The regularity method and Ramsey theory

Y. Kohayakawa (São Paulo)

Erdős Centennial Budapest

4 July 2013

Partially supported by grants #2013/07699-0 and #2009/17831-7 of the São Paulo Research Foundation (FAPESP) and a CAPES/DAAD PROBRAL grant

Regularity and Ramsey theory

Paul Erdős at the U. of São Paulo, November 1994

RESENHAS

do Instituto de Matemática e Estatística

da Universidade de São Paulo

Special Number Dedicated to Professor Paul Erdős

Resenhas IME-USP, Volume 2, Number 2, 1995

This number of *Resenhas IME-USP* is based on the meeting **Semana de Combinatória** (Instituto de Matemática e Estatística, USP, 9-11 November 1994), which was held in honour of Professor Paul Erdős, on the occasion of his visit to our institute.

Table of contents

- Y. Kohayakawa and I. Simon, Foreword [HTML | PostScript file]
- Programme of the Semana de Combinatória [HTML | PostScript file]
- Paul Erdös, Some of my Favourite Problems in Number Theory, Combinatorics, and Geometry [Abstract | Full paper (PDF file)]
- Zara I. Abud and Francisco Miraglia, A Measure Theoretic Erdős-Rado Theorem [Abstract]
- O.T. Alas, On Independent Sets [Abstract]
- Clovis C. Gonzaga, On the Complexity of Linear Programming [Abstract]
- Sóstenes L. Lins, An Algorithm to Classify 3-Manifolds? [Abstract]
- Cláudio L. Lucchesi and Marcelo H. Carvalho, Bases for the Matching Lattice of Matching Covered Graphs [Abstract]
- Tomasz Luczak, On Sum-free Sets of Natural Numbers [Abstract]
- <u>Nicolau C. Saldanha</u> and Carlos Tomei, An Overview of Domino and Lozenge Tilings [Abstract]

SOME OF MY FAVOURITE PROBLEMS IN NUMBER THEORY, COMBINATORICS, AND GEOMETRY

PAUL ERDŐS

To the memory of my old friend Professor George Svéd. I heard of his untimely death while writing this paper.

INTRODUCTION

I wrote many papers on unsolved problems and I cannot avoid repetition, but I hope to include at least some problems which have not yet been published. I will start with some number theory.

I. NUMBER THEORY

1. Let $1 \le a_1 < a_2 < \cdots < a_k \le n$ be a sequence of integers for which all the subset sums $\sum_{i=1}^{k} \varepsilon_i a_i$ ($\varepsilon_i = 0$ or 1) are distinct. The powers of 2 have of course

of some interest.

2. Covering congruences. This is perhaps my favourite problem. It is really surprising that it has not been asked before. A system of congruences

$$a_i \pmod{n_i}, \qquad n_1 < n_2 < \dots < n_k \tag{3}$$

is called a *covering system* if every integer satisfies at least one of the congruences in (3). The simplest covering system is 0 (mod 2), 0 (mod 3), 1 (mod 4), 5 (mod 6), 7 (mod 12). The main problem is: Is it true that for every c one can find a covering system all whose moduli are larger than c? I offer 1000 dollars for a proof or disproof.

3. Perhaps it is of some interest to relate the story of how I came to the problem of covering congruences. In 1934 Romanoff [57] proved that the lower density of the integers of the form $2^k + p$ (p prime) is positive. This was surprising since the number of sums $2^k + p \leq x$ is cx. Romanoff in a letter in 1934 asked me if there were infinitely many odd numbers not of the form $2^k + p$. Using covering congruences I proved in [27] that there is an arithmetic progression of odd numbers no term

of which is of the form $2^k + p$. Independently Van der Corput also proved that there are infinitely many odd numbers not of the form $2^k + p$. Crocker [16] proved

24. Erdős, P., A generalization of a theorem of Besicovitch, J. London Math. Soc. 11 (1936), 92–98.

• • •

- 25. _____, Integral distances, Bull. Amer. Math. Soc. 51 (1945), 996.
- 26. ____, On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248-250.
- 27. _____, On integers of the form $2^k + p$ and some related problems, Summa Brasiliensis Math. II (1950), 113–123.

