Graph properties, graph limits and entropy

Svante Janson (joint work with Hamed Hatami and Balázs Szegedy)

Erdős Centennial, Budapest, 4 July 2013

Erdős and graph limits

Erdős made many contributions to graph theory.

Erdős and graph limits

Erdős made many contributions to graph theory.

(ロ)、(型)、(E)、(E)、 E) の(の)

Graph limits is not one of them.

Erdős and graph limits

Erdős made many contributions to graph theory.

Graph limits is not one of them.

But graph limits are a natural continuation of Erdős' work.

In particular, the work by Erdős and Rényi on random graphs is one way to (partially) decribe the structure of very large graphs; the graph limit theory generalizes and extends this.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Graph limits

Quick course: (see e.g. the recent book by Lovász for details)

Some sequences of (unlabelled) graphs G_n (with $|G_n| \to \infty$) are defined to be *convergent*.

A set of limit objects is defined, which together with the set of unlabelled graphs forms a compact metric space.

The limit objects have (non-unique) representations as graphons, symmetric functions $[0, 1]^2 \rightarrow [0, 1]$.

Graph classes and graph limits

Let \mathcal{Q} be a graph class, i.e., a set of (unlabelled) graphs.

Equivalently, Q can be seen as a graph property, i.e. a property invariant under isomorphisms.

Graph classes and graph limits

Let Q be a graph class, i.e., a set of (unlabelled) graphs.

Equivalently, Q can be seen as a graph property, i.e. a property invariant under isomorphisms.

General project: Study \widehat{Q} , the set of graph limits that are limits of sequences of graphs in Q.

Graph classes and graph limits

Let Q be a graph class, i.e., a set of (unlabelled) graphs.

Equivalently, Q can be seen as a graph property, i.e. a property invariant under isomorphisms.

General project: Study \widehat{Q} , the set of graph limits that are limits of sequences of graphs in Q.

Today only *hereditary graph classes*. (If $G \in Q$, then $H \in Q$ for every induced subgraph H of G.)

Entropy

We define the *entropy* of a graphon W, and of the corresponding graph limit Γ , by

$$\operatorname{Ent}(W) := \int_0^1 \int_0^1 h(W(x,y)) \, dx \, dy,$$

where h is the binary entropy function

$$h(x) = -x \log_2(x) - (1-x) \log_2(1-x).$$

Note that $0 \leq \operatorname{Ent}(W) \leq 1$.

This is related to the entropy of random graphs, see e.g. Aldous (1985); it has also previously been used by Chatterjee and Varadhan (2011) and Chatterjee and Diaconis (2011).

Speed

Let Q be a hereditary graph class, and let $Q_n := \{G \in Q : |G| = n\}.$

The rate of growth of $|Q_n|$ has been studied by Alekseev (1992), Bollobás and Thomason (1997) and many others. It is known that

$$|Q_n| = 2^{(1-r^{-1}+o(1))\binom{n}{2}}$$

for some integer $r \in \{1, 2..., \infty\}$ (the *colouring number*).

Theorem

Let $\mathcal Q$ be a hereditary class of graphs. Then

$$\lim_{n\to\infty}\frac{\log_2|\mathcal{Q}_n|}{\binom{n}{2}}=\max_{\Gamma\in\widehat{\mathcal{Q}}}\mathsf{Ent}(\Gamma).$$

Corollary

 $|Q_n| = 2^{o(n^2)}$ if and only if every graphon W in \widehat{Q} satisfies $W(x, y) \in \{0, 1\}$ a.e. (W is random-free).

Such properties Q are called *random-free*.

Maximize entropy

For r = 1, 2, ..., let $I_i := ((i - 1)/r, i/r]$ and let R_r be the sets of graphons W such that

$$W(x, y) = \frac{1}{2}, \quad (x, y) \in I_i \times I_j \text{ with } i \neq j;$$

$$W(x, y) \in \{0, 1\}, \quad (x, y) \in I_i \times I_i$$

and $R_{\infty} := \{\frac{1}{2}\}$. (Thus R_1 is the set of random-free graphons.) For $0 \le s \le r < \infty$, let $W_{r,s}^*$ be the graphon in R_r that is 1 on $I_i \times I_i$ for $i \le s$ and 0 for i > s.

