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Notation

N, Z, R, C, P

G= Abelian group, A, A∗,M, M∗, AG, A∗G,

A = set of additive functions
M = set of multiplicative functions
A∗ = set of complete additive functions
M∗ = set of complete multiplicative functions.
f ∈ AG means: f : N→ G, f (nm) = f (n) + f (m) if
(n,m) = 1
f ∈ A∗G means: f : N→ G, f (nm) = f (n) + f (m) holds for
every n,m ∈ N
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1. On log n

Starting point: P. Erdős, On the distribution function of additive
functions, Ann.Math., 47 (1946), 1-20.
f ∈ A and ∆f (n) := f (n + 1)− f (n)→ 0 (n→∞) or
f (n) ≤ f (n + 1) (n ∈ N), then f (n) = c log n.

f ∈ A and ∆k f (n) ≥ 0 (n ∈ N), then f (n) = c log n
f ∈ A and ∆f (n) ≥ −K (n ∈ N), then
f (n) = c log n + O(1), u(n) is bounded (E. Wirsing)
f ∈ A and 1

x
∑

n≤x |∆f (n)| → 0 (x →∞), then
f (n) = c log n
f ∈ A, ∃γ, x1 < x2 < · · · such
that 1

xi

∑
xi<n≤γxi

|∆f (n)| → 0 (i →∞), then f (n) = c log n
(E. Wirsing)
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f ∈ A∗ and ∆f (n)
log n → 0 (n→∞), then

f (n) = c log n (E .Wirsing)

f ,g ∈ A and g(n + 1)− f (n)→ 0 (n ∈ ∞), then
g(n) = f (n) = c log n
f ,g ∈ A and 1

x
∑

n≤x |g(n + 1)− f (n)| → 0 (x ∈ ∞), then
g(n) = f (n) = c log n
If P(x) ∈ R[x ], E is the shift operator (Exn = xn+1), f ∈ A
and 1

x
∑

n≤x |P(E)f (n)| → 0 (x →∞), then
f (n) = c log n + u(n), where P(E)u(n) = 0 (n ∈ N). If
P(1) 6= 0, then c = 0, u is of finite support, i.e. u(pα) = 0
for every large p (P.D.T.A. Elliott - I. K.)
If f ,g ∈ A and |g(n + 1)− f (n) ≤ K , then
f (n) = c log n + h1(n), g(n) = c log n + h2(n), h1(n), h2(n)
are bounded. (J. L. Mauclaire)
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I asked:
a) Characterize all those f ∈ A for which

f (an + b)− f (An + B)→ C (n→∞),

and those f , g ∈ A for which

f (an + b)− g(An + B)→ C (n→∞).

Partial results: I. K. , Bui Minh Phong (=BMP), J.-L. Mauclaire
(JLM). Completely solved by Elliott (PDTAE).

b) Characterize all those fi ∈ A (i = 1, · · · k) for which

(1.1)
k∑

i=1

fi(n + i)→ 0 (n→∞).



1. On log n 3. Characterization of ns 3. On additive function (mod 1) 4. Characterization of continuous homomorphisms

(C1) Conjecture 1.

If (1.1) holds, then fi(n) = ci log n + ui(n), ui ∈ A and

(1.2)
k∑

i=1

ui(n + i) = 0 (n ∈ N).

(C2) Conjecture 2.
If (1.2) holds, then

u1(n) = · · · = uk (n) = 0 if (n, (k − 1)!) = 1.

Partial results: If (1.2) holds, k ≤ 4, ui ∈ A∗, then (C2) is true.
If (1.2) holds, k ≤ 3, ui ∈ A, then (C2) is true (R. Styer).



1. On log n 3. Characterization of ns 3. On additive function (mod 1) 4. Characterization of continuous homomorphisms

c) We say that a subset B of N is a set of uniqueness, if f ∈ A∗,
f (b) = 0 for all b ∈ B implies that f (n) = 0 for all n ∈ N.

We say that a subset B of N is a set of uniqueness mod 1, if
f ∈ A∗, f (b) = 0 (mod 1) (∀b ∈ B) implies that f (n) = 0
(mod 1) for all n ∈ N.

