Resolvability of topological spaces

István Juhász

Alfréd Rényi Institute of Mathematics

Budapest, July 2, 2013

resolvability

DEFINITION. (Hewitt, 1943, Pearson, 1963)

- A topological space X is κ -resolvable iff it has κ disjoint dense subsets. (resolvable \equiv 2-resolvable)
- -X is maximally resolvable iff it is $\Delta(X)$ -resolvable, where

$$\Delta(X) = \min\{|G| : G \neq \emptyset \text{ open in } X\}.$$

EXAMPLES:

- $-\mathbb{R}$ is maximally resolvable.
- Compact Hausdorff, metric, and linearly ordered spaces are maximally resolvable.

QUESTION. What happens if these properties are relaxed?

Malychin's problem

EXAMPLE. (Hewitt, '43) There is a countable T_3 space X that is

- crowded (i.e. $\Delta(X) = |X| = \aleph_0$) and
- irresolvable(\equiv not 2-resolvable).

PROBLEM. (Malychin, 1995)

Is a Lindelöf T_3 space X with $\Delta(X) > \omega$ resolvable?

NOTE. Malychin constructed Lindelöf irresolvable Hausdorff (= T_2) spaces, and Pavlov Lindelöf irresolvable Uryson (= $T_{2.5}$) spaces.

THEOREM. (Filatova, 2004)

YES, every Lindelöf T_3 space X with $\Delta(X) > \omega$ is 2-resolvable.

This is the main result of her PhD thesis. It didn't work for 3!

Pavlov's theorems

```
s(X) = \sup\{|D| : D \subset X \text{ is discrete}\}
```

 $e(X) = \sup\{|D| : D \subset X \text{ is closed discrete}\}$

THEOREM. (Pavlov, 2002)

- (i) Any T_2 space X with $\Delta(X) > s(X)^+$ is maximally resolvable.
- (ii) Any T_3 space X with $\Delta(X) > e(X)^+$ is ω -resolvable.

THEOREM. (J-S-Sz, 2007)

Any space X with $\Delta(X) > s(X)$ is maximally resolvable.

THEOREM. (J-S-Sz, 2012)

Any T_3 space X with $\Delta(X) > e(X)$ is ω -resolvable. In particular, every Lindelöf T_3 space X with $\Delta(X) > \omega$ is ω -resolvable.

J-S-Sz

THEOREM. (J-S-Sz, 2007)

If $\Delta(X) \ge \kappa = \text{cf}(\kappa) > \omega$ and X has no discrete subset of size κ then X is κ -resolvable.

THEOREM. (J-S-Sz, 2012)

If X is T_3 , $\Delta(X) \ge \kappa = \mathrm{cf}(\kappa) > \omega$ and X has no closed discrete subset of size κ then X is ω -resolvable.

NOTE. For $\Delta(X) > \omega$ regular these suffice. If $\Delta(X) = \lambda$ is singular, we need to do extra work.

For $\Delta(X) = \lambda > s(X)$ we automatically get that X is $< \lambda$ -resolvable.

But now $\Delta(X) = \lambda > s(X)^+$, so we may use Pavlov's Thm (i).

For $\Delta(X) = \lambda > e(X)^+$ we may use Pavlov's Thm (ii).

$<\lambda$ -resolvable

THEOREM. (J-S-Sz, 2006)

For any $\kappa \ge \lambda = \operatorname{cf}(\lambda) > \omega$ there is a dense $X \subset D(2)^{2^{\kappa}}$ with $\Delta(X) = \kappa$ that is $< \lambda$ -resolvable but not λ -resolvable.

NOTE. This solved a problem of Ceder and Pearson from 1967. We used the general method of constructing \mathcal{D} -forced spaces.

THEOREM. (Illanes, Baskara Rao)

If $cf(\lambda) = \omega$ then every $< \lambda$ -resolvable space is λ -resolvable.

PROBLEM.

