Arithmetical functions with regular behaviour

Imre Kátai

Dedicated to P. Erdős on his 100th anniversary

Department of Computer Algebra Eotvos Lorand University, Budapest

Budapest, Hungary, July 1-5, 2013.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Notation

 $\mathbb{N}, \mathbb{Z}, \mathbb{R}, \mathbb{C}, \mathcal{P}$

G= Abelian group, $\mathcal{A}, \mathcal{A}^*, \mathcal{M}, \mathcal{M}^*, \mathcal{A}_G, \mathcal{A}_G^*$

- A = set of additive functions
- *M* = set of multiplicative functions
- A* = set of complete additive functions
- \mathcal{M}^* = set of complete multiplicative functions.
- $f \in \mathcal{A}_G$ means: $f : \mathbb{N} \to G$, f(nm) = f(n) + f(m) if (n, m) = 1
- $f \in \mathcal{A}_G^*$ means: $f : \mathbb{N} \to G$, f(nm) = f(n) + f(m) holds for every $n, m \in \mathbb{N}$

1. On log *n*

Starting point: P. Erdős, On the distribution function of additive functions, *Ann.Math.*, **47** (1946), 1-20. $f \in \mathcal{A}$ and $\Delta f(n) := f(n+1) - f(n) \rightarrow 0$ $(n \rightarrow \infty)$ or $f(n) \le f(n+1)$ $(n \in \mathbb{N})$, then $f(n) = c \log n$.

- $f \in \mathcal{A}$ and $\Delta^k f(n) \ge 0$ $(n \in \mathbb{N})$, then $f(n) = c \log n$
- $f \in \mathcal{A}$ and $\Delta f(n) \ge -K$ $(n \in \mathbb{N})$, then $f(n) = c \log n + O(1), u(n)$ is bounded (E. Wirsing)
- $f \in \mathcal{A}$ and $\frac{1}{x} \sum_{n \leq x} |\Delta f(n)| \to 0 \ (x \to \infty)$, then $f(n) = c \log n$

•
$$f \in \mathcal{A}, \exists \gamma, x_1 < x_2 < \cdots$$
 such that $\frac{1}{x_i} \sum_{x_i < n \leq \gamma x_i} |\Delta f(n)| \to 0$ $(i \to \infty)$, then $f(n) = c \log n$ (E. Wirsing)

•
$$f \in \mathcal{A}^*$$
 and $\frac{\Delta f(n)}{\log n} \to 0 \ (n \to \infty)$, then $f(n) = c \log n \ (E. Wirsing)$

•
$$f, g \in \mathcal{A}$$
 and $g(n+1) - f(n) \to 0$ $(n \in \infty)$, then $g(n) = f(n) = c \log n$

- $f, g \in \mathcal{A}$ and $\frac{1}{x} \sum_{n \leq x} |g(n+1) f(n)| \to 0$ $(x \in \infty)$, then $g(n) = f(n) = c \log n$
- If $P(x) \in \mathbb{R}[x]$, E is the shift operator $(Ex_n = x_{n+1})$, $f \in A$ and $\frac{1}{x} \sum_{n \leq x} |P(E)f(n)| \to 0$ $(x \to \infty)$, then $f(n) = c \log n + u(n)$, where P(E)u(n) = 0 $(n \in \mathbb{N})$. If $P(1) \neq 0$, then c = 0, u is of finite support, i.e. $u(p^{\alpha}) = 0$ for every large p (P.D.T.A. Elliott - I. K.)

• If
$$f, g \in A$$
 and $|g(n+1) - f(n) \leq K$, then
 $f(n) = c \log n + h_1(n), g(n) = c \log n + h_2(n), h_1(n), h_2(n)$
are bounded. (J. L. Mauclaire)

I asked:

a) Characterize all those $f \in A$ for which

$$f(an+b) - f(An+B) \rightarrow C \ (n \rightarrow \infty),$$

and those $f, g \in \mathcal{A}$ for which

$$f(an+b) - g(An+B) \rightarrow C \ (n \rightarrow \infty).$$

Partial results: I. K., Bui Minh Phong (=BMP), J.-L. Mauclaire (JLM). Completely solved by Elliott (PDTAE).

b) Characterize all those $f_i \in \mathcal{A}$ $(i = 1, \dots, k)$ for which

(1.1)
$$\sum_{i=1}^{k} f_i(n+i) \to 0 \quad (n \to \infty).$$

(C1) Conjecture 1.

