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Covering systems

A covering system of congruences

(ai mod mi ), 1 < m1 < m2 < ... < mk

is a collection of arithmetic progressions such that

Z = (a1 mod m1) ∪ (a2 mod m2) ∪ ... ∪ (ak mod mk)
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For example

..., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
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For example

(0 mod 2)

..., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
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For example

(0 mod 2) ∪ (0 mod 3)

..., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
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For example

(0 mod 2) ∪ (0 mod 3) ∪ (5 mod 6)

..., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
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For example

(0 mod 2) ∪ (0 mod 3) ∪ (5 mod 6) ∪ (1 mod 4)

..., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
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For example

(0 mod 2) ∪ (0 mod 3) ∪ (5 mod 6) ∪ (1 mod 4) ∪ (7 mod 12)

..., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
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Two well-known problems

1 Erdős: For each M > 1, is there a cover with

M < m1 < m2 < ... < mk ?

2 Erdős, Selfridge: Is there a cover with m1,m2, ...,mk all odd?
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Past results

Some records for m1

m1 = 9, 18, 20, Churchhouse, Krukenberg, Choi (1968-71)

m1 = 24, Morikawa, 80s

m1 = 25, Gibson, (2006)

m1 = 40, Nielsen, (2009)
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Past results

Filaseta, Ford, Konyagin, Pomerance, Yu (2007):
As M →∞, if M < m1 < m2 < ... < mk are covering moduli then∑ 1

mi
→∞

as a function of M.
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Main theorem

Theorem (H. 2013)

There is an absolute C > 0 such that any covering system has
m1 < C.

Builds on work of FFKPY ’07.
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Problem set-up

M = large fixed constant.

Assume that M⊂ {m ∈ Z,m ≥ M} is a finite set of moduli. For
each m ∈M let congruence am mod m be given.
Let the unsifted set be

R =

( ⋃
m∈M

(am mod m)

)c

.

We are going to show that it M is sufficiently large then the
density of the R is > 0.
For this talk we assume each m ∈M is squarefree.
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Initial ideas

We estimate the density of the unsifted set

R =

( ⋃
m∈M

(am mod m)

)c

in stages.

Set 1 < P0 < P1 < P2 < ... thresholds, P0 =
√

logM, Pi+1 = eP
c
i .

Qi =
∏
p<Pi

p.

Evolve the sieve in stages: Let R0 ⊃ R1 ⊃ R2 ⊃ ...

Ri =

⋃
m|Qi

(am mod m)

c

If i is large enough then every m ∈M divides Qi , so R = Ri

eventually.

Bob Hough The least modulus of a covering system



Initial ideas

We estimate the density of the unsifted set

R =

( ⋃
m∈M

(am mod m)

)c

in stages.
Set 1 < P0 < P1 < P2 < ... thresholds, P0 =

√
logM, Pi+1 = eP

c
i .

Qi =
∏
p<Pi

p.

Evolve the sieve in stages: Let R0 ⊃ R1 ⊃ R2 ⊃ ...

Ri =

⋃
m|Qi

(am mod m)

c

If i is large enough then every m ∈M divides Qi , so R = Ri

eventually.

Bob Hough The least modulus of a covering system



Initial ideas

We estimate the density of the unsifted set

R =

( ⋃
m∈M

(am mod m)

)c

in stages.
Set 1 < P0 < P1 < P2 < ... thresholds, P0 =

√
logM, Pi+1 = eP

c
i .

Qi =
∏
p<Pi

p.

Evolve the sieve in stages: Let R0 ⊃ R1 ⊃ R2 ⊃ ...

Ri =

⋃
m|Qi

(am mod m)

c

If i is large enough then every m ∈M divides Qi , so R = Ri

eventually.

Bob Hough The least modulus of a covering system



Initial ideas

We estimate the density of the unsifted set

R =

( ⋃
m∈M

(am mod m)

)c

in stages.
Set 1 < P0 < P1 < P2 < ... thresholds, P0 =

√
logM, Pi+1 = eP

c
i .

Qi =
∏
p<Pi

p.

Evolve the sieve in stages: Let R0 ⊃ R1 ⊃ R2 ⊃ ...

Ri =

⋃
m|Qi

(am mod m)

c

If i is large enough then every m ∈M divides Qi , so R = Ri

eventually.

Bob Hough The least modulus of a covering system



Initial ideas

We estimate the density of the unsifted set

R =

( ⋃
m∈M

(am mod m)

)c

in stages.
Set 1 < P0 < P1 < P2 < ... thresholds, P0 =

√
logM, Pi+1 = eP

c
i .

Qi =
∏
p<Pi

p.

Evolve the sieve in stages: Let R0 ⊃ R1 ⊃ R2 ⊃ ...

Ri =

⋃
m|Qi

(am mod m)

c

If i is large enough then every m ∈M divides Qi , so R = Ri

eventually.
Bob Hough The least modulus of a covering system



Initial ideas

Recall Ri is the unsifted set after the ith stage,

Ri =

⋃
m|Qi

(am mod m)

c

with Qi =
∏

p<Pi
p.

When M is larger than a fixed constant, for all i ≥ 0 we will prove:

density(Ri ) ≥ exp(−(logPi )
2).

This evidently suffices for the theorem.
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Initial ideas

Recall that Ri is determined by congruences to moduli dividing Qi .

No sieving happens in the 0th stage, since Q0 ≈ e
√
logM < M, so

the density of R0 is 1.
The proof now proceeds by induction.

View Ri ⊂ Z/QiZ.