Regularity method

Embedding graphs with vertices of unbounded degree

- Embedding graphs with vertices of unbounded degree
 - A generalized version of the **Blow-up Lemma**

- Embedding graphs with vertices of unbounded degree
 - A generalized version of the **Blow-up Lemma**
 - More precisely, a blow-up lemma for arrangeable graphs: with Julia Böttcher, Anusch Taraz and Andreas Würfl

- Embedding graphs with vertices of unbounded degree
 - A generalized version of the **Blow-up Lemma**
 - More precisely, a blow-up lemma for arrangeable graphs: with Julia Böttcher, Anusch Taraz and Andreas Würfl
- An application in Ramsey theory: by Julia Böttcher, Anusch Taraz and Andreas Würfl

Maximum degree

Definition 1 (Maximum degree). We denote the maximum degree of a graph G = (V, E) by $\Delta(G)$, that is, $\Delta(G) = \max_{v \in V} \deg(v)$.

Maximum degree

Definition 1 (Maximum degree). We denote the maximum degree of a graph G = (V, E) by $\Delta(G)$, that is, $\Delta(G) = \max_{v \in V} \deg(v)$.

Bounded maximum degree:

- (powers of) cycles
- F-factors
- grids

Unbounded maximum degree:

- trees
- planar graphs
- random graphs

8

Regularity and Ramsey theory

Arrangeability

Arrangeability

Definition 2 (a-arrangeable; Chen and Schelp '93). A graph G = (V, E) is called a-arrangeable if there exists an ordering $x_1 \prec \cdots \prec x_n$ of V with $|N_L(N_R(x_i))| \leq a$ for all i = 1, ..., n.

Arrangeability

Definition 2 (a-arrangeable; Chen and Schelp '93). A graph G = (V, E) is called a-arrangeable if there exists an ordering $x_1 \prec \cdots \prec x_n$ of V with $|N_L(N_R(x_i))| \leq a$ for all i = 1, ..., n.

Regularity and Ramsey theory

Arrangeability

Arrangeability

• graphs with maximum degree Δ are $(\Delta(\Delta - 1) + 1)$ -arrangeable

Arrangeability

- graphs with maximum degree Δ are $(\Delta(\Delta 1) + 1)$ -arrangeable
- trees are 1-arrangeable

Arrangeability

- graphs with maximum degree Δ are $(\Delta(\Delta 1) + 1)$ -arrangeable
- trees are 1-arrangeable
- planar graphs are 761-arrangeable [Chen & Schelp '93]

Arrangeability

- graphs with maximum degree Δ are $(\Delta(\Delta 1) + 1)$ -arrangeable
- trees are 1-arrangeable
- planar graphs are 761-arrangeable [Chen & Schelp '93]
- planar graphs are 10-arrangeable [Kierstead & Trotter '93]

10

Arrangeability

- graphs with maximum degree Δ are $(\Delta(\Delta 1) + 1)$ -arrangeable
- trees are 1-arrangeable
- planar graphs are 761-arrangeable [Chen & Schelp '93]
- planar graphs are 10-arrangeable [Kierstead & Trotter '93]
- graphs with no K_p -subdivision are p^8 -arrangeable [Rödl & Thomas '97]

Arrangeability

- graphs with maximum degree Δ are $(\Delta(\Delta 1) + 1)$ -arrangeable
- trees are 1-arrangeable
- planar graphs are 761-arrangeable [Chen & Schelp '93]
- planar graphs are 10-arrangeable [Kierstead & Trotter '93]
- graphs with no K_p -subdivision are p^8 -arrangeable [Rödl & Thomas '97]
- random graphs on n vertices with dn edges are almost surely 256d²arrangeable [Fox & Sudakov '09]

Bounded maximum degree vs bounded arrangeability

The regularity method

Definition 3 ((ε , δ)-super-regular). Suppose ε and $\delta > 0$. The graph $G = (V_1 \cup V_2, E)$ with $|V_1| = |V_2| = n$ is an (ε , δ)-super-regular pair if

 $\triangleright ||d(W_1, W_2) - d(V_1, V_2)| \le \epsilon \text{ for all } W_1 \subseteq V_1, W_2 \subseteq V_2 \text{ with } |W_1|, |W_2| \ge \epsilon n,$