Theorem

 $\begin{aligned} \max_{\Gamma \in \widehat{\mathcal{Q}}} \operatorname{Ent}(\Gamma) &= 1 - \frac{1}{r} \text{ and} \\ &|\mathcal{Q}_n| = 2^{(1 - r^{-1} + o(1))\binom{n}{2}} \end{aligned}$ where $r \in \{1, 2..., \infty\}$ and furthermore $r = \sup\left\{t : W_{t,u}^* \in \widehat{\mathcal{Q}} \text{ for some } u \leq t\right\}$ $= \min\left\{s \geq 1 : \{(x, y) : W(x, y) \notin \{0, 1\}\} \text{ is } K_{s+1}\text{-free for } W \in \widehat{\mathcal{Q}}\right\}$

Moreover, every graph limit in \widehat{Q} with maximal entropy 1 - 1/r can be represented by a graphon $W \in R_r$.

r = 1 if and only if Q is random-free, and $r = \infty$ if and only if Q is the class of all graphs.

Random graphs in $\mathcal Q$

Theorem

Suppose that $\max_{\Gamma \in \widehat{\mathcal{Q}}} Ent(\Gamma)$ is attained by a unique graph limit $\Gamma_{\mathcal{Q}}$. Let G_n be a uniformly random (unlabelled or labelled) element of \mathcal{Q}_n .

Then G_n converges to $\Gamma_{\mathcal{Q}}$ in probability as $n \to \infty$.

Example: Bipartite graphs

Let Q be the class of *bipartite graphs*.

It is easy to characterize all graph limits in $\widehat{\mathcal{Q}}$.

There is a unique graph limit with maximum entropy, represented by the graphon $W_{2,0}^* \in R_2$.

Thus the colouring number r = 2 and $|Q_n| = 2^{\frac{1}{2}\binom{n}{2} + o(n^2)}$ (which can be easily proved directly).

If G_n is a uniformly random (labelled or unlabelled) bipartite graph, then $G_n \to W_{2,0}^*$ in probability.

$\frac{1}{2}$	0				
0	$\frac{1}{2}$				
W _{2,0}					

Example: Triangle-free graphs

Let Q be the class of *triangle-free* graphs.

This class is strictly larger than the class of bipartite graphs. The set \widehat{Q} of triangle-free graph limits is strictly larger than the set of bipartite graph limits, but the graph limit represented by $W_{2,0}^*$ is still a unique graph limit of maximum entropy.

Thus the colouring number r = 2 and $|Q_n| = 2^{\frac{1}{2}\binom{n}{2}} + o(n^2)$ (as is well-known).

If G_n is a uniformly random triangle-free graph, then $G_n \to W_{2,0}^*$ in probability.

$\frac{1}{2}$	0
0	$\frac{1}{2}$

 $W_{2,0}^{*}$

*K*_{*t*}-free graphs

This extends to K_t -free graphs, for any $t \ge 2$. The colouring number is t - 1 and the unique graph limit of maximum entropy is represented by $W_{t-1,0}^*$.

Thus, a uniformly random K_t -free graph converges (in probability) to the graphon $W_{t-1,0}^*$.

$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	0			
$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{2}$			
$\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{1}{2}$			
0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$			
$W_{4,0}^{*}$ (t = 5)						

Example: String graphs

Let Q be the class of *string graphs*.

Then $|Q_n| = 2^{\frac{3}{4}\binom{n}{2} + o(n^2)}$ (Pach and Tóth (2006)). Thus the maximum entropy in \widehat{Q} is $\frac{3}{4}$ and the colouring number r = 4.

One graph limit in \widehat{Q} with maximum entropy is $W_{4,4}^*$. However, this is not unique.

Hence we do not know the limit of a uniformly random string graph of order n, as $n \to \infty$.

$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1
$\frac{1}{2}$	$\frac{1}{2}$	1	$\frac{1}{2}$
$\frac{1}{2}$	1	$\frac{1}{2}$	$\frac{1}{2}$
1	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$

Proofs

Proofs use the graphon version of the weak regularity lemma and approximation of graphons by step graphons, together with elementary counting.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?