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N, Z,R, C, P

G= Abelian group, A, A*, M, M*, Ag, A%,

@ A = set of additive functions

@ M = set of multiplicative functions

@ A* = set of complete additive functions

@ M* = set of complete multiplicative functions.

@ fe Agmeans: f: N — G, f(nm) = f(n)+ f(m) if
(n,m) =1

o fe Agzmeans: f: N — G, f(nm) = f(n)+ f(m) holds for
every n,me N




1.0nlogn

1. Onlogn

Starting point: P. Erdds, On the distribution function of additive
functions, Ann.Math., 47 (1946), 1-20.

fe Aand Af(n):=f(n+1)—1f(n) -0 (n— o0) or

f(n) <f(n+1) (neN), thenf(n) = clogn.

e fe Aand AXf(n) >0 (n e N),then f(n) = clogn
o fe Aand Af(n) > —K (n € N), then
f(n) = clogn+ O(1), u(n) is bounded (E. Wirsing)
o feAand ;Y. |Af(n)| =0 (x — o), then
f(n) = clogn
@ feA Iy, xg <X <---such
that &3, _perx, [AF(N)] = 0O (i — o0), then f(n) = clog n
(E. Wirsing)




@ fec A* and ﬁfé? — 0 (n— 0), then
f(n) = clogn (E.Wirsing)

e f,ge Aand g(n+1)—f(n) = 0 (n € ), then
g(n)=f(n)=clogn

o f,ge Aand >, |g(n+1) —f(n)| = 0 (x € c0), then
g(n)=f(n)=clogn

@ If P(x) € R[x], E is the shift operator (Ex, = Xp41), f € A
and 13", IP(E)f(n)] = 0 (x — oc), then
f(n) = clogn+ u(n), where P(E)u(n) =0 (n e N). If
P(1) # 0, then ¢ = 0, u s of finite support, i.e. u(p®) =0
for every large p (P.D.T.A. Elliott - I. K.)

o lIf f,ge Aand|g(n+1)—f(n) <K, then
f(n) = clogn+ hy(n), g(n) = clog n+ hyo(n), hy(n), ha(n)
are bounded. (J. L. Mauclaire)
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a) Characterize all those f € A for which
f(an+b) — f(An+B) — C (n — o),

and those f, g € A for which

f(an+ b) — g(An+ B) — C (n— o).

Partial results: I. K., Bui Minh Phong (=BMP), J.-L. Mauclaire
(JLM). Completely solved by Elliott (PDTAE).

b) Characterize all those f; € A (i =1, - - - k) for which

k
(1.1) D fi(n+1i) =0 (n— o0).
i=1




(C1) Conjecture 1.

If (1.1) holds, then f;j(n) = c¢jlog n+ u;(n), u; € Aand
k
(1.2) > u(n+i)=0 (neN).
i=1
(C2) Conjecture 2.
If (1.2) holds, then
ui(n)=---=ux(n)=0if (n,(k—1))=1.

Partial results: If (1.2) holds, kK < 4, u; € A*, then (C2) is true.
If (1.2) holds, k < 3, u; € A, then (C2) is true (R. Styer).



c) We say that a subset B of N is a set of uniqueness, if f € A*,
f(b) = 0 for all b € B implies that f(n) = 0 for all n € N.

We say that a subset B of N is a set of uniqueness mod 1, if
fe A*, f(b) =0 (mod 1) (Vb € B) implies that f(n) = 0
(mod 1) for all n € N.

Let Py :={p+1]|pec P}

(C3) Conijecture 3.
The set Py is a set of uniqueness.

(C4) Conjecture 4.
The set Py is a set of uniqueness (mod 1).




l. K. (almost), PDTA completely

(C4):
@ | proved in (I.K., Acta Arith. 16 (1969/1970)): There is (an
ineffective) K such that every n € N can be written as

,
(M pi+1)",
i=1

where [, € Z, and P(a(n)) < K.

@ Elliott proved in (Monatschrifte Math. 97 (1984), 85-97):
The above assertion is true with K = 10387,
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d) What are those subsets E C N for which f(e) ,*, (e € E)
implies that f = clog? \

Since n(P; + 1) = (n+ 1)(P5 + 1) has infinely many P,, P,
solutions (w(P2) < 2, w(P5) < 2), therefore E = {P, +1}is
such a set.

(C5) Conjecture 5

If fe A*and f(p+ 1) > f(g + 1) for every couple of primes
p > q, then f(n) = clogn (Vn € N).

Elliott (Ramanujan J. (2008), 15, 87-102) proved:

If fe Aand f(p+ 1) 7 on Py, then f(n) = clog n for all odd n,
and f(2%) = constant.
Thus Conjecture 5 is true for f € A*.




(C6) Conjecture 6 (1977)

If fe A* and f(p+ 1) > 0 for every p € P, then
f(n) >0 (Vn e N).

This is hopless. It would follows from

(C7) Conjecture 7

For every a € N there exists a K for which p + 1 = Ka" has
infinitely many solutions as n € N.

