The divisor function and divisor problem

Aleksandar Ivić
Serbian Academy of Arts and Sciences, Belgrade
ERDOS100, July 1-5 2013, Budapest

The definition of $d(n)$

The classical number of divisors function of a positive integer n is

$$
d(n):=\sum_{\delta \mid n} 1 .
$$

The definition of $d(n)$

The classical number of divisors function of a positive integer n is

$$
d(n):=\sum_{\delta \mid n} 1
$$

We have

$$
d(m n)=d(m) d(n)
$$

The definition of $d(n)$

The classical number of divisors function of a positive integer n is

$$
d(n):=\sum_{\delta \mid n} 1
$$

We have

$$
d(m n)=d(m) d(n)
$$

when $(m, n)=1$, so that $d(n)$ is a multiplicative arithmetic function. Further $d\left(p^{\alpha}\right)=\alpha+1$ for $\alpha \in \mathbb{N}$ and p a generic prime.

The general divisor function

In general

$$
\zeta^{\mathrm{k}}(\mathrm{~s})=\sum_{\mathrm{n}=1}^{\infty} \mathrm{d}_{\mathrm{k}}(\mathrm{n}) \mathrm{n}^{-\mathrm{s}} \quad(\mathrm{k} \in \mathbb{N}, \Re \mathrm{e} \mathrm{~s}>1)
$$

where the (general) divisor function $\mathrm{d}_{\mathrm{k}}(\mathrm{n})$ represents the number of ways n can be written as a product of k factors, so that in particular $d_{1}(n) \equiv 1$ and $\mathrm{d}(\mathrm{n}) \equiv \mathrm{d}_{2}(\mathrm{n})$. The Riemann zeta-function is $\zeta(\mathrm{s}):=\sum_{\mathrm{n}=1}^{\infty} \mathrm{n}^{-\mathrm{s}}$ for \Re es >1, otherwise it is defined by analytic continuation.

The general divisor function

In general

$$
\zeta^{\mathrm{k}}(\mathrm{~s})=\sum_{\mathrm{n}=1}^{\infty} \mathrm{d}_{\mathrm{k}}(\mathrm{n}) \mathrm{n}^{-\mathrm{s}} \quad(\mathrm{k} \in \mathbb{N}, \Re \mathrm{e} \mathrm{~s}>1)
$$

where the (general) divisor function $\mathrm{d}_{\mathrm{k}}(\mathrm{n})$ represents the number of ways n can be written as a product of k factors, so that in particular $\mathrm{d}_{1}(\mathrm{n}) \equiv 1$ and $d(n) \equiv d_{2}(n)$. The Riemann zeta-function is $\zeta(s):=\sum_{n=1}^{\infty} n^{-s}$ for Res >1, otherwise it is defined by analytic continuation.

The function $d_{k}(n)$ is a also multiplicative function of n, meaning that $\mathrm{d}_{\mathrm{k}}(\mathrm{mn})=\mathrm{d}_{\mathrm{k}}(\mathrm{m}) \mathrm{d}_{\mathrm{k}}(\mathrm{n})$ if m and $\mathrm{n}(\in \mathbb{N})$ are coprime, and

The general divisor function

In general

$$
\zeta^{\mathrm{k}}(\mathrm{~s})=\sum_{\mathrm{n}=1}^{\infty} \mathrm{d}_{\mathrm{k}}(\mathrm{n}) \mathrm{n}^{-\mathrm{s}} \quad(\mathrm{k} \in \mathbb{N}, \Re \mathrm{e} \mathrm{~s}>1)
$$

where the (general) divisor function $\mathrm{d}_{\mathrm{k}}(\mathrm{n})$ represents the number of ways n can be written as a product of k factors, so that in particular $\mathrm{d}_{1}(\mathrm{n}) \equiv 1$ and $d(n) \equiv d_{2}(n)$. The Riemann zeta-function is $\zeta(s):=\sum_{n=1}^{\infty} n^{-s}$ for Res >1, otherwise it is defined by analytic continuation.

The function $d_{k}(n)$ is a also multiplicative function of n, meaning that $\mathrm{d}_{\mathrm{k}}(\mathrm{mn})=\mathrm{d}_{\mathrm{k}}(\mathrm{m}) \mathrm{d}_{\mathrm{k}}(\mathrm{n})$ if m and $\mathrm{n}(\in \mathbb{N})$ are coprime, and

$$
\mathrm{d}_{\mathrm{k}}\left(\mathrm{p}^{\alpha}\right)=(-1)^{\alpha}\binom{-\mathrm{k}}{\alpha}=\frac{\mathrm{k}(\mathrm{k}+1) \cdots(\mathrm{k}+\alpha-1)}{\alpha!}
$$

for primes p and $\alpha \in \mathbb{N}$.