If (1.1) holds, then $f_i(n) = c_i \log n + u_i(n), \ u_i \in A$ and

(1.2)
$$\sum_{i=1}^{k} u_i(n+i) = 0 \ (n \in \mathbb{N}).$$

(C2) Conjecture 2.

If (1.2) holds, then

$$u_1(n) = \cdots = u_k(n) = 0$$
 if $(n, (k-1)!) = 1$.

Partial results: If (1.2) holds, $k \le 4$, $u_i \in A^*$, then (C2) is true. If (1.2) holds, $k \le 3$, $u_i \in A$, then (C2) is true (R. Styer). c) We say that a subset \mathcal{B} of \mathbb{N} is a set of uniqueness, if $f \in \mathcal{A}^*$, f(b) = 0 for all $b \in \mathcal{B}$ implies that f(n) = 0 for all $n \in \mathbb{N}$. We say that a subset \mathcal{B} of \mathbb{N} is a set of uniqueness mod 1, if $f \in \mathcal{A}^*$, $f(b) = 0 \pmod{1}$ ($\forall b \in \mathcal{B}$) implies that f(n) = 0

(mod 1) for all $n \in \mathbb{N}$.

Let
$$\mathcal{P}_1 := \{ p + 1 \mid p \in \mathcal{P} \}.$$

(C3) Conjecture 3.

The set \mathcal{P}_1 is a set of uniqueness.

(C4) Conjecture 4.

The set \mathcal{P}_1 is a set of uniqueness (mod 1).

(C3):

I. K. (almost), PDTA completely

(C4):

I proved in (I.K., Acta Arith. 16 (1969/1970)): There is (an ineffective) K such that every n ∈ N can be written as

$$n = a(n) \prod_{i=1}^{r} (p_i + 1)^{l_i}$$

where $I_i \in \mathbb{Z}$, and $P(a(n)) \leq K$.

• Elliott proved in (Monatschrifte Math. 97 (1984), 85-97): The above assertion is true with $K = 10^{387}$. d) What are those subsets $E \subseteq \mathbb{N}$ for which $f(e) \nearrow$, $(e \in E)$ implies that $f = c \log$?

Since $n(P_2 + 1) = (n + 1)(P'_2 + 1)$ has infinely many P_2, P'_2 solutions ($\omega(P_2) \le 2$, $\omega(P'_2) \le 2$), therefore $E = \{P_2 + 1\}$ is such a set.

(C5) Conjecture 5

If $f \in \mathcal{A}^*$ and $f(p+1) \ge f(q+1)$ for every couple of primes p > q, then $f(n) = c \log n \ (\forall n \in \mathbb{N})$.

Elliott (Ramanujan J. (2008), 15, 87-102) proved:

If $f \in A$ and $f(p+1) \nearrow$ on \mathcal{P}_1 , then $f(n) = c \log n$ for all odd n, and $f(2^{\alpha}) = \text{constant.}$ Thus Conjecture 5 is true for $f \in A^*$.

(C6) Conjecture 6 (1977)

If $f \in \mathcal{A}^*$ and $f(p+1) \ge 0$ for every $p \in \mathcal{P}$, then $f(n) \ge 0$ ($\forall n \in \mathbb{N}$).

This is hopless. It would follows from

(C7) Conjecture 7

For every $a \in \mathbb{N}$ there exists a *K* for which $p + 1 = Ka^n$ has infinitely many solutions as $n \in \mathbb{N}$.

(C8) Conjecture 8 (A joint problem of BMP and mine)

If $f_1, f_2 \in \mathcal{A}^*$ and

$$f_1(p+4) - f_2(p+2) \equiv 0 \pmod{1},$$

then $f_1(n) \equiv f_2(n) \equiv 0 \pmod{1}$ $(n \in \mathbb{N})$.

2. Characterization of n^s as a multiplicative function

Question: $f \in \mathcal{M}$, $\triangle f(n) = f(n+1) - f(n) \rightarrow 0 (n \rightarrow \infty)$. What further assumptions guarantee that $f(n) = n^s$, $s = \sigma + it$?

