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A homomorphism G — H

An H-colouring of G
f:V(G) — V(H) withuv € E(G) = f(u)f(v) € E(H)

G, H are digraphs (undirected graphs are symmetric digraphs)
Kp-colouring = n-colouring
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Possible colours 1,2,3,4,5

@ Any Cs-colouring assigns different possible colours

@ Any assignment of different possible colours extends to the
whole gadget
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Gadgets

Cs-colourability is NP-complete
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Nesetfil - Siggers 2007

A general gadget for H

@ Any H-colouring assigns different possible patterns of
colours

@ Any assignment of different possible patterns of colours
extends to the whole gadget
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Nesetfil - Siggers 2007

A general gadget for H

@ Any H-colouring assigns different possible patterns of
colours

@ Any assignment of different possible patterns of colours
extends to the whole gadget

Groups of patterns, three groups suffice
Example: {ab, ba}, {ac, ca}, {bc, cb}
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Nesetfil-Siggers 2007

If H admits a gadget then H-colourability is NP-complete
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Nesetfil-Siggers 2007

If H admits a gadget then H-colourability is NP-complete

Example H = Cox 1
Cok.1-colourability is NP-complete
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Dichotomy Conjectures

Feder-Vardi Conjecture 1993

If H-colourability is not NP-complete, then it is in P
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Dichotomy Conjectures

Feder-Vardi Conjecture 1993

If H-colourability is not NP-complete, then it is in P

Nesetfil-Siggers Conjecture 2007
If H does not admits a gadget then H-colourability is polynomial
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Dichotomy Conjectures

Equivalent conjectures

If the algebra of polymorphisms associated with H does
not admit a non-trivial divisor in which all term operations
are projections, then H-colourability is polynomial
(Bulatov-Jeavons 2001)

If H admits a Taylor polymorphism then H-colourability is
polynomial (Larose-Zadori 2004)

If H admits a weak near-unanimity polymorphism then
H-colourability is polynomial (Méaroti-McKenzie 2006)

If H has an asymptotically resilient polymorphism then
H-colourability is polynomial (Kun-Szegedy 2008)

If H admits a cyclic polymorphism then H-colourability is
polynomial (Barto-Kozik 2012)
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Dichotomy Conjectures

Equivalent conjectures

@ [f the algebra of polymorphisms associated with H does
not admit a non-trivial divisor in which all term operations
are projections, then H-colourability is polynomial
(Bulatov-Jeavons 2001)

@ If H admits a Taylor polymorphism then H-colourability is
polynomial (Larose-Zadori 2004)

@ If H admits a weak near-unanimity polymorphism then
H-colourability is polynomial (Méaroti-McKenzie 2006)

@ |f H has an asymptotically resilient polymorphism then
H-colourability is polynomial (Kun-Szegedy 2008)

@ If H admits a cyclic polymorphism then H-colourability is
polynomial (Barto-Kozik 2012)

Survey H-Nesetfil 2008



How to use the absence?

Nesetril-Siggers Conjecture 2007
If H does not admits a gadget then H-colourability is polynomial
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How to use the absence?

Nesetril-Siggers Conjecture 2007
If H does not admits a gadget then H-colourability is polynomial

Nesetril-H 1990: Undirected graphs without loops

If H contains an odd cycle, then H-colourability is NP-complete
Otherwise H-colourability is polynomial
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How to use the absence?

Nesetril-Siggers Conjecture 2007
If H does not admits a gadget then H-colourability is polynomial

Nesetril-H 1990: Undirected graphs without loops

If H contains an odd cycle, then H-colourability is NP-complete
Otherwise H-colourability is polynomial

Easy if H is bipartite

Gadget is simple for an odd cycle, but not simple for an H
containing an odd cycle
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How to use absence?

Suppose H is an (induced) subgraph of H’

Does H-colourability reduce to H'-colourability?
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How to use absence?

Suppose H is an (induced) subgraph of H’
Does H-colourability reduce to H'-colourability?

For digraphs

4N\

-
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Situations with monotonicity
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Situations with monotonicity

List H-colouring
Each vertex x of the input digraph G has a list L(x) C V(H)
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Situations with monotonicity

List H-colouring

Each vertex x of the input digraph G has a list L(x) C V(H)
Is there an H-colouring f of G for which all f(x) € L(x)?