Iterations of $d(n)$

Let, for $\mathrm{k} \in \mathbb{N}$ fixed,

$$
\mathrm{d}^{(1)}(\mathrm{n}):=\mathrm{d}(\mathrm{n}), \mathrm{d}^{(\mathrm{k})}(\mathrm{n}):=\mathrm{d}\left(\mathrm{~d}^{(\mathrm{k}-1)}(\mathrm{n})\right) \quad(\mathrm{k}>1)
$$

be the k -th iteration of $\mathrm{d}(\mathrm{n})$. Already $\mathrm{d}^{(2)}(\mathrm{n})$ is not multiplicative!

Iterations of $d(n)$

Let, for $k \in \mathbb{N}$ fixed,

$$
d^{(1)}(n):=d(n), d^{(k)}(n):=d\left(d^{(k-1)}(n)\right) \quad(k>1)
$$

be the k-th iteration of $d(n)$. Already $d^{(2)}(n)$ is not multiplicative! S. Ramanujan proved (1915) that

$$
d^{(2)}(n)>4^{\sqrt{2 \log n} / \log \log n}
$$

for infinitely many n.

Iterations of $d(n)$

Let, for $k \in \mathbb{N}$ fixed,

$$
d^{(1)}(n):=d(n), d^{(k)}(n):=d\left(d^{(k-1)}(n)\right) \quad(k>1)
$$

be the k-th iteration of $d(n)$. Already $d^{(2)}(n)$ is not multiplicative!
S. Ramanujan proved (1915) that

$$
d^{(2)}(n)>4^{\sqrt{2 \log n} / \log \log n}
$$

for infinitely many n.
This follows if one considers (p_{j} is the j-th prime)

$$
n=2^{1} \cdot 3^{2} \cdot 5^{4} \cdot \ldots p_{k}^{p_{k}-1}
$$

and lets $k \rightarrow \infty$.

The work of Erdős and Kátai

Let ℓ_{k} denote the k-th Fibonacci number:

$$
\ell_{-1}=0, \ell_{0}=1, \ell_{k}=\ell_{k-1}+\ell_{k-2} \quad(k \geqslant 1)
$$

The work of Erdős and Kátai

Let ℓ_{k} denote the k-th Fibonacci number:

$$
\ell_{-1}=0, \ell_{0}=1, \ell_{k}=\ell_{k-1}+\ell_{k-2} \quad(k \geqslant 1)
$$

P. Erdős and I. Kátai proved (1967) that

$$
d^{(k)}(n)<\exp \left((\log n)^{1 / \ell_{k}+\varepsilon}\right)
$$

for fixed k and $n \geqslant n_{0}(\varepsilon, k)$, and that for every $\varepsilon>0$

The work of Erdős and Kátai

Let ℓ_{k} denote the k-th Fibonacci number:

$$
\ell_{-1}=0, \ell_{0}=1, \ell_{k}=\ell_{k-1}+\ell_{k-2} \quad(k \geqslant 1)
$$

P. Erdős and I. Kátai proved (1967) that

$$
d^{(k)}(n)<\exp \left((\log n)^{1 / \ell_{k}+\varepsilon}\right)
$$

for fixed k and $n \geqslant n_{0}(\varepsilon, k)$, and that for every $\varepsilon>0$

$$
d^{(k)}(n)>\exp \left((\log n)^{1 / \ell_{k}-\varepsilon}\right)
$$

for infinitely many n.