Theorem 1. (I.K)

Let $f, g \in \mathcal{M}$ and

$$\sum_{n=1}^{\infty}\frac{1}{n}|g(n+1)-f(n)|<\infty.$$

Then either $\sum_{n=1}^{\infty} \frac{1}{n} |f(n)| < \infty$ and $\sum_{n=1}^{\infty} \frac{1}{n} |g(n)| < \infty$ or

$$f(n) = g(n) = n^{\sigma+it}, \ \sigma, t \in \mathbb{R}, \ 0 \le \sigma < 1.$$

Theorem 2.(I.K)

Let $f, g \in \mathcal{M}^*$, $k \in \mathbb{N}$, $k \ge 2$ and

$$\sum_{n=1}^{\infty}\frac{1}{n}|g(n+k)-f(n)|<\infty.$$

Let f(n) = g(n) = 0 if (n, k) > 1 and $f(n) \neq 0$, $g(n) \neq 0$ if (n, k) = 1. Then either

$$\sum_{n=1}^{\infty} \frac{1}{n} |f(n)| < \infty$$
 and $\sum_{n=1}^{\infty} \frac{1}{n} |g(n)| < \infty$,

or there exist $F, G \in \mathcal{M}^*, s \in \mathbb{C}, \Re s < 1$ such that $f(n) = n^s F(n), g(n) = n^s G(n)$ and $G(n + k) = F(n) \ (\forall n \in \mathbb{N})$ hold.

Theorem 3.(I.K+BMP)

Let $F, G \in \mathcal{M}, k \in \mathbb{N}$ and

$$G(n+k) = F(n) \ (\forall n \in \mathbb{N}).$$

Let

$$S_F := \{n \in \mathbb{N} \mid F(n) \neq 0\}, S_G := \{n \in \mathbb{N} \mid G(n) \neq 0\}.$$

Then either S_F , S_G are finite sets, or $F(n) \neq 0$, $G(n) \neq 0$ for every $n \in \mathbb{N}$, (n, k) = 1.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < ⊙

(C9) Conjecture 9. If $f \in \mathcal{M}$ and $\frac{1}{x}\sum_{i}|\Delta f(n)| \to 0 \text{ as } x \to \infty,$ Then either $\frac{1}{x}\sum_{n < x} |f(n)| \to 0 \text{ as } x \to \infty,$ or $f(n) = n^{s}, \Re s < 1.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Hildebrand proved:

Theorem 4. (Hildebrand)

There exists a suitable *c* with the following property: If $g \in \mathcal{M}^*$, |g(n)| = 1, $(n \in \mathbb{N})$, and $|g(p) - 1| \le c$ ($\forall p \in \mathcal{P}$), then either g(n) = 1 identically, or

$$\liminf \frac{1}{x} \sum_{n \le x} |\Delta g(n)| > 0 \text{ as } x \to \infty,$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

I proved

Theorem 5. (I.K)

Let $g \in \mathcal{M}^*$, |g(n)| = 1, $(n \in \mathbb{N})$. There exist positive constants $\beta < 1$ and δ such that

$$\limsup \sum_{x^{\beta}$$

imply that g(n) = 1 identically.

Theorem 6., (Wirsing proved in 1984; another proof: Wirsing, Tang and Shao) If $g \in \mathcal{M}$, $|\Delta g(n)| \to 0$, then either $f(n) \to 0 (n \to \infty)$, or $f(n) = n^s$, $0 \le \Re s < 1$.

Another formulation of Wirsing's theorem: Let T be the additive group of real numbers (mod 1).

Theorem 7.

If $F \in A_T$, $\Delta F(n) \to 0 (n \to \infty)$, then F is a restriction of a continuous homomorphism from $\mathbb{R}_x \to T$, that is $F(n) \equiv c \log n$ (mod 1).

Theorem 8. (BMP)

Let $A, B \in \mathbb{N}$, $D \in \mathbb{R}$ constant. If $h \in A_T$ and

$$h(An+B)-h(n)-D
ightarrow 0$$
 as $n
ightarrow\infty,$

then *h* is a restriction of a continuous homomorphism from $\mathbb{R}_x \to T$.

Theorem 9.(N.L.Bassily and I.K)

If $f, g \in \mathcal{M}$ satisfy

$$g(2n+1) - Cf(n) = o(1) \ (n \to \infty)$$

with some non-zero constant *C*, then the following possibilities can occur:

(1) $f(n) \to 0$, $g(2n+1) \to 0$ $(n \to \infty)$ (2) C = f(2), $f(n) = n^{s}$, $g(m) = m^{s}$, $0 \le \text{Re } s < 1$ for all $n, m \in \mathbb{N}, (m, 2) = 1$. (3) C = f(2), $f(n) = (-1)^{n-1}n^{s}$, $g(m) = \chi_{4}(m)m^{s}$, $0 \le \text{Re } s < 1$ for all $n, m \in \mathbb{N}, (m, 2) = 1$, where χ_{4} is the nonprincipal Dirichlet character (mod 4). We note that BMP proved that if $A, B \in \mathbb{N}$, $C \in \mathbb{C} \setminus \{0\}$, $f, g \in \mathcal{M}$ and

$$g(An+1) - Cf(n) = o(1)$$
 as $n \to \infty$

hold, then either f(n) = o(1) and g(An + 1) = o(1) as $n \to \infty$ or there exist a complex number *s* and functions *F*, $G \in \mathcal{M}$ such that $f(n) = n^s F(n)$, $g(m) = n^s G(n)$, $(0 \le \Re s < 1)$ and $G(An + 1) = \frac{1}{F(2)}F(n)$ are satisfied for all $n \in \mathbb{N}$.

Problem

Determine $f, g \in \mathcal{M}$ for which

$$g(An+B) - Cf(an+b) \rightarrow 0 \ (n \rightarrow \infty),$$

if $\frac{An+B}{an+b} \neq \text{constant}$.

4. On additive function (mod 1)

Let $T = \mathbb{R}/\mathbb{Z}$ and $\mathcal{A}_T := \{F : \mathbb{N} \to T \mid F \text{ additive function}\}.$

Definition.

 $F \in A_T$ is of finite support if $F(p^{\alpha}) = 0$ for every large prime p, and every $\alpha \in \mathbb{N}$. Let $F_{\nu} \in A_T$ ($\nu = 0, 1, \dots, k-1$) and

$$L_n(F_0,\ldots,F_{k-1}) = F_0(n) + \ldots + F_{k-1}(n+k-1)$$
 $(n = 1, 2, \ldots).$

Let
$$\mathcal{L}_0^{(k)} =$$
 space of those $(F_0, \ldots, F_{k-1}) \in \mathcal{A}_T^{(k)}$ for which

$$(3.1) L_n(F_0,\ldots,F_{k-1})=0 \; (\forall n\in\mathbb{N}).$$

・ロト・西ト・ヨト・日下 ひゃぐ

(C10) Conjecture 10.

If (3.1) holds, then every F_j is of finite support, and $\mathcal{L}_0^{(k)}$ is a finite dimensional \mathbb{Z} -module.

Let
$$G_j(n) = \tau_j \log n \pmod{1}$$
, $\tau_0 + \ldots + \tau_{k-1} = 0$. Then
 $L_n(G_0, \ldots, G_{k-1}) \to 0 \text{ as } n \to \infty.$

(C11) Conjecture 11.

If
$$F_{\nu} \in A_T$$
 ($\nu = 0, 1, ..., k - 1$), and

$$L_n(F_0,\ldots,F_{k-1}) o 0$$
 as $n o \infty$,

then there are $\tau_0, \ldots, \tau_{k-1}, \tau_0 + \ldots + \tau_{k-1} = 0$ such that $F_j(n) = \tau_j \log(n) + H_j(n) \ (j = 0, \ldots, k-1)$ and

$$L_n(H_0,\ldots,H_{k-1})=0 \ (\forall n\in\mathbb{N}).$$

Remarks.

- 1) Conjecture 11 for k = 1 can be deduced from the theorem of Wirsing
- 2) Conjecture 11 for k = 2 under F_ν ∈ A_T proved (I. K. 1984)
- 3) Conjecture 11 for k = 2 proved by R. Styer.
- 4) M. Wijsmuller investigated the analog question over the set of Gaussian integers.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

(C12) Conjecture 12.

For every integer $k \ge 1$ there exists a constant c_k such that for every prime $p > c_k$,

$$\min_{\substack{1 \leq j, \\ \mathcal{P}(j) < p}} \max_{\substack{\ell \in [-k,k], \\ \ell \neq 0}} P(jp + \ell) < p$$

(or
$$\min_{1 \leq j < p} \max_{\ell \in [-k,k]} P(jp + \ell) < p$$
).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

It is open for $k \ge 2$.

Theorem 10. (I.K)

Let
$$\mathcal{L}_0^{*(\ell)}$$
 = space of those $(F_0, \dots, F_{\ell-1}) \in \mathcal{A}_T^{*(\ell)}$ for which
 $L_n(F_0, \dots, F_{k-1}) = 0 \ (\forall n \in \mathbb{N}).$

Assume that Conjecture 12 is true for $k = \ell$. Then $\mathcal{L}_0^{*(\ell)}$ is a finite dimensional space.