Think of Z/Qi+1Z as fibred over Z/QiZ
So Ri+1 exists in fibres over Ri .

We will estimate the density within single fibres.
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Schematic

For instance, suppose that the previous stage was determined by
the congruences (0 mod 2), (0 mod 5) and (1 mod 10). (Qi = 10)

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88 89

And the next stage contains the congruences (3 mod 18) and
(4 mod 15)
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Initial ideas

Ri is the set that has survived the ith sieving stage, determined
modulo Qi . Let r mod Qi be an element of this set. We consider
Ri+1 fibred over r .

Ri+1 in fibre r is determined by congruences to moduli m,
m|Qi+1, m - Qi .

Factor such an m as m0n where m0|Qi and n has all of its
prime factors in the interval (Pi ,Pi+1].

The congruence (am mod m) intersects fibre r iff
am ≡ r mod m0

If this congruence condition is met, the sieving within fibre r
is determined only by am mod n.

So... Group moduli according to common n-factor

An,r = {am mod n : m = m0n, am ≡ r mod m0}

The set of n’s we call Ni+1. These n have all their prime factors in
the interval (Pi ,Pi+1]. This control of the size of prime factors is
critical.
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Heuristic

To recap: within the fibre r ∈ Ri , the i + 1st stage of the sieve is
determined by congruences only to moduli n ∈ Ni+1, which have
all of their prime factors in (Pi ,Pi+1]. The set of congruences for a
given n we denote by An,r .

Heuristic: Size of |An,r | is key.

When varying r in the whole set Z/QiZ: the distribution of
|An,r | is easy (mean is ≈ logPi )

If (n1, n2) = 1 then sieving by An1,r , An2,r is independent
(Chinese Remainder Theorem)

Total independence would give density in fibre r∏
n∈Ni+1

(
1− |An,r |

n

)
≈

∏
n∈Ni+1

(
1− logPi

n

)
≈ P

−O(1)
i+1

which would easily give our lower bound for the density of Ri+1.
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given n we denote by An,r .

Heuristic: Size of |An,r | is key.

When varying r in the whole set Z/QiZ: the distribution of
|An,r | is easy (mean is ≈ logPi )
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Difficulties

Two PROBLEMS:

1 For most n1, n2 ∈ Ni+1, (n1, n2) > 1⇒ sieving by the sets
An1,r and An2,r is not independent.

2 We vary r ∈ Ri , which is much smaller than Z/QiZ, so we
don’t know the typical behaviour: |An,r | ∼??
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Basic tool: Lovász Local Lemma

Lemma (Lovász Local Lemma)

A1,A2, ...,An are events in a probability space. D = ([n],E ) is a
dependency graph, such that, for each 1 ≤ i ≤ n, event Ai is
independent of the sigma-algebra generated by the events
{Aj : (i , j) 6∈ E}. Let real numbers x1, x2, ..., xn satisfy 0 < xi < 1,
and for each 1 ≤ i ≤ n,

P(Ai ) ≤ xi
∏

(i ,j)∈E

(1− xj).

Then for any 1 ≤ m ≤ n

P

(
n⋂

i=1

Ac
i

)
≥ P

(
m⋂
i=1

Ac
i

)
·

n∏
j=m+1

(1− xj).
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Solution idea

Recall that we’ve fixed a fibre r ∈ Ri in which we’re sieving, and
we think of the sieve as happening to moduli in Ni+1.

To address problem 1:
Truncation. We write Ni+1 = Nsmall tNlarge

Nsmall = {n ∈ Ni+1 : Pi < n ≤ eP
γ
i }

Nlarge = {n ∈ Ni+1 : eP
γ
i < n}

On Nsmall usually (n1, n2) = 1, approximate independence ⇒
Lovász Local Lemma gives a product approximation.
For Nlarge : Use that smooth numbers are sparse to cover the error
with a union bound.

Control of size of prime factors is the key. We’re able to get
approximate independence in a range which is almost exponential
in Pi . (eP

γ
i ).
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Solution idea

To address problem 2 we need to be able to estimate means over
the set Ri , as opposed to Z/QiZ. To do so:
Declare fibre r ∈ Ri is GOOD if well-balanced:

∀n ∈ Nsmall , ∀a mod n

density Ri+1 in fibre r ∩ (a mod n) . density Ri+1 in fibre r

At each stage, evolve Ri+1 only over GOOD fibres ⇒ distribution
over Ri ≈ distribution over Z/QiZ
Use Lovász Local Lemma again: most fibres are good!
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In practice, one must balance being able to truncate (problem 1)
against making fibres from previous stages be well behaved
(problem 2).

Removing the squarefree assumption is technical but ugly.
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Thanks

Thanks for coming!
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Application of LLL to GOOD fibres

Recall we want the bound

density(Ri+1) in fibre r ∩ (a mod n) . density(Ri+1) in fibre r .

Applying LLL:

LHS ≤P

 ⋂
n′∈Ni+1

Ac
n,r

∣∣∣∣(a mod n)

 ≤ P

 ⋂
n′∈Ni+1

(n′,n)=1

Ac
n,r

∣∣∣∣(a mod n)



= P

 ⋂
n′∈Ni+1

(n′,n)=1

Ac
n,r

 ≈ P

 ⋂
n′∈Ni+1

(n′,n)=1

Ac
n,r

 ∏
n′∈Ni+1

(n′,n)>1

(1− xn)

. P

 ⋂
n′∈Ni+1

Ac
n,r

 . RHS .
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