The lower bound follows for $n=N_{j}$, where inductively $N_{1}=2 \cdot 3 \cdot \ldots \cdot p_{r}$,

The lower bound follows for $n=N_{j}$, where inductively $N_{1}=2 \cdot 3 \cdot \ldots \cdot p_{r}$, and if

$$
N_{j}=\prod_{i=1}^{S_{j}} p_{i}^{r_{i}}
$$

say, then

$$
\begin{aligned}
& N_{j+1}=\left(p_{1} \cdots p_{r_{1}}\right)^{p_{i}-1}\left(p_{r_{i}+1} \cdots p_{r_{1}+r_{2}}\right)^{p_{2}-1} \\
& \cdots\left(p_{r_{1}+\cdots r_{s_{j}-1}+1} \cdots p_{r_{1}+\cdots r_{s_{j}}}\right)^{p_{s_{j}-1}} .
\end{aligned}
$$

The lower bound follows for $n=N_{j}$, where inductively $N_{1}=2 \cdot 3 \cdot \ldots \cdot p_{r}$, and if

$$
N_{j}=\prod_{i=1}^{S_{j}} p_{i}^{r_{i}}
$$

say, then

$$
\begin{aligned}
& N_{j+1}=\left(p_{1} \cdots p_{r_{1}}\right)^{p_{i}-1}\left(p_{r_{i}+1} \cdots p_{r_{1}+r_{2}}\right)^{p_{2}-1} \\
& \cdots\left(p_{r_{1}+\cdots r_{s_{j}-1}+1} \cdots p_{r_{1}+\cdots r_{s_{j}}}\right)^{p_{s_{j}-1}} .
\end{aligned}
$$

Then one has $d^{(k)}\left(N_{k}\right)=2^{r}$, and the proof reduces to finding the lower bound for r.

The work of Erdős and Ivić

In Bull. XCIX Acad. Serbe 1989 Sci. math. nat. P. Erdős and A. Ivić proved, for $n \geqslant n_{0}$,

The work of Erdős and Ivić

In Bull. XCIX Acad. Serbe 1989 Sci. math. nat. P. Erdős and A. Ivić proved, for $n \geqslant n_{0}$,

$$
d^{(2)}(n)<\exp \left(\left(\frac{\log n \log \log n}{\log \log \log n}\right)^{1 / 2}\right) .
$$

The work of Erdős and Ivić

In Bull. XCIX Acad. Serbe 1989 Sci. math. nat. P. Erdős and A. Ivić proved, for $n \geqslant n_{0}$,

$$
d^{(2)}(n)<\exp \left(\left(\frac{\log n \log \log n}{\log \log \log n}\right)^{1 / 2}\right) .
$$

This follows from

$$
\log d(n)=\sum_{i=1}^{r} \log \left(\alpha_{i}+1\right) \ll r \log \log r=\omega(n) \log \log \omega(n)
$$

and the bound $\left(\omega(n)=\sum_{p \mid n} 1\right)$

$$
\omega(d(n)) \ll\left(\frac{\log n \log \log n}{\log \log \log n}\right)^{1 / 2}
$$

$$
\omega(d(n)) \ll\left(\frac{\log n \log \log n}{\log \log \log n}\right)^{1 / 2}
$$

We use throughout the lecture the notation

$$
f(x) \ll g(x) \Longleftrightarrow f(x)=O(g(x)) \Longleftrightarrow|f(x)| \leqslant C g(x)\left(x \geqslant x_{0}\right) .
$$

New work

A. Smati [C.R. Math. Acad. Sci. Paris 340(2005)] improved the previous upper bound for $d^{(2)}(n)=d(d(n))$ to

New work

A. Smati [C.R. Math. Acad. Sci. Paris 340(2005)] improved the previous upper bound for $d^{(2)}(n)=d(d(n))$ to

$$
d^{(2)}(n)<\exp (C \sqrt{\log n}) \quad\left(C>0, n \geqslant n_{0}\right)
$$

New work

A. Smati [C.R. Math. Acad. Sci. Paris 340(2005)] improved the previous upper bound for $d^{(2)}(n)=d(d(n))$ to

$$
d^{(2)}(n)<\exp (C \sqrt{\log n}) \quad\left(C>0, n \geqslant n_{0}\right)
$$

which turned out to be only by a factor of $\log \log n$ (in the exponent) smaller than the true upper bound.

New work

A. Smati [C.R. Math. Acad. Sci. Paris 340(2005)] improved the previous upper bound for $d^{(2)}(n)=d(d(n))$ to

$$
d^{(2)}(n)<\exp (C \sqrt{\log n}) \quad\left(C>0, n \geqslant n_{0}\right)
$$

which turned out to be only by a factor of $\log \log n$ (in the exponent) smaller than the true upper bound. Namely, in 2011 Y. Buttkewitz, C. Elsholtz, K. Ford and J.-C. Schlage-Puchta practically settled the problem of the maximal order of $d^{(2)}(n)$ by proving

$$
\max _{n \leqslant x} \log d(d(n))=\frac{\sqrt{\log x}}{\log \log x}\left(C+O\left(\frac{\log \log \log x}{\log \log x}\right)\right),
$$

$$
\max _{n \leqslant x} \log d(d(n))=\frac{\sqrt{\log x}}{\log \log x}\left(C+O\left(\frac{\log \log \log x}{\log \log x}\right)\right),
$$

where $C=2.7958 \ldots$ is an explicit constant.