(C8) Conjecture 8 (A joint problem of BMP and mine)

If f;, 6 € A* and
filp+4)—K(p+2)=0 (mod 1),

then fi(n) = KL(n) =0 (mod 1) (ne N).




3. Characterization of n®

2. Characterization of n® as a multiplicative function

Question: f € M, Af(n) =f(n+ 1) — f(n) — 0(n — o0). What
further assumptions guarantee that f(n) = n®, s = o + it?

Theorem 1. (1.K)
Let f,g € M and

lg(n+1) — f(n)] < cc.

S|=

o0
n=1

Then either 3°0°, 1f(n)] < 0o and 30° Lig(n)| < oo or

f(n)=g(n)=n"*" oteR, 0<o<1.




3. Characterization of n®

Theorem 2.(1.K)

Letf,ge M*, ke N, k >2and

o0

$ 1n|g(n+ K) — f(n)| < oo.

n=1

Let f(n) = g(n) =0if (n,k) > 1 and f(n) # 0, g(n) # O if
(n,k) = 1. Then either

;n!f(n)! < oo and ;nlg(n)\ < oo,

or there exist F, G € M*, s € C, ®s < 1 such that
f(n) = n°F(n), g(n) = n°G(n) and G(n+ k) = F(n) (Vn € N)
hold.




3. Characterization of n®

Theorem 3.(I.K+BMP)

Let F,Ge M, ke Nand
G(n+ k) = F(n) (¥n € N).
Let
SF:={neN| F(n)#0},Sg:={neN| G(n) #0}.

Then either S, Sg are finite sets, or F(n) # 0, G(n) # 0 for
every ne N, (n, k) =1.




3. Characterization of n®

(C9) Conjecture 9.

If f € M and
1Z|Af(n)| —0as x — oo,
Xngx
Then either :
=3 " |f(n)] — 0as x — oo,
Xngx
or
f(n) =n® Rs < 1.




3. Characterization of n®

Hildebrand proved:

Theorem 4. (Hildebrand)

There exists a suitable ¢ with the following property: If g € M*,

lg(n)| =1, (neN),and |g(p) — 1| < ¢ (Vp € P), then either
g(n) = 1 identically, or

o1
I|m|nf;Z\Ag(n)| > 0as x — oo,

n<x




3. Characterization of n®

| proved

Theorem 5. (1.K)

Let g € M*, |g(n)| =1, (n € N). There exist positive constants
5 < 1 and ¢ such that

lim sup Z <6and liminf > |Ag(n)| =0

xB<p<x F<p<x

imply that g(n) = 1 identically.

Theorem 6., (Wirsing proved in 1984; another proof: Wirsing,

Tang and Shao)

If g € M, |Ag(n)| — 0, then either f(n) — 0(n — o0), or
f(n)=n°, 0 <Rs < 1.




3. Characterization of n®

Another formulation of Wirsing’s theorem:
Let T be the additive group of real numbers (mod 1).

If F e Ar, AF(n) — 0(n — o), then F is a restriction of a
continuous homomorphism from Ry — T, thatis F(n) = clogn
(mod 1).

Theorem 8. (BMP)
Let A, Be N, D e R constant. If h € Ar and

h(An+ B) — h(n) — D — 0 as n — oo,

then his a restriction of a continuous homomorphism from
Ry — T.




3. Characterization of n®

Theorem 9.( N.L.Bassily and I.K)

If f, g € M satisfy
g(2n+1) — Cf(n) =0o(1) (n— o)
with some non-zero constant C, then the following possibilities
can occur:
(1) f(n) =0, g(2n+1) =0 (N — o)

(2) C=f(2), f(n)=n% g(m)=m° 0<Res<1forall
n,meN, (m2)=1.

(3) C = 1(2), f(n) = (—=1)""'n%, g(m) = xa(m)m®, 0 <Res<
1foralln, meN, (m,2) =1, where x4 is the nonprincipal
Dirichlet character (mod 4).




3. Characterization of n®

We note that BMP proved thatif A, Be N, C € C\ {0},
f, g e Mand

g(An+1)—-Cf(n)=0(1) as n— o

hold, then either f(n) = o(1) and g(An+1) =o(1) as n —
or there exist a complex number s and functions F, G € M
such that f(n) = n°F(n), g(m) = n°G(n), (0 <Rs < 1) and
G(An +1) = g5;F(n) are satisfied for all n € N.

Problem
Determine f, g € M for which

g(An+ B) — Cf(an+ b) — 0 (n— o0),

it An+B
it Zhtp 7 constant.




3. On additive function (mod 1)

4. On additive function (mod 1)

Let T=R/Z and A7 .= {F : N — T | F additive function}.

Definition.

F € Ar is of finite support if F(p®) = 0 for every large prime p,
andeveryaeN. LetF, € At (v=0,1,...,k—1) and

Ln(Fo,- - Fk1) = Fo(n) + ...+ Fkq(n+ k—1) (n=1,2,...).