Let P1 := {p + 1 | p ∈ P}.

(C3) Conjecture 3.
The set P1 is a set of uniqueness.

(C4) Conjecture 4.

The set P1 is a set of uniqueness (mod 1).
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(C3):
I. K. (almost), PDTA completely

(C4):
I proved in (I.K., Acta Arith. 16 (1969/1970)): There is (an
ineffective) K such that every n ∈ N can be written as

n = a(n)
r∏

i=1

(pi + 1)li ,

where li ∈ Z, and P(a(n)) ≤ K .
Elliott proved in (Monatschrifte Math. 97 (1984), 85-97):
The above assertion is true with K = 10387.
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d) What are those subsets E ⊆ N for which f (e)↗, (e ∈ E)
implies that f = c log?

Since n(P2 + 1) = (n + 1)(P ′2 + 1) has infinely many P2,P ′2
solutions (ω(P2) ≤ 2, ω(P ′2) ≤ 2), therefore E = {P2 + 1} is
such a set.

(C5) Conjecture 5

If f ∈ A∗ and f (p + 1) ≥ f (q + 1) for every couple of primes
p > q, then f (n) = c log n (∀n ∈ N).

Elliott (Ramanujan J. (2008), 15, 87-102) proved:

If f ∈ A and f (p + 1)↗ on P1, then f (n) = c log n for all odd n,
and f (2α) = constant.
Thus Conjecture 5 is true for f ∈ A∗.
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(C6) Conjecture 6 (1977)

If f ∈ A∗ and f (p + 1) ≥ 0 for every p ∈ P, then
f (n) ≥ 0 (∀n ∈ N).

This is hopless. It would follows from

(C7) Conjecture 7

For every a ∈ N there exists a K for which p + 1 = Kan has
infinitely many solutions as n ∈ N.

(C8) Conjecture 8 (A joint problem of BMP and mine)
If f1, f2 ∈ A∗ and

f1(p + 4)− f2(p + 2) ≡ 0 (mod 1),

then f1(n) ≡ f2(n) ≡ 0 (mod 1) (n ∈ N).
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2. Characterization of ns as a multiplicative function

Question: f ∈M, 4f (n) = f (n + 1)− f (n)→ 0(n→∞). What
further assumptions guarantee that f (n) = ns, s = σ + it?

Theorem 1. (I.K)
Let f ,g ∈M and

∞∑
n=1

1
n
|g(n + 1)− f (n)| <∞.

Then either
∑∞

n=1
1
n |f (n)| <∞ and

∑∞
n=1

1
n |g(n)| <∞ or

f (n) = g(n) = nσ+it , σ, t ∈ R, 0 ≤ σ < 1.
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Theorem 2.(I.K)
Let f ,g ∈M∗, k ∈ N, k ≥ 2 and

∞∑
n=1

1
n
|g(n + k)− f (n)| <∞.

Let f (n) = g(n) = 0 if (n, k) > 1 and f (n) 6= 0, g(n) 6= 0 if
(n, k) = 1. Then either

∞∑
n=1

1
n
|f (n)| <∞ and

∞∑
n=1

1
n
|g(n)| <∞,

or there exist F ,G ∈M∗, s ∈ C, <s < 1 such that
f (n) = nsF (n), g(n) = nsG(n) and G(n + k) = F (n) (∀n ∈ N)
hold.
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Theorem 3.(I.K+BMP)
Let F ,G ∈M, k ∈ N and

G(n + k) = F (n) (∀n ∈ N).

Let

SF := {n ∈ N | F (n) 6= 0},SG := {n ∈ N | G(n) 6= 0}.