$$
\max _{n \leqslant x} \log d(d(n))=\frac{\sqrt{\log x}}{\log \log x}\left(C+O\left(\frac{\log \log \log x}{\log \log x}\right)\right)
$$

where $C=2.7958 \ldots$ is an explicit constant.

In 1992 A.I. conjectured

$$
\sum_{n \leqslant x} d(n+d(n))=D x \log x+O(x) \quad(D>0)
$$

$$
\max _{n \leqslant x} \log d(d(n))=\frac{\sqrt{\log x}}{\log \log x}\left(C+O\left(\frac{\log \log \log x}{\log \log x}\right)\right),
$$

where $C=2.7958 \ldots$ is an explicit constant.

In 1992 A.I. conjectured

$$
\sum_{n \leqslant x} d(n+d(n))=D x \log x+O(x) \quad(D>0)
$$

I. Kátai [Math. Panonica 18(2007)] obtained this formula with the error term $O(x \log x / \log \log x)$.

Erdős's work on $d(n)$ in short intervals

P. Erdős begins his classical paper Asymptotische Untersuchungen über die Anzahl der Teiler von n, Math. Annalen, 1967:

Erdős's work on $d(n)$ in short intervals

P. Erdős begins his classical paper Asymptotische Untersuchungen über die Anzahl der Teiler von n, Math. Annalen, 1967:
$d(n)$ sei der Anzahl der teiler von n. Folgende asymptotische Formel ist wohlbekannt:

$$
\begin{equation*}
\sum_{n=1}^{x} d(n)=x \log x+(2 C-1) x+O\left(x^{\alpha}\right), \quad \alpha=15 / 46 \tag{1}
\end{equation*}
$$

(C ist die Eulersche Konstante).
(1) gilt wahrscheinlich für jedes $\alpha>1 / 4$; diese alte Vermutung scheint aber sehr tief zu sein.

Remark

The function in the O-term is commonly denoted by $\Delta(x)$, thus

$$
\Delta(x):=\sum_{n \leqslant x} d(n)-x(\log x+2 C-1) .
$$

Remark

The function in the O-term is commonly denoted by $\Delta(x)$, thus

$$
\Delta(x):=\sum_{n \leqslant x} d(n)-x(\log x+2 C-1)
$$

Remark

Note that $15 / 46=0.32608 . .$. , due to H.-E. Richert (1952), can be replaced by M.N. Huxley's (2003) 131/416 = 0.31493. . . .

Theorem

Erdős: Es sei $h(x)$ eine beliebige wachsende Funktion, die mit x gegen ∞ strebt. Es sei

$$
f(x)>(\log x)^{2 \log 2-1} \exp (h(x) \sqrt{\log \log x})
$$

Dann gilt für fast alle x
$(*) \quad \sum_{n \leqslant f(x)} d(x+n)=(1+o(1)) f(x) \log x \quad(x \rightarrow \infty)$.

Diese Formel lässt sich nicht weiter verschärfen. Ist nämlich

$$
f(x)=(\log x)^{2 \log 2-1} \exp (c \sqrt{\log \log x}) \quad(c>0)
$$

so gilt (*) nicht mehr für fast alle x.

The speaker (1997) proved that, for a fixed integer $k \geqslant 3$ and any fixed $\varepsilon>0$, we have

The speaker (1997) proved that, for a fixed integer $k \geqslant 3$ and any fixed $\varepsilon>0$, we have
(8) $\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \ll \sup _{k, \varepsilon} T^{1+\varepsilon}\left(1+G_{T^{1+\varepsilon}<M \ll T^{k / 2}} G_{k}(M ; T) M^{-1}\right)$,
if, for $M<M^{\prime} \leqslant 2 M, T^{1+\varepsilon} \leqslant M \ll T^{k / 2}$,

$$
G_{k}(M ; T):=\sup _{\substack{M \leqslant x \leqslant M^{\prime} \\ 1 \leqslant t \leqslant M^{1+\varepsilon} / T}}\left|\sum_{h \leqslant t} \Delta_{k}(x, h)\right| .
$$

