Perfect powers in products with terms from arithmetic progression A survey

Kálmán Győry

University of Debrecen
Hungary
Erdős 100 Conference
Diophantine Number Theory
Budapest
5th July, 2013

An old problem

Let $k \geq 3, n \geq 2, m, d \geq 1$ be integers with $\operatorname{gcd}(m, d)=1$. Can

$$
m(m+d) \ldots(m+(k-1) d)
$$

be an n-th power?
$\mathrm{n}=2$
$\mathbf{k}=3, m=x^{2}, m+d=z^{2}, m+2 d=y^{2} \Longleftrightarrow$ $x^{2}+y^{2}=2 z^{2}, \operatorname{gcd}(x, y)=1$, infinitely many solutions
$\mathbf{k}=\mathbf{4}$, Fermat: each of $m, m+d, m+2 d, m+3 d$ cannot be square;
Euler: $m(m+d)(m+2 d)(m+3 d) \neq \square$
$\mathrm{n}>2$, very rich literature
$\mathbf{k}=\mathbf{3}, m=x^{n}, m+d=z^{n}, m+2 d=y^{n} \Longleftrightarrow$ $x^{n}+y^{n}=2 z^{n}, \operatorname{gcd}(x, y)=1, y, z>1$ Darmon and Merel (1997): There is no solution

For products, a great number of partial results, but the general problem is still open.

Product of consecutive integers

After a lot of special results (Euler, Erdős, Rigge, Siegel and others), the problem has been solved for $\mathbf{d}=1$.

Theorem A (Erdős and Selfridge, 1975)

The equation

$$
\begin{equation*}
m(m+1) \ldots(m+k-1)=y^{n} \tag{1}
\end{equation*}
$$

has no solutions in positive integers m, k, y, n with $k \geq 2, n \geq 2$.

Proof: elementary but complicated and ingenious
A related equation is

$$
\begin{equation*}
\binom{m+k-1}{k}=y^{n} \tag{2}
\end{equation*}
$$

m, k, y, n integers with $k, y, n \geq 2$ and $m \geq k+1$

- $\mathbf{k}=\mathbf{n}=\mathbf{2}$: Pell equation, infinitely many solutions
- $(\mathbf{k}, \mathbf{n})=(3,2)$, Meyl (1878), Watson(1919): The only solution is $\binom{50}{3}=140^{2}$

Erdős (1951): for $k \geq 4$, there is no solution elementary method, does not work for $k<4$.

Gy (1997): for $k=2,3, n>2$, there is no solution. Baker's method and deep results on generalized Fermat's equations.

Theorem B (Erdös $k \geq 4$, Györy, $k=2,3$)

Apart from the case $k=n=2$,
(m, k, y, n) $=(48,3,140,2)$ is the only solution of
(2).

$$
\begin{equation*}
m(m+1) \ldots(m+k-1)=b y^{n} \tag{3}
\end{equation*}
$$

m, k, b, y, n positive integers with $k \geq 2, n \geq 2$, $P(b) \leq k ; P(b)$ the greatest prime factor of b.

- $\mathbf{k}=\mathbf{b}=\mathbf{n}=\mathbf{2}$: infinitely many solutions
- given $\mathbf{k}:(m, y)$ yields a solution with $P(y) \leq k \Longleftrightarrow m \in\left\{1,2, \ldots, p^{(k)}-k\right\}$, where $p^{(k)}$ is the least prime with $p^{(k)}>k$; such solutions are called trivial, they can be easily found.
non-trivial solutions: $P(y)>k$.

Theorem C (Erdős and Selfridge, 1975, $\mathrm{P}(\mathrm{b})<\mathrm{k}$; Saradha, 1997, $\mathrm{k} \geq 4 ; \mathrm{Gy}$, 1998, $\mathrm{k}=2,3$)

Apart from the case $(k, b, n)=(2,2,2)$, the only non-trivial solution of equation (3) is
$(m, k, b, y, n)=(48,3,6,140,2)$.

Consequences

- Erdős-Selfridge theorem on equation (1), $(b=1)$,
- Erdős-Gy theorem on equation (2), ($b=k$!),
- complete solution of (3) with $P(b)<p^{(k)}$

Extensions of Theorem C

- to the case $P(b) \leq p^{(k)}$: Saradha $(k \geq 9)$, Hanrot, Saradha, Shorey ($6 \leq k \leq 8$), Bennett $(k \leq 5)$
- to the case $P(b) \leq p_{k}, p_{k}$ is the k-th prime $\left(p_{k}>p^{(k)}\right.$ if $\left.k>3\right)$: Pintér and Gy $(k \leq 5)$

Conjecture 1 (Pintér and Gy, 2005)

For $k \geq 3$ and $n>2$, equation (3) has no non-trivial solution with $P(b) \leq p_{k}$.