Then either SF ,SG are finite sets, or F (n) 6= 0,G(n) 6= 0 for
every n ∈ N, (n, k) = 1.
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(C9) Conjecture 9.
If f ∈M and

1
x

∑
n≤x

|∆f (n)| → 0 as x →∞,

Then either
1
x

∑
n≤x

|f (n)| → 0 as x →∞,

or
f (n) = ns,<s < 1.
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Hildebrand proved:

Theorem 4. (Hildebrand)
There exists a suitable c with the following property: If g ∈M∗,
|g(n)| = 1, (n ∈ N), and |g(p)− 1| ≤ c (∀p ∈ P), then either
g(n) = 1 identically, or

lim inf
1
x

∑
n≤x

|∆g(n)| > 0 as x →∞,
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I proved

Theorem 5. (I.K)

Let g ∈M∗, |g(n)| = 1, (n ∈ N). There exist positive constants
β < 1 and δ such that

lim sup
∑

xβ<p<x

|g(p)− 1|
p

≤ δ and lim inf
∑

x
2<p<x

|∆g(n)| = 0

imply that g(n) = 1 identically.

Theorem 6., (Wirsing proved in 1984; another proof: Wirsing,
Tang and Shao)

If g ∈M, |∆g(n)| → 0, then either f (n)→ 0(n→∞), or
f (n) = ns, 0 ≤ <s < 1.
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Another formulation of Wirsing’s theorem:
Let T be the additive group of real numbers (mod 1).

Theorem 7.
If F ∈ AT , ∆F (n)→ 0(n→∞), then F is a restriction of a
continuous homomorphism from Rx → T , that is F (n) ≡ c log n
(mod 1).

Theorem 8. (BMP)
Let A,B ∈ N, D ∈ R constant. If h ∈ AT and

h(An + B)− h(n)− D → 0 as n→∞,

then h is a restriction of a continuous homomorphism from
Rx → T .
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Theorem 9.( N.L.Bassily and I.K)
If f , g ∈M satisfy

g(2n + 1)− Cf (n) = o(1) (n→∞)

with some non-zero constant C, then the following possibilities
can occur:

(1) f (n)→ 0, g(2n + 1)→ 0 (n→∞)

(2) C = f (2), f (n) = ns, g(m) = ms, 0 ≤ Re s < 1 for all
n, m ∈ N, (m,2) = 1.

(3) C = f (2), f (n) = (−1)n−1ns, g(m) = χ4(m)ms, 0 ≤ Re s <
1 for all n, m ∈ N, (m,2) = 1, where χ4 is the nonprincipal
Dirichlet character (mod 4).
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We note that BMP proved that if A,B ∈ N, C ∈ C \ {0},
f , g ∈M and

g(An + 1)− Cf (n) = o(1) as n→∞

hold, then either f (n) = o(1) and g(An + 1) = o(1) as n→∞
or there exist a complex number s and functions F , G ∈M
such that f (n) = nsF (n), g(m) = nsG(n), (0 ≤ <s < 1) and
G(An + 1) = 1

F (2)F (n) are satisfied for all n ∈ N.

Problem
Determine f ,g ∈M for which

g(An + B)− Cf (an + b)→ 0 (n→∞),

if An+B
an+b 6= constant.
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4. On additive function (mod 1)

Let T = R/Z and AT := {F : N→ T | F additive function}.

Definition.
F ∈ AT is of finite support if F (pα) = 0 for every large prime p,
and every α ∈ N. Let Fν ∈ AT (ν = 0,1, . . . , k − 1) and

Ln(F0, . . . ,Fk−1) = F0(n) + . . .+ Fk−1(n + k − 1) (n = 1,2, . . .).

Let L(k)
0 = space of those (F0, . . . ,Fk−1) ∈ A(k)

T for which

(3.1) Ln(F0, . . . ,Fk−1) = 0 (∀n ∈ N).
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(C10) Conjecture 10.

If (3.1) holds, then every Fj is of finite support, and L(k)
0 is a

finite dimensional Z-module.

Let Gj(n) = τj log n (mod 1), τ0 + . . .+ τk−1 = 0. Then

Ln(G0, . . . ,Gk−1)→ 0 as n→∞.

(C11) Conjecture 11.