 $\triangleright \ \text{deg}(\nu) \geq \delta n \text{ for all } \nu \in V_1 \cup V_2.$

- "regularity": densities equally distributed
- super-":high minimum degree

The regularity method

Theorem 4 (The Regularity Lemma (Szemerédi '78)). For every $\varepsilon > 0$ and $m \in \mathbb{N}$ there is $M \in \mathbb{N}$ such that every graph G = (V, E) can be partitioned into $V = V_1 \cup \cdots \cup V_k$ such that

- \triangleright m \leq k \leq M,
- $arpropto |V_1| \le |V_2| \le \dots \le |V_k| \le |V_1| + 1$, and
- \triangleright (V_i, V_j) is ε -regular for at least $(1 \varepsilon) \binom{k}{2}$ pairs $ij \in \binom{[k]}{2}$.

The regularity method

$$d(W_1, W_2) = \frac{e(W_1, W_2)}{|W_1||W_2|}$$

The Blow-up Lemma

The Blow-up Lemma

Theorem 5 (The Blow-up Lemma (Komlós, Sárközy & Szemerédi '97)). For every $\delta > 0$, Δ , $r \in \mathbb{N}$ there is $\varepsilon > 0$ such that the following holds.

The Blow-up Lemma

Theorem 5 (The Blow-up Lemma (Komlós, Sárközy & Szemerédi '97)). For every $\delta > 0$, Δ , $r \in \mathbb{N}$ there is $\varepsilon > 0$ such that the following holds. Let $G^* = (V_1 \cup \cdots \cup V_r, E^*)$ and $G = (V_1 \cup \cdots \cup V_r, E)$ be two graphs and let $R \subseteq {[r] \choose 2}$ be such that (V_i, V_j) is a complete bipartite graph in G^* and (V_i, V_j) is an (ε, δ) -super-regular graph in G whenever $ij \in R$.

The Blow-up Lemma

Theorem 5 (The Blow-up Lemma (Komlós, Sárközy & Szemerédi '97)). For every $\delta > 0$, Δ , $r \in \mathbb{N}$ there is $\varepsilon > 0$ such that the following holds. Let $G^* = (V_1 \cup \cdots \cup V_r, E^*)$ and $G = (V_1 \cup \cdots \cup V_r, E)$ be two graphs and let $R \subseteq {[r] \choose 2}$ be such that (V_i, V_j) is a complete bipartite graph in G^* and (V_i, V_j) is an (ε, δ) -super-regular graph in G whenever $ij \in R$. If H with $\Delta(H) \leq \Delta$ can be embedded into G^* then it can also be embedded into G.

The Blow-up Lemma

Applications of the Blow-up Lemma

Applications of the Blow-up Lemma

Do graphs with sufficiently high minimum degree contain...
Do graphs with sufficiently high minimum degree contain...

▷ Pósa & Seymour '74: r-th powers of Hamiltonian cycles?

Do graphs with sufficiently high minimum degree contain...

- ▷ Pósa & Seymour '74: r-th powers of Hamiltonian cycles?
- ▷ Bollobás '78: spanning trees T with $\Delta(T) \leq \Delta$?

Do graphs with sufficiently high minimum degree contain...

- ▷ Pósa & Seymour '74: r-th powers of Hamiltonian cycles?
- ▷ Bollobás '78: spanning trees T with $\Delta(T) \leq \Delta$?
- ▷ Alon & Yuster '96: F-factors (for F fixed)?

Do graphs with sufficiently high minimum degree contain...

- ▷ Pósa & Seymour '74: r-th powers of Hamiltonian cycles?
- ▷ Bollobás '78: spanning trees T with $\Delta(T) \leq \Delta$?
- ▷ Alon & Yuster '96: F-factors (for F fixed)?

Do graphs with sufficiently high minimum degree contain...

- ▷ Pósa & Seymour '74: r-th powers of Hamiltonian cycles?
- ▷ Bollobás '78: spanning trees T with $\Delta(T) \leq \Delta$?
- ▷ Alon & Yuster '96: F-factors (for F fixed)?

Answer: Yes!

Pioneers: Komlós, Sárközy &Szemerédi

Do graphs with sufficiently high minimum degree contain...