Suppose H is an induced subgraph of H’

Then list-H-colourability reduces to list-H’-colourability

An instance of list-H-colourability is also an instance of
list-H’-colourability
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Situations with monotonicity

Input is a digraph G, with costs ¢(x, y) for each pair
x € V(G),y € V(H), and a target total cost C
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Situations with monotonicity

Input is a digraph G, with costs ¢(x, y) for each pair
x € V(G),y € V(H), and a target total cost C

Is there an H-colouring f of G with 3, /g c(x, f(x)) < C?

Suppose H is an induced subgraph of H’

Now mincost-H-colourability reduces to mincost-H’-colourability

An instance of mincost-H-colourability extends to an instance
of mincost-H’-colourability
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Reflexive Undirected Graphs

(Every vertex has a loop)
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Reflexive Undirected Graphs

(Every vertex has a loop)
H-colourability is trivial,
but list-H-colourability

and mincost-H-colourability are not
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Reflexive Undirected Graphs

Feder-H 1998

If H contains an induced cycle > 3 or asteroidal triple (AT), then
list-H-colourability is NP-complete
Otherwise list-H-colourability is polynomial

AT = Asteroidal Triple

u, v, w, any pair joined by a path avoiding N
the neighbourhood of the third
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Reflexive Undirected Graphs

Feder-H 1998

If H contains an induced cycle > 3 or asteroidal triple (AT), then
list-H-colourability is NP-complete
Otherwise list-H-colourability is polynomial

AT = Asteroidal Triple

u, v, w, any pair joined by a path avoiding N
the neighbourhood of the third

Lekkerkerker-Boland 1962

H contains no an induced cycle > 3 and no AT <—
H is an interval graph
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Reflexive Undirected Graphs

Gutin-H-Rafiey-Yeo 2008

If H contains an induced cycle > 3, claw, net, or tent, then
mincost-H-colourability is NP-complete

A A A

Otherwise mincost-H-colourability is polynomial
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Reflexive Undirected Graphs

Gutin-H-Rafiey-Yeo 2008

If H contains an induced cycle > 3, claw, net, or tent, then
mincost-H-colourability is NP-complete

A A A

Otherwise mincost-H-colourability is polynomial

Wegner 1967

H contains no induced cycle > 3, claw, net, or tent
<= H is a proper interval graph
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Mincost-H-colourability
Gradual progress
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Mincost-H-colourability

Gradual progress

Undirected graphs Takhanov 2012

Reflexive digraphs

\Gupta—H—Karimi—Rafiey
2008

H-Rafiey 2012
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Mincost-H-colourability

Suppose H has no unbalanced cycles
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Mincost-H-colourability

Suppose H has no unbalanced cycles

H-Rafiey 2012

If H contains a symmetrically invertible pair, then
mincost-H-colourability is NP-complete
Otherwise list-H-colourability is polynomial
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Mincost-H-colourability

Suppose H has no unbalanced cycles

H-Rafiey 2012
If H contains a symmetrically invertible pair, then
mincost-H-colourability is NP-complete

Otherwise list-H-colourability is polynomial

Symmetrically invertible pair u, v

ue F(. 7._ —7.{—. 1%

s s v N
s s N

V& ¢ »0’—/ =09 U
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Mincost-H-colourability

Suppose H has no unbalanced cycles

H-Rafiey 2012

If H contains a symmetrically invertible pair, then
mincost-H-colourability is NP-complete
Otherwise list-H-colourability is polynomial

H-Rafiey 2012

H does not contain a symmetrically invertible pair
<= it is @ monotone proper interval digraph
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Mincost-H-colourability

Suppose H has unbalanced cycles

H-Rafiey 2012

If H contains two induced unbalanced cycles of different net
lengths, then mincost-H-colourability is NP-complete

Otherwise H admits a homomorphism to a directed cycle, and if
H contains a symmetrically invertible pair the same circular
level, then mincost-H-colourability is NP-complete

In all other cases mincost-H-colourability is polynomial
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List-H-colourability
Gradual progress

Bulatov 2003

Undirected graphs

Feder+H-Huang
2003

Reflexive digraphs

Feder—-H-Huang—Rafiey

H-Rafiey 2011
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List-H-colourability

H-Rafiey 2011

If H contains a digraph asteroidal triple (DAT), then
list-H-colourability is NP-complete
Otherwise list-H-colourability is polynomial
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List-H-colourability

H-Rafiey 2011

If H contains a digraph asteroidal triple (DAT), then
list-H-colourability is NP-complete

Otherwise list-H-colourability is polynomial

Invertible pair u, v
—v—v— —».«—o \

\Y} d—».’—».’— —».4—0 u

Vo— 4—04— Hu

s
-

uc—»oi—o’ oy
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List-H-colourability

What is a digraph asteroidal triple?

invertible pair

Pavol Hell, SFU Combinatorial Dichotomy Classifications



List-H-colourability

Example DAT

ag,
a a b a b &
7{\.‘79.9. \//// \L N/’ﬁ//g/'\
a \LC b’ // , a C/ a’
C b %1\
/!) \% // ,
b a’ a
a’ a’ a’ c——=D’ b’ b’ C a
/7 /7 //7 - // - // //
- - // 7 g // % % N % s }/ 0y
a C b b b C a a a
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List-H-colourability

How to use the absence of DATs?