Is this true for each singular λ ? How about $\lambda = \aleph_{\omega_1}$?

monotone normality

DEFINITION.

The space X is monotonically normal (MN) iff it is T_1 (i.e. all singletons are closed) and it has a monotone normality operator H that "halves" neighbourhoods:

H assigns to every $\langle x, U \rangle$, with $x \in U$ open, an open set H(x, U) s. t.

(i)
$$x \in H(x, U) \subset U$$
,

and

(ii) if
$$H(x, U) \cap H(y, V) \neq \emptyset$$
 then $x \in V$ or $y \in U$.

FACT. Metric spaces and linearly ordered spaces are MN.

QUESTION. Are MN spaces maximally resolvable?

SD spaces

DEFINITION.

(i) $D \subset X$ is strongly discrete if there are pairwise disjoint open sets $\{U_x : x \in D\}$ with $x \in U_x$ for $x \in D$.

EXAMPLE: Countable discrete sets in T_3 spaces are SD.

(ii) X is an SD space if every non-isolated point $x \in X$ is an SD limit.

THEOREM. (Sharma and Sharma, 1988)

Every T_1 crowded SD space is ω -resolvable.

THEOREM. (DTTW, 2002)

MN spaces are SD, hence crowded MN spaces are ω -resolvable.

PROBLEM. (Ceder and Pearson, 1967)

Are ω -resolvable spaces maximally resolvable?

[J-S-Sz]

 $[J-S-Sz] \equiv I$. Juhász, L. Soukup and Z. Szentmiklóssy, Resolvability and monotone normality, Israel J. Math., 166 (2008), no. 1, pp. 1–16.

DEFINITION. X is a DSD space if every dense subspace of X is SD. Clearly, MN spaces are DSD.

Main results of [J-S-Sz]

- If κ is measurable then there is a MN space X with $\Delta(X) = \kappa$ that is ω_1 -irrresolvable.
- If X is DSD with $|X| < \aleph_{\omega}$ then X is maximally resolvable.
- From a supercompact cardinal, it is consistent to have a MN space X with $|X| = \Delta(X) = \aleph_{\omega}$ that is ω_2 -irresolvable.

This left a number of questions open.

decomposability of ultrafilters

DEFINITION.

- An ultrafilter \mathcal{F} is μ -descendingly complete iff for any descending μ -sequence $\{A_\alpha : \alpha < \mu\} \subset \mathcal{F}$ we have $\bigcap \{A_\alpha : \alpha < \mu\} \in \mathcal{F}$. μ -descendingly incomplete is called μ -decomposable.
- $-\Delta(\mathcal{F}) = \min\{|A| : A \in \mathcal{F}\}.$
- \mathcal{F} is maximally decomposable iff it is μ -decomposable for all μ with $\omega \le \mu \le \Delta(\mathcal{F})$.

FACTS.

- Any "measure" is countably complete, hence ω -indecomposable.
- [Donder, 1988] If there is a not maximally decomposable ultrafilter then there is a measurable cardinal in some inner model.
- [Kunen Prikry, 1971] Every ultrafilter \mathcal{F} with $\Delta(\mathcal{F}) < \aleph_{\omega}$ is maximally decomposable.

[J-M]

[J-M] \equiv I. Juhász and M. Magidor, *On the maximal resolvability of monotonically normal spaces*, Israel J. Math, 192 (2012), 637-666.

Main results of [J-M]

(1) TFAEV

- Every DSD space (of cardinality $< \kappa$) is maximally resolvable.
- Every MN space (of cardinality $< \kappa$) is maximally resolvable.
- Every ultrafilter \mathcal{F} (with $\Delta(\mathcal{F}) < \kappa$) is maximally decomposable.

(2) TFAEC

- There is a measurable cardinal.
- There is a MN space that is not maximally resolvable.
- There is a MN space X with $|X| = \Delta(X) = \aleph_{\omega}$ that is ω_1 -irresolvable.