Let Egk) = space of those (Fy, ..., Fx_1) € .A(Tk) for which

(3.1) Ln(Fo,-..,Fk_1) =0 (Yn e N).




3. On additive function (mod 1)

(C10) Conjecture 10.

If (3.1) holds, then every F; is of finite support, and Egk) is a
finite dimensional Z-module.

Let Gj(n) = 7jlogn (mod 1), 7o + ... + 7x—1 = 0. Then

Ln(Go,...,Gk-1) —» 0 as n— oc.

(C11) Conjecture 11.
IfF, e Ar (v=0,1,...,k—1),and

Ln(Fo,...,Fk_1) = 0 as n— oo,

then there are 7y, ..., 7k_1, 70 + ... + 7k—1 = 0 such that
Fi(n) = 7ilog(n) + H;i(n) (j=0,...,k—1) and

Ln(Ho, ceey Hk_1) =0 (Vn S N)




3. On additive function (mod 1)

@ 1) Conjecture 11 for k = 1 can be deduced from the
theorem of Wirsing

@ 2) Conjecture 11 for k = 2 under F,, € Ay proved (I. K.
1984)

@ 3) Conjecture 11 for k = 2 proved by R. Styer.

@ 4) M. Wijsmuller investigated the analog question over the
set of Gaussian integers.




3. On additive function (mod 1)

(C12) Conjecture 12.

For every integer k > 1 there exists a constant ¢k such that for
every prime p > c,

min max P(jp+£) <p
P()<p  £#0

or min max P y4
( 1</I<p€e[ ka Up+£) < p).

It is open for k > 2.



3. On additive function (mod 1)

Theorem 10. (1.K)

Let £

) — space of those (Fyp,...,Fr_1) € A*(f) for which
Ln(Fo, ce Fk,1) =0 (Vn S N)

Assume that Conjecture 12 is true for k = £. Then LS(Z) is a
finite dimensional space.

Let K = closure of {Ls(Fo, ..., Fx—1)|n € N}.

(C13) Conjecture 13.

If Fo,...,Fx_1 € A*7 and K contains an element of infinite
order, then

K=T.




3. On additive function (mod 1)

(C14) Conjecture 14.

Let f € A*r, H = {aq,...,ax} be the set of limit points of
f(n+1)—f(n) (n € N). Then

H:Ekz{% (mod 1),m:o,1,...k—1},
furthermore
f(n)=rlogn+ U(n) (mod 1), U(N) = Ex,

and for every w € Ey there exists a sequence ny < . < ...
such that
u(n,+1)—-U(n,) =0 (n— o0).




3. On additive function (mod 1)

Theorem 11. (I. K. and M. V. Subbarao)
@ a) Conjecture 14 is true for k = 1,2, 3.

@ b) If k = 4, then either 4U(n) =0 (mod 1) or 5U(n) =0
(mod 1).

Theorem 12. (E. Wirsing)
Assume that the conditions of Conjecture 14 hold. Then

f(n) =7logn+ U(n) (mod 1),

and there exists a finite M € N such that MU(n) =0 (mod 1).




3. On additive function (mod 1)

Theorem 13. (BMP)

a) If a function F € M* and a positive integer ¢ < 5 satisfy the
condition F(N) = U, := {w € Clw’ = 1}, then

{F(n+1)F(n) | ne N} = U,.

b) Assume that A, B € N, G is any Abelian group and Fy, F»
are G-valued completely multiplicative functions. If

{Fi(An+ B)(F»(An))~" | n e N}

is a finite set, then there are finite subgroups G; and G, of G
such that G, C Gy and F;(N) is a subgroup of G; (i=1,2).




4. Characterization of continuous homomorphisms

5. Characterization of continuous homomorphisms as

elements of Ag for compact groups.

Definitions.

G=metrically compact Abelian group,

p = translation invariant metric

kp = { those {x,} € G" for which: if X,,, Xp,, . . . is a convergent
subsequence, then Xp, 11, Xp,+1, - - . IS convergent also }

ka = {{xn} € GN | AXp= Xpi1 —Xn— 0, (N — c0)}

Clear: ka C kp.

Ag(D) = {f € Ag | {f(M}p1 € ko}
Ag(B) = {f € Ag [ {f{(nM)}nl € ka}



4. Characterization of continuous homomorphisms

Results (Z. Daroczy and 1.K.)

@ 1) AL(D) = A(4)

@ 2) If f € AL(D), then there exists a continuous
homomorphism ¢ : Ry — G such that f(n) = ®(n) (n € N).
It was deduced from the theorem of Wirsing (Theorem 6).

@ 3) Let S¢= closure {f(1),f(2),...}. Then S; is a compact
subgroup of G.

@ 4) f € AL(D) if and only if there exists a continuous
function H; : S; — S¢ such that

f(n+1) — H(f(n)) — 0 (n — o0).

@ 5) Bui Minh Phong proved further interesting results.




Thank you for your attention!
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