Let
$$K$$
 = closure of { $L_n(F_0, \ldots, F_{k-1}) | n \in \mathbb{N}$ }.

(C13) Conjecture 13.

If $F_0, \ldots, F_{k-1} \in \mathcal{A}^*{}_T$ and K contains an element of infinite order, then

$$K = T$$
.

(C14) Conjecture 14.

Let $f \in \mathcal{A}^*_T$, $\mathcal{H} = \{\alpha_1, \dots, \alpha_k\}$ be the set of limit points of f(n+1) - f(n) $(n \in \mathbb{N})$. Then

$$\mathcal{H} = E_k = \Big\{ \frac{m}{n} \pmod{1}, m = 0, 1, \dots k - 1 \Big\},$$

furthermore

$$f(n) = \tau \log n + U(n) \pmod{1}, \ U(\mathbb{N}) = E_k,$$

and for every $\omega \in E_k$ there exists a sequence $n_1 < n_2 < \ldots$ such that

$$U(n_{\nu}+1)-U(n_{\nu}) \rightarrow 0 \ (n \rightarrow \infty).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ●

Theorem 11. (I. K. and M. V. Subbarao)

- a) Conjecture 14 is true for k = 1, 2, 3.
- b) If k = 4, then either 4U(n) ≡ 0 (mod 1) or 5U(n) ≡ 0 (mod 1).

Theorem 12. (E. Wirsing)

Assume that the conditions of Conjecture 14 hold. Then

$$f(n) = \tau \log n + U(n) \pmod{1},$$

and there exists a finite $M \in \mathbb{N}$ such that $MU(n) \equiv 0 \pmod{1}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem 13. (BMP)

a) If a function $F \in \mathcal{M}^*$ and a positive integer $\ell \leq 5$ satisfy the condition $F(\mathbb{N}) = U_{\ell} := \{\omega \in \mathbb{C} | \omega^{\ell} = 1\}$, then $\{F(n+1)\overline{F}(n) \mid n \in \mathbb{N}\} = U_{\ell}$.

b) Assume that $A, B \in \mathbb{N}$, G is any Abelian group and F_1, F_2 are G-valued completely multiplicative functions. If

$$\{F_1(An + B)(F_2(An))^{-1} \mid n \in \mathbb{N}\}$$

is a finite set, then there are finite subgroups G_1 and G_2 of G such that $G_2 \subseteq G_1$ and $F_i(\mathbb{N})$ is a subgroup of G_i (i=1,2).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

5. Characterization of continuous homomorphisms as elements of A_G for compact groups.

Definitions.

 $\begin{array}{l} G = \text{metrically compact Abelian group,} \\ \rho = \text{translation invariant metric} \\ k_D = \{ \text{ those } \{x_n\} \in G^{\mathbb{N}} \text{ for which: if } x_{n_1}, x_{n_2}, \dots \text{ is a convergent} \\ \text{subsequence, then } x_{n_1+1}, x_{n_2+1}, \dots \text{ is convergent also } \} \\ k_\Delta = \{ \{x_n\} \in G^{\mathbb{N}} \mid \Delta x_n = x_{n+1} - x_n \rightarrow 0, \ (n \rightarrow \infty) \} \end{array}$

Clear: $k_{\Delta} \subseteq k_D$.

$$\mathcal{A}_G^*(D) = \{ f \in \mathcal{A}_G^* \mid \{ f(n) \}_{n=1}^\infty \in k_D \}$$
$$\mathcal{A}_G^*(\Delta) = \{ f \in \mathcal{A}_G^* \mid \{ f(n) \}_{n=1}^\infty \in k_\Delta \}$$

Results (Z. Daróczy and I.K.)

• 1)
$$\mathcal{A}^*_G(D) = \mathcal{A}^*_G(\Delta)$$

- 2) If f ∈ A^{*}_G(D), then there exists a continuous homomorphism Φ : ℝ_x → G such that f(n) = Φ(n) (n ∈ ℕ). It was deduced from the theorem of Wirsing (Theorem 6).
- 3) Let S_f = closure {f(1), f(2),...}. Then S_f is a compact subgroup of G.
- 4) *f* ∈ A^{*}_G(D) if and only if there exists a continuous function *H_f* : *S_f* → *S_f* such that

$$f(n+1) - H(f(n)) \rightarrow 0 \ (n \rightarrow \infty).$$

• 5) Bui Minh Phong proved further interesting results.

Thank you for your attention!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