- ▷ Pósa & Seymour '74: r-th powers of Hamiltonian cycles?
- ▷ Bollobás '78: spanning trees T with $\Delta(T) \leq \Delta$?
- ▷ Alon & Yuster '96: F-factors (for F fixed)?

Answer: Yes!

Pioneers: Komlós, Sárközy &Szemerédi

Spanning subgraphs with constant maximum degree!

The Blow-up Lemma

The Blow-up Lemma

Theorem 6 (The Blow-up Lemma (Komlós, Sárközy & Szemerédi '97)). For every $\delta > 0$, Δ , $r \in \mathbb{N}$ there is $\varepsilon > 0$ such that the following holds.

The Blow-up Lemma

Theorem 6 (The Blow-up Lemma (Komlós, Sárközy & Szemerédi '97)). For every $\delta > 0$, Δ , $r \in \mathbb{N}$ there is $\varepsilon > 0$ such that the following holds. Let $G^* = (V_1 \cup \cdots \cup V_r, E^*)$ and $G = (V_1 \cup \cdots \cup V_r, E)$ be two graphs and let $R \subseteq {[r] \choose 2}$ be such that (V_i, V_j) is a complete bipartite graph in G^* and (V_i, V_j) is an (ε, δ) -super-regular graph in G whenever $ij \in R$.

The Blow-up Lemma

Theorem 6 (The Blow-up Lemma (Komlós, Sárközy & Szemerédi '97)). For every $\delta > 0$, Δ , $r \in \mathbb{N}$ there is $\varepsilon > 0$ such that the following holds. Let $G^* = (V_1 \cup \cdots \cup V_r, E^*)$ and $G = (V_1 \cup \cdots \cup V_r, E)$ be two graphs and let $R \subseteq {[r] \choose 2}$ be such that (V_i, V_j) is a complete bipartite graph in G^* and (V_i, V_j) is an (ε, δ) -super-regular graph in G whenever $ij \in R$. If H with $\Delta(H) \leq \Delta$ can be embedded into G^* , then it can also be embedded into G.

The Blow-up Lemma for arrangeable graphs

The Blow-up Lemma for arrangeable graphs

Theorem 7 (A generalised Blow-up Lemma (Böttcher, K., Taraz & Würfl '13+)). For every $\delta > 0$, $a, r \in \mathbb{N}$ there is $\varepsilon > 0$ such that the following holds.

The Blow-up Lemma for arrangeable graphs

Theorem 7 (A generalised Blow-up Lemma (Böttcher, K., Taraz & Würfl '13+)). For every $\delta > 0$, $a, r \in \mathbb{N}$ there is $\varepsilon > 0$ such that the following holds. Let $G^* = (V_1 \cup \cdots \cup V_r, E^*)$ and $G = (V_1 \cup \cdots \cup V_r, E)$ be two graphs and let $R \subseteq {[r] \choose 2}$ be such that (V_i, V_j) is a complete bipartite graph in G^* and (V_i, V_j) is an (ε, δ) -super-regular graph in G whenever $ij \in R$.

The Blow-up Lemma for arrangeable graphs

Theorem 7 (A generalised Blow-up Lemma (Böttcher, K., Taraz & Würfl '13+)). For every $\delta > 0$, $a, r \in \mathbb{N}$ there is $\varepsilon > 0$ such that the following holds. Let $G^* = (V_1 \cup \cdots \cup V_r, E^*)$ and $G = (V_1 \cup \cdots \cup V_r, E)$ be two graphs and let $R \subseteq {[r] \choose 2}$ be such that (V_i, V_j) is a complete bipartite graph in G^* and (V_i, V_j) is an (ε, δ) -super-regular graph in G whenever $ij \in R$. If H with $\Delta(H) \leq n^{1/2}/\log n$ is a-arrangeable and can be embedded into G^* then it can also be embedded into G.

randomized greedy embedding along the arrangeable ordering

 (ε, δ) -super-regular

- randomized; follow arrangeable ordering
- $C(x) = \bigcap_{y \in N_L(x)} N_G(f(y))$
- guarantee candidate sets for successors

 (ϵ, δ) -super-regular

- randomized; follow arrangeable ordering
- $C(x) = \bigcap_{y \in N_L(x)} N_G(f(y))$
- guarantee candidate sets for successors