The speaker (1997) proved that, for a fixed integer $k \geqslant 3$ and any fixed $\varepsilon>0$, we have
(8) $\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \ll_{k, \varepsilon} T^{1+\varepsilon}\left(1+\sup _{T^{1+\varepsilon}<M \ll T^{k / 2}} G_{k}(M ; T) M^{-1}\right)$,
if, for $M<M^{\prime} \leqslant 2 M, T^{1+\varepsilon} \leqslant M \ll T^{k / 2}$,

$$
G_{k}(M ; T):=\sup _{\substack{M \leqslant x \leqslant M^{\prime} \\ 1 \leqslant t \leqslant M^{1+\varepsilon} / T}}\left|\sum_{h \leqslant t} \Delta_{k}(x, h)\right| .
$$

This bound (8) provides a direct link between upper bounds for the $2 k$-th moment of $\left|\zeta\left(\frac{1}{2}+i t\right)\right|$ and sums of $\Delta_{k}(x, h)$ over the shift parameter h, showing also the limitations of the method, where $\Delta_{k}(x, h)$ denotes the error term in the asymptotic formula for the sum $\sum_{n \leqslant x} d_{k}(n) d_{k}(n+h)$.

Namely one writes

$$
\sum_{n \leqslant x} d_{k}(n) d_{k}(n+h)=x P_{2 k-2}(\log x ; h)+\Delta_{k}(x, h)
$$

where it is assumed that $k \geqslant 2$ is a fixed integer, and $P_{2 k-2}(\log x ; h)$ is a suitable polynomial of degree $2 k-2$ in $\log x$, whose coefficients depend on k and h, while $\Delta_{k}(x, h)$ is supposed to be the error term.

Namely one writes

$$
\sum_{n \leqslant x} d_{k}(n) d_{k}(n+h)=x P_{2 k-2}(\log x ; h)+\Delta_{k}(x, h),
$$

where it is assumed that $k \geqslant 2$ is a fixed integer, and $P_{2 k-2}(\log x ; h)$ is a suitable polynomial of degree $2 k-2$ in $\log x$, whose coefficients depend on k and h, while $\Delta_{k}(x, h)$ is supposed to be the error term.

This means that we should have

$$
\Delta_{k}(x, h)=o(x) \quad \text { as } \quad x \rightarrow \infty
$$

but unfortunately this is not yet known to hold for any $k \geqslant 3$, even for fixed h, while for $k=2$ there are many results.

New results

S. Baier, T.D. Browning, G. Marasingha and L. Zhao (2012) proved
(9) $\quad \sum_{h \leqslant H} \Delta_{3}(N ; h)<_{\varepsilon} N^{\varepsilon}\left(H^{2}+H^{1 / 2} N^{13 / 12}\right) \quad(1 \leqslant H \leqslant N)$,

$$
\Delta_{3}(N ; h)=\sum_{N<n \leqslant 2 N} d_{3}(n) d_{3}(n+h)-N P_{4}(\log N ; h),
$$

New results

S. Baier, T.D. Browning, G. Marasingha and L. Zhao (2012) proved
(9) $\quad \sum_{h \leqslant H} \Delta_{3}(N ; h) \ll_{\varepsilon} N^{\varepsilon}\left(H^{2}+H^{1 / 2} N^{13 / 12}\right) \quad(1 \leqslant H \leqslant N)$,

$$
\Delta_{3}(N ; h)=\sum_{N<n \leqslant 2 N} d_{3}(n) d_{3}(n+h)-N P_{4}(\log N ; h),
$$

and if $N^{1 / 3+\varepsilon} \leqslant H \leqslant N^{1-\varepsilon}$, then there exists $\delta=\delta(\varepsilon)>0$ for which

$$
\sum_{h \leqslant H}\left|\Delta_{3}(N ; h)\right|^{2} \lll \varepsilon H N^{2-\delta(\varepsilon)} .
$$

