have $\mathrm{R}(\mathrm{H}) \leq 12|\mathrm{H}|$

- McDiarmid \& Reed: typical planar H $=\mathrm{H}^{\mathrm{n}}: \quad \Delta(\mathrm{H})=\Theta(\log n)$
\triangleright Böttcher, Taraz \& Würfl make use of the arrangeable blow-up lemma to obtain $\mathrm{R}(\mathrm{H}) \leq 12|\mathrm{H}|$ for almost every planar H

Manuscripts

■ http://arxiv.org/abs/1305.2059
\triangleright http://arxiv.org/abs/1305.2078