 $^{(\}varepsilon, \delta)$ -super-regular

- randomized; follow arrangeable ordering
- $C(x) = \bigcap_{y \in N_L(x)} N_G(f(y))$
- guarantee candidate sets for successors

 $^{(\}varepsilon, \delta)$ -super-regular

The embedding method

- randomized; follow arrangeable ordering
- $C(x) = \bigcap_{y \in N_L(x)} N_G(f(y))$
- guarantee candidate sets for successors

 (ε, δ) -super-regular

- randomized; follow arrangeable ordering
- $C(x) = \bigcap_{y \in N_L(x)} N_G(f(y))$
- guarantee candidate sets for successors
- respect ONE successor with the help of ε-regularity

 $^{(\}epsilon, \delta)$ -super-regular

- randomized; follow arrangeable ordering
- $C(x) = \bigcap_{y \in N_L(x)} N_G(f(y))$
- guarantee candidate sets for successors
- respect ONE successor with the help of ε-regularity

All but at most $2\varepsilon n$ vertices in $C(x_3)$ have the "correct" degree into $C(x_4)$.

 (ε, δ) -super-regular

Why does arrangeability help?

Have to respect all successors, even if their number is growing with n

Why does arrangeability help?

Have to respect all successors, even if their number is growing with n

Problem: each successor might exclude $2\epsilon n$ candidates

Why does arrangeability help?

Have to respect all successors, even if their number is growing with n

Problem: each successor might exclude 2*e*n candidates

Solution: the α -arrangeability of H

all successors of x_i have at most a predecessors in total

 \Rightarrow these share at most 2^{α} *different* candidate sets

 \Rightarrow we exclude at most $2^{a+1} \varepsilon n$ candidates

- randomized greedy embedding along the arrangeable ordering
- $C(x) = \bigcap_{y \in N_L(x)} N_G(f(y))$
- guarantee candidate sets for all successors

 (ϵ, δ) -super-regular

- randomized greedy embedding along the arrangeable ordering
- $C(x) = \bigcap_{y \in N_L(x)} N_G(f(y))$
- guarantee candidate sets for all successors
- ▷ handle occupied candidate sets

 (ε, δ) -super-regular

- randomized greedy embedding along the arrangeable ordering
- $C(x) = \bigcap_{y \in N_L(x)} N_G(f(y))$
- guarantee candidate sets for all successors
- ▷ handle occupied candidate sets
- finish the embedding with a König–Hall type argument

 (ε, δ) -super-regular

 finish the embedding by a König–Hall type argument

 $(\epsilon,\delta)\text{-super-regular}$

 finish the embedding by a König–Hall type argument

The auxiliary graphs: $F_i = (X_i \cup V_i, E_i)$ with $\{x, v\} \in E_i$ if and only if $v \in C(x)$.

The auxiliary graphs
o are weighted-ε'-regular

 finish the embedding by a König–Hall type argument

The auxiliary graphs: $F_i = (X_i \cup V_i, E_i)$ with $\{x, v\} \in E_i$ if and only if $v \in C(x)$.

The auxiliary graphs

- are weighted- ε' -regular and
- have linear minimum degree

 finish the embedding by a König–Hall type argument

The auxiliary graphs: $F_i = (X_i \cup V_i, E_i)$ with $\{x, v\} \in E_i$ if and only if $v \in C(x)$.

The auxiliary graphs
o are weighted-ε'-regular and
o have linear minimum degree
with positive probability.

An application in Ramsey theory

R(H) = two-colour Ramsey number of H

An application in Ramsey theory

R(H) = two-colour Ramsey number of H

Theorem 8 (Böttcher, Taraz & Würfl '13+). Almost every planar graph H is such that $R(H) \le 12 |H|$.