New results

S. Baier, T.D. Browning, G. Marasingha and L. Zhao (2012) proved
(9) $\quad \sum_{h \leqslant H} \Delta_{3}(N ; h)<_{\varepsilon} N^{\varepsilon}\left(H^{2}+H^{1 / 2} N^{13 / 12}\right) \quad(1 \leqslant H \leqslant N)$,

$$
\Delta_{3}(N ; h)=\sum_{N<n \leqslant 2 N} d_{3}(n) d_{3}(n+h)-N P_{4}(\log N ; h),
$$

and if $N^{1 / 3+\varepsilon} \leqslant H \leqslant N^{1-\varepsilon}$, then there exists $\delta=\delta(\varepsilon)>0$ for which

$$
\sum_{h \leqslant H}\left|\Delta_{3}(N ; h)\right|^{2} \lll \varepsilon H N^{2-\delta(\varepsilon)} .
$$

Remark

Note that (9), in the interval $N^{1 / 6+\varepsilon} \leqslant H \leqslant N^{1-\varepsilon}$, gives gives an asymptotic formula for the averaged sum $\sum_{h \leqslant H} D_{3}(N, h)$.

Theorem (A.I. + Jie Wu, 2011)

For fixed $k \geqslant 3$ we have
(10) $\quad \sum_{h \leqslant H} \Delta_{k}(N ; h)<_{\varepsilon} N^{\varepsilon}\left(H^{2}+N^{1+\beta_{k}}\right) \quad(1 \leqslant H \leqslant N)$,
where β_{k} is defined by

$$
\beta_{k}:=\inf \left\{b_{k}: \int_{1}^{X}\left|\Delta_{k}(x)\right|^{2} d x \ll X^{1+2 b_{k}}\right\}
$$

and $\Delta_{k}(x)$ is the remainder term in the asymptotic formula for $\sum_{n \leqslant x} d_{k}(n)$.

Theorem (A.I. + Jie Wu, 2011)

For fixed $k \geqslant 3$ we have

$$
\begin{equation*}
\sum_{h \leqslant H} \Delta_{k}(N ; h)<_{\varepsilon} N^{\varepsilon}\left(H^{2}+N^{1+\beta_{k}}\right) \quad(1 \leqslant H \leqslant N) \tag{10}
\end{equation*}
$$

where β_{k} is defined by

$$
\beta_{k}:=\inf \left\{b_{k}: \int_{1}^{X}\left|\Delta_{k}(x)\right|^{2} d x \ll X^{1+2 b_{k}}\right\}
$$

and $\Delta_{k}(x)$ is the remainder term in the asymptotic formula for $\sum_{n \leqslant x} d_{k}(n)$.

Remark

We have

$$
\sum_{n \leqslant x} d_{k}(n)=x p_{k-1}(\log x)+\Delta_{k}(x)
$$

Remark

where

$$
p_{k-1}(\log x)=\underset{s=1}{\operatorname{Res}}\left(\zeta(s)^{k} \frac{x^{s-1}}{s}\right),
$$

so that $p_{k-1}(z)$ is a polynomial of degree $k-1$ in z, all of whose coefficients depend on k. In particular,

$$
p_{1}(z)=z+2 \gamma-1 \quad\left(\gamma=-\Gamma^{\prime}(1)\right) .
$$

Remark

It is known that $\beta_{k}=(k-1) /(2 k)$ for $k=2,3,4, \beta_{5} \leqslant 9 / 20, \beta_{6} \leqslant 1 / 2$, etc. and $\beta_{k} \geqslant(k-1) /(2 k)$ for every $k \in \mathbb{N}$. It is conjectured that $\beta_{k}=(k-1) /(2 k)$ for every $k \in \mathbb{N}$, and this is equivalent to the Lindelöf Hypothesis that $\zeta\left(\frac{1}{2}+i t\right)<_{\varepsilon}(|t|+1)^{\varepsilon}$.

From the Theorem we obtain, for $1 \leqslant H \leqslant N$,

$$
\begin{aligned}
& \sum_{h \leqslant H} \Delta_{3}(N ; h) \ll_{\varepsilon} N^{\varepsilon}\left(H^{2}+N^{4 / 3}\right), \\
& \sum_{h \leqslant H} \Delta_{4}(N ; h)<_{\varepsilon} N^{\varepsilon}\left(H^{2}+N^{11 / 8}\right), \\
& \sum_{h \leqslant H} \Delta_{5}(N ; h)<_{\varepsilon} N^{\varepsilon}\left(H^{2}+N^{29 / 20}\right), \\
& \sum_{h \leqslant H} \Delta_{6}(N ; h) \lll_{\varepsilon} N^{\varepsilon}\left(H^{2}+N^{3 / 2}\right)
\end{aligned}
$$