List-H-colourability is in P if H admits for every pair of vertices a
polymorphism that is locally semi-lattice, majority, or Maltsev on
that pair

Otherwise it is NP-complete

Bulatov 2003
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Dichotomy Conjectures

Larose-Tesson Conjecture 2007

If list-H-colourability is not NL-hard, then itis in L
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Dichotomy Conjectures

Larose-Tesson Conjecture 2007

If list-H-colourability is not NL-hard, then itis in L

Larose-Tesson Conjecture 2007

If H admits a sequence of Hagemann-Mitschke polymorphisms
then list-H-colourability is in L
Otherwise list-H-colourability is NL-hard
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Reflexive Undirected Graphs

Egri-Krokhin-Larose-Tesson 2012

If H contains an induced P4 or C4, then list-H-colourability is
NL-hard
Otherwise list-H-colourability is in L
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Reflexive Undirected Graphs

Egri-Krokhin-Larose-Tesson 2012

If H contains an induced P4 or C4, then list-H-colourability is
NL-hard
Otherwise list-H-colourability is in L

Trivially perfect graphs

H is trivially perfect if and only if it does not contain an induced
P4 or C4
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Reflexive Undirected Graphs

Egri-Krokhin-Larose-Tesson 2012

If H contains an induced P4 or C4, then list-H-colourability is
NL-hard
Otherwise list-H-colourability is in L

Trivially perfect graphs

H is trivially perfect if and only if it does not contain an induced
P4 or C4

Intersection of the classes of interval graphs and cographs
Trivially perfect graphs admit a simple recursive definition
(Yan-Chen-Chang 1996)
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List-H-colourability in L
Gradual progress

Undirected graphs

gri—Krokhin—Larose—Tesson 2010

Digraphs

Egri-H-Larose—Rafiey 2013
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List-H-colourability

Egri-H-Larose-Rafiey 2013

If H contains a circular N, then list-H-colourability is NL-hard
Otherwise H admits a sequence of Hagemann-Mitschke
polymorphisms and list-H-colourability is polynomial
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List-H-colourability
Egri-H-Larose-Rafiey 2013

If H contains a circular N, then list-H-colourability is NL-hard
Otherwise H admits a sequence of Hagemann-Mitschke
polymorphisms and list-H-colourability is polynomial

What is a circular N?

b.—».L—.'H_ ——»0 b
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List-H-colourability

Egri-H-Larose-Rafiey 2013

If H contains a circular N, then list-H-colourability is NL-hard
Otherwise H admits a sequence of Hagemann-Mitschke
polymorphisms and list-H-colourability is polynomial

What is a circular N?

a._7<_‘<—0— ——pa

N

How to use the absence of circular N’s?
A recursive algorithm using Reingold 2005
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A detailed classification

Pavol Hell, SFU Combinatorial Dichotomy Classifications



A detailed classification

Let H be a fixed digraph

Pavol Hell, SFU Combinatorial Dichotomy Classifications



A detailed classification

Let H be a fixed digraph

@ If H contains a DAT, then list-H-colourability is
NP-complete

Pavol Hell, SFU Combinatorial Dichotomy Classifications



A detailed classification

Let H be a fixed digraph

@ If H contains a DAT, then list-H-colourability is
NP-complete

@ If H is DAT-free but contains a circular N, then
list-H-colourability is polynomial time solvable, but NL-hard
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A detailed classification

Let H be a fixed digraph

@ If H contains a DAT, then list-H-colourability is
NP-complete

@ If H is DAT-free but contains a circular N, then
list-H-colourability is polynomial time solvable, but NL-hard

@ If H contains no circular N, then the problem is in L

Egri-H-Larose-Rafiey 2013
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The meta-problems

In terms of the size of H
@ Testing the existence of a DAT is polynomial
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The meta-problems

In terms of the size of H
@ Testing the existence of a DAT is polynomial

@ Testing the existence of a circular N is polynomial

Pavol Hell, SFU Combinatorial Dichotomy Classifications