An application in Ramsey theory (background)

An application in Ramsey theory (background)

▷ A conjecture of **Burr and Erdős (1975)**:

An application in Ramsey theory (background)

▷ A conjecture of **Burr and Erdős (1975)**: proved by Chvátal, Rödl, Szemerédi & Trotter '83 (*regularity method*): $R(H) \le C|H|$ if $\Delta(H) \le \Delta$, where $C = C(\Delta)$
An application in Ramsey theory (background)

- ▷ A conjecture of **Burr and Erdős (1975)**: proved by Chvátal, Rödl, Szemerédi & Trotter '83 (*regularity method*): $R(H) \le C|H|$ if $\Delta(H) \le \Delta$, where $C = C(\Delta)$
- ▷ Value of C: Graham, Rödl & Ruciński '00, Conlon, Fox & Sudakov '12

An application in Ramsey theory (background)

- ▷ A conjecture of **Burr and Erdős (1975)**: proved by Chvátal, Rödl, Szemerédi & Trotter '83 (*regularity method*): $R(H) \le C|H|$ if $\Delta(H) \le \Delta$, where $C = C(\Delta)$
- ▷ Value of C: Graham, Rödl & Ruciński '00, Conlon, Fox & Sudakov '12
- ▷ Chen and Schelp '93: $R(H) \leq C|H|$ for all planar graphs H

An application in Ramsey theory (background)

- ▷ A conjecture of **Burr and Erdős (1975)**: proved by Chvátal, Rödl, Szemerédi & Trotter '83 (*regularity method*): $R(H) \le C|H|$ if $\Delta(H) \le \Delta$, where $C = C(\Delta)$
- ▷ Value of C: Graham, Rödl & Ruciński '00, Conlon, Fox & Sudakov '12
- ▷ Chen and Schelp '93: $R(H) \leq C|H|$ for all planar graphs H
- ▷ Allen, Brightwell & Skokan '10+: for every Δ , for every large enough planar graph H with $\Delta(H) \leq \Delta$, we have $R(H) \leq 12|H|$

An application in Ramsey theory (background)

- ▷ A conjecture of **Burr and Erdős (1975)**: proved by Chvátal, Rödl, Szemerédi & Trotter '83 (*regularity method*): $R(H) \le C|H|$ if $\Delta(H) \le \Delta$, where $C = C(\Delta)$
- ▷ Value of C: Graham, Rödl & Ruciński '00, Conlon, Fox & Sudakov '12
- ▷ Chen and Schelp '93: $R(H) \le C|H|$ for all planar graphs H
- ▷ Allen, Brightwell & Skokan '10+: for every Δ , for every large enough planar graph H with $\Delta(H) \leq \Delta$, we have $R(H) \leq 12|H|$

• McDiarmid & Reed: typical planar $H = H^n$:

An application in Ramsey theory (background)

- ▷ A conjecture of **Burr and Erdős (1975)**: proved by Chvátal, Rödl, Szemerédi & Trotter '83 (*regularity method*): $R(H) \le C|H|$ if $\Delta(H) \le \Delta$, where $C = C(\Delta)$
- ▷ Value of C: Graham, Rödl & Ruciński '00, Conlon, Fox & Sudakov '12
- ▷ Chen and Schelp '93: $R(H) \le C|H|$ for all planar graphs H
- ▷ Allen, Brightwell & Skokan '10+: for every Δ , for every large enough planar graph H with $\Delta(H) \leq \Delta$, we have $R(H) \leq 12|H|$

• McDiarmid & Reed: typical planar $H = H^n$: $\Delta(H) = \Theta(\log n)$

An application in Ramsey theory (background)

- ▷ A conjecture of **Burr and Erdős (1975)**: proved by Chvátal, Rödl, Szemerédi & Trotter '83 (*regularity method*): $R(H) \le C|H|$ if $\Delta(H) \le \Delta$, where $C = C(\Delta)$
- ▷ Value of C: Graham, Rödl & Ruciński '00, Conlon, Fox & Sudakov '12
- ▷ Chen and Schelp '93: $R(H) \le C|H|$ for all planar graphs H
- ▷ Allen, Brightwell & Skokan '10+: for every Δ , for every large enough planar graph H with $\Delta(H) \leq \Delta$, we have $R(H) \leq 12|H|$

• McDiarmid & Reed: typical planar $H = H^n$: $\Delta(H) = \Theta(\log n)$

▷ Böttcher, Taraz & Würfl make use of the arrangeable blow-up lemma to obtain $R(H) \le 12|H|$ for almost every planar H

Manuscripts

- b http://arxiv.org/abs/1305.2059
- b http://arxiv.org/abs/1305.2078