From the Theorem we obtain, for $1 \leqslant H \leqslant N$,

$$
\begin{aligned}
& \sum_{h \leqslant H} \Delta_{3}(N ; h)<_{\varepsilon} N^{\varepsilon}\left(H^{2}+N^{4 / 3}\right) \\
& \sum_{h \leqslant H} \Delta_{4}(N ; h)<_{\varepsilon} N^{\varepsilon}\left(H^{2}+N^{11 / 8}\right), \\
& \sum_{h \leqslant H} \Delta_{5}(N ; h)<_{\varepsilon} N^{\varepsilon}\left(H^{2}+N^{29 / 20}\right), \\
& \sum_{h \leqslant H} \Delta_{6}(N ; h) \ll_{\varepsilon} N^{\varepsilon}\left(H^{2}+N^{3 / 2}\right)
\end{aligned}
$$

Remark

Since it is known that $\beta_{k}<1$ for any k, this means that the bound in (10) improves on the trivial bound $H N^{1+\varepsilon}$ in the range $N^{\beta_{k}+\varepsilon} \leqslant H \leqslant N^{1-\varepsilon}$. Our result thus supports the assertion that $\Delta_{k}(N ; h)$ is really the error term in the asymptotic formula for $D_{k}(N, h)$, as given above. In the case when $k=3$, we have an improvement on the result of Baier et al. when $H \geqslant N^{1 / 2}$.

The basic idea of proof is to start from

$$
\begin{aligned}
& \sum_{h \leqslant H} \Delta_{k}(N, h)=\sum_{N<n \leqslant 2 N} d_{k}(n) \sum_{h \leqslant H} d_{k}(n+h)-\sum_{h \leqslant H} \int_{N}^{2 N} \mathfrak{S}_{k}(x, h) d x \\
& =M_{k}(N, H)+R_{k}(N, H)-\sum_{h \leqslant H} \int_{N}^{2 N} \mathfrak{S}_{k}(x, h) d x
\end{aligned}
$$

say, where

The basic idea of proof is to start from

$$
\begin{aligned}
& \sum_{h \leqslant H} \Delta_{k}(N, h)=\sum_{N<n \leqslant 2 N} d_{k}(n) \sum_{h \leqslant H} d_{k}(n+h)-\sum_{h \leqslant H} \int_{N}^{2 N} \mathfrak{S}_{k}(x, h) d x \\
& =M_{k}(N, H)+R_{k}(N, H)-\sum_{h \leqslant H} \int_{N}^{2 N} \mathfrak{S}_{k}(x, h) d x
\end{aligned}
$$

say, where

$$
\begin{aligned}
& M_{k}(N, H):=\sum_{N<n \leqslant 2 N} d_{k}(n) \operatorname{Res}_{s=1}\left(\zeta(s)^{k} \frac{(n+H)^{s}-n^{s}}{s}\right), \\
& R_{k}(N, H):=\sum_{N<n \leqslant 2 N} d_{k}(n)\left(\Delta_{k}(n+H)-\Delta_{k}(n)\right),
\end{aligned}
$$

and use complex integration to estimate $M_{k}(N, h)$ and connect $R_{k}(N, H)$ to mean square estimates for $\Delta_{k}(x)$.

We have

$$
\begin{aligned}
M_{k}(N, H)= & H \int_{N}^{2 N}\left(\underset{s=1}{\operatorname{Res}} \zeta(s)^{k} x^{s-1}\right)^{2} d x \\
& +O_{\varepsilon}\left(H^{2} N^{\varepsilon}+N H^{\alpha_{k}+\varepsilon}+N^{1+\beta_{k}+\varepsilon}\right)
\end{aligned}
$$

and

We have

$$
\begin{aligned}
M_{k}(N, H)= & H \int_{N}^{2 N}\left(\underset{s=1}{\left.\operatorname{Res} \zeta(s)^{k} x^{s-1}\right)^{2} d x}\right. \\
& +O_{\varepsilon}\left(H^{2} N^{\varepsilon}+N H^{\alpha_{k}+\varepsilon}+N^{1+\beta_{k}+\varepsilon}\right)
\end{aligned}
$$

and

$$
\sum_{h \leqslant H} \int_{N}^{2 N} \mathfrak{S}_{k}(x, h) d x=H \int_{N}^{2 N}\left(\underset{s=1}{\operatorname{Res}} \zeta(s)^{k} x^{s-1}\right)^{2} d x+O_{\varepsilon}\left(N^{1+\varepsilon}\right)
$$