If Fν ∈ AT (ν = 0,1, . . . , k − 1), and

Ln(F0, . . . ,Fk−1)→ 0 as n→∞,

then there are τ0, . . . , τk−1, τ0 + . . .+ τk−1 = 0 such that
Fj(n) = τj log(n) + Hj(n) (j = 0, . . . , k − 1) and

Ln(H0, . . . ,Hk−1) = 0 (∀n ∈ N).
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Remarks.
1) Conjecture 11 for k = 1 can be deduced from the
theorem of Wirsing
2) Conjecture 11 for k = 2 under Fν ∈ AT proved (I. K.
1984)
3) Conjecture 11 for k = 2 proved by R. Styer.
4) M. Wijsmuller investigated the analog question over the
set of Gaussian integers.
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(C12) Conjecture 12.
For every integer k ≥ 1 there exists a constant ck such that for
every prime p > ck ,

min
1≤j,

P(j)<p

max
`∈[−k,k ],
6̀=0

P(jp + `) < p

(or min
1≤j<p

max
`∈[−k ,k ]

P(jp + `) < p).

It is open for k ≥ 2.
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Theorem 10. (I.K)

Let L∗(`)0 = space of those (F0, . . . ,F`−1) ∈ A∗(`)
T for which

Ln(F0, . . . ,Fk−1) = 0 (∀n ∈ N).

Assume that Conjecture 12 is true for k = `. Then L∗(`)0 is a
finite dimensional space.

Let K = closure of {Ln(F0, . . . ,Fk−1)|n ∈ N}.

(C13) Conjecture 13.
If F0, . . . ,Fk−1 ∈ A∗T and K contains an element of infinite
order, then

K = T .
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(C14) Conjecture 14.

Let f ∈ A∗T , H = {α1, . . . , αk} be the set of limit points of
f (n + 1)− f (n) (n ∈ N). Then

H = Ek =
{m

n
(mod 1),m = 0,1, . . . k − 1

}
,

furthermore

f (n) = τ log n + U(n) (mod 1), U(N) = Ek ,

and for every ω ∈ Ek there exists a sequence n1 < n2 < . . .
such that

U(nν + 1)− U(nν)→ 0 (n→∞).
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Theorem 11. (I. K. and M. V. Subbarao)
a) Conjecture 14 is true for k = 1,2,3.
b) If k = 4, then either 4U(n) ≡ 0 (mod 1) or 5U(n) ≡ 0
(mod 1).

Theorem 12. (E. Wirsing)

Assume that the conditions of Conjecture 14 hold. Then

f (n) = τ log n + U(n) (mod 1),

and there exists a finite M ∈ N such that MU(n) ≡ 0 (mod 1).
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Theorem 13. (BMP)
a) If a function F ∈M∗ and a positive integer ` ≤ 5 satisfy the
condition F (N) = U` := {ω ∈ C|ω` = 1}, then
{F (n + 1)F (n) | n ∈ N} = U`.

b) Assume that A, B ∈ N, G is any Abelian group and F1, F2
are G-valued completely multiplicative functions. If

{F1(An + B)(F2(An))−1 | n ∈ N}

is a finite set, then there are finite subgroups G1 and G2 of G
such that G2 ⊆ G1 and Fi(N) is a subgroup of Gi (i=1,2).
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5. Characterization of continuous homomorphisms as
elements of AG for compact groups.

Definitions.
G=metrically compact Abelian group,
ρ = translation invariant metric
kD = { those {xn} ∈ GN for which: if xn1 , xn2 , . . . is a convergent
subsequence, then xn1+1, xn2+1, . . . is convergent also }
k∆ = {{xn} ∈ GN | ∆xn = xn+1 − xn → 0, (n→∞)}

Clear: k∆ ⊆ kD.

A∗G(D) = {f ∈ A∗G | {f (n)}∞n=1 ∈ kD}

A∗G(∆) = {f ∈ A∗G | {f (n)}∞n=1 ∈ k∆}
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Results (Z. Daróczy and I.K.)

1) A∗G(D) = A∗G(∆)

2) If f ∈ A∗G(D), then there exists a continuous
homomorphism Φ : Rx → G such that f (n) = Φ(n) (n ∈ N).
It was deduced from the theorem of Wirsing (Theorem 6).
3) Let Sf = closure {f (1), f (2), . . .}. Then Sf is a compact
subgroup of G.
4) f ∈ A∗G(D) if and only if there exists a continuous
function Hf : Sf → Sf such that

f (n + 1)− H(f (n))→ 0 (n→∞).

5) Bui Minh Phong proved further interesting results.
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Thank you for your attention!
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