The constants α_{k}, β_{k} are defined as

The constants α_{k}, β_{k} are defined as

$$
\alpha_{k}=\inf \left\{a_{k}: \Delta_{k}(x) \ll a^{k}\right\}
$$

The constants α_{k}, β_{k} are defined as

$$
\begin{gathered}
\alpha_{k}=\inf \left\{a_{k}: \Delta_{k}(x) \ll a^{k}\right\} \\
\beta_{k}=\inf \left\{b_{k}: \int_{1}^{X} \Delta_{k}^{2}(x) d x \ll X^{1+2 b_{k}}\right\},
\end{gathered}
$$

The constants α_{k}, β_{k} are defined as

$$
\alpha_{k}=\inf \left\{a_{k}: \Delta_{k}(x) \ll a^{k}\right\}
$$

$$
\beta_{k}=\inf \left\{b_{k}: \int_{1}^{X} \Delta_{k}^{2}(x) d x \ll X^{1+2 b_{k}}\right\}
$$

and $(k-1) /(2 k) \leqslant \beta_{k} \leqslant \alpha_{k}<1$ for $k=2, \ldots$.

The constants α_{k}, β_{k} are defined as

$$
\alpha_{k}=\inf \left\{a_{k}: \Delta_{k}(x) \ll a^{k}\right\}
$$

$$
\beta_{k}=\inf \left\{b_{k}: \int_{1}^{X} \Delta_{k}^{2}(x) d x \ll X^{1+2 b_{k}}\right\}
$$

and $(k-1) /(2 k) \leqslant \beta_{k} \leqslant \alpha_{k}<1$ for $k=2, \ldots$.
By completing the estimations one obtains the assertion of the theorem.

The author and W. Zhai (2012) obtained several new results involving $\Delta(x+U)-\Delta(x)$, where $\Delta(x) \equiv \Delta_{2}(x)$ and $U=o(x)$.

The author and W. Zhai (2012) obtained several new results involving $\Delta(x+U)-\Delta(x)$, where $\Delta(x) \equiv \Delta_{2}(x)$ and $U=o(x)$.

Theorem

Suppose $\log ^{2} T \ll U \leqslant T^{1 / 2} / 2, T^{1 / 2} \ll H \leqslant T$, then we have

$$
\begin{aligned}
& \int_{T}^{T+H} \max _{0 \leqslant u \leqslant U}|\Delta(x+u)-\Delta(x)|^{2} d x \ll H U \mathcal{L}^{5}+T \mathcal{L}^{4} \log \mathcal{L} \\
& +H^{1 / 3} T^{2 / 3} U^{2 / 3} \mathcal{L}^{10 / 3}(\log \mathcal{L})^{2 / 3},
\end{aligned}
$$

where $\mathcal{L}:=\log T$.

The author and W. Zhai (2012) obtained several new results involving $\Delta(x+U)-\Delta(x)$, where $\Delta(x) \equiv \Delta_{2}(x)$ and $U=o(x)$.

Theorem

Suppose $\log ^{2} T \ll U \leqslant T^{1 / 2} / 2, T^{1 / 2} \ll H \leqslant T$, then we have

$$
\begin{aligned}
& \int_{T}^{T+H} \max _{0 \leqslant u \leqslant U}|\Delta(x+u)-\Delta(x)|^{2} d x \ll H U \mathcal{L}^{5}+T \mathcal{L}^{4} \log \mathcal{L} \\
& +H^{1 / 3} T^{2 / 3} U^{2 / 3} \mathcal{L}^{10 / 3}(\log \mathcal{L})^{2 / 3},
\end{aligned}
$$

where $\mathcal{L}:=\log T$.
This generalizes and sharpens a result of D.R. Heath-Brown \& K.-M. Tsang (1994).

Theorem

Suppose T, U, H are large parameters and $C>1$ is a large constant such that

$$
T^{131 / 416+\varepsilon} \ll U \leqslant C^{-1} T^{1 / 2} \mathcal{L}^{-5}, \quad C T^{1 / 4} U \mathcal{L}^{5} \log \mathcal{L} \leqslant H \leqslant T .
$$

Then in the interval $[T, T+H]$ there are $\gg H U^{-1}$ subintervals of length $\gg U$ such that on each subinterval one has $\pm \Delta(x) \geqslant c_{ \pm} T^{1 / 4}$ for some $c_{ \pm}>0$.

Thank you for your attention!