Product of consecutive terms in arithmetic progression

More general equations

$$
\begin{gather*}
m(m+d) \cdots(m+(k-1) d)=y^{n} \tag{4}\\
m(m+d) \cdots(m+(k-1) d)=\text { by }^{n} \tag{5}
\end{gather*}
$$

m, k, d, b, y, n positive integers with $k \geq 3, n \geq 2$, $\operatorname{gcd}(m, d)=1$ and $P(b) \leq k$. Assume that $\mathbf{d}>1$.

1 Finiteness results
Darmon, Granville (1995): for (4), $k \geq 3$, $n \geq 4$
Gy, Hajdu, Saradha (2004): for (5), $k \geq 3$, $n \geq 2, k+n>6$
Tijdeman (1989): $k+n>6$ necessary

2 Resolution of (4) and (5) for fixed d many deep results: Shorey, Saradha, Tijdeman,...
Saradha, Shorey $(2001,2005)$ complete solution of (5) for $k \geq 4,1<d \leq d_{0}(n)$, n prime, $d_{0}(n)$ explicitly given for $n=2,3,5,7$, $n \geq 11$

In what follows, consider equations (4) and (5) for fixed k

3 Resolution of (4) and (5) for fixed k
Equation (4):

- infinitely many solutions for $k=2$ and $(k, n)=(3,2)$
- no solution for $(k, n)=(4,2)$ (Euler), and for $(k, n)=(5,2),(3,3),(3,4)$ and $(3,5)$ (Obláth, 1951)

For arbitrary $n>2$, the first result:
Gy (1999): if $k=3, n>2$ and $P(b) \leq 2$, (5) has no solution
\Longrightarrow for $k=3, n>2$, (4) has no solution
Theorem D (Gy, Hajdu, Saradha, 2004, $4 \leq k \leq 5$; Bennett, Bruin, Gy, Hajdu, 2006,
$6 \leq k \leq 11$)
(5) has no solution for $3<k \leq 6, P(b) \leq 2$ and $6<k \leq 11, P(b) \leq 3$
\Longrightarrow for $4 \leq k \leq 11$, (4) has no solution
Bennett (2008): for $k=5,6$ and $n \geq 7$, the same result with $P(b) \leq 3$

The proofs required different methods according as $n=2,3,5$ or $n \geq 7$. Since 2006, considerable progress has been made.
$\mathrm{n}=2$

Theorem E (Hirata-Kohno, Laishram, Shorey, Tijdeman, 2007; Tengely 2008)

(i) if $n=2, d>1,5 \leq k \leq 100$, then (5) has no solution
(ii) if $n=2, k \leq 109$, then (4) has no solution

$n=3$

Theorem F (Hajdu, Tengely, Tijdeman, 2009)

(i) if $n=3,8 \leq k<32, P(b)<k$, then (5) has no solution
(ii) if $n=3, k<39$, then (4) has no solution
n > 3 prime

Theorem G (Gy, Hajdu, Pintér, 2009)

(i) (5) has no solution if $n>3$ prime and $12 \leq k \leq 22, P(b) \leq 7$ or $22<k \leq 34$,
$P(b) \leq \frac{k-1}{2}$
(ii) (4) has no solution if $n>3$ prime and $12 \leq k \leq 34$

Theorems D, E, F, G $+\mathbf{G y}(\mathbf{k}=3) \Rightarrow$ MAIN RESULT:

Theorem H

Let $3 \leq k \leq 34$.
(i) if $(k, n) \neq(3,2)$ and $P(b) \leq 2$, then (5) has no solution
(ii) if $(k, n) \neq(3,2)$, then (4) has no solution

Remark for $(k, n)=(3,2), b=1$ and for $(k, n)=(3,2),(4,2), P(b)=3$, there are infinitely many solutions

Corollary 1 (to Theorem H (ii))

Let $2 \leq k \leq 34, n \geq 2$ with $(k, n) \neq(2,2)$. Then the superelliptic equation

$$
x(x+1) \cdots(x+k-1)=w^{n}
$$

in positive rationals x, w has no solution.

Conjecture 2

(i) if $(k, n) \neq(3,2)$ and $P(b) \leq 2$, then (5) has no solution
(ii) if $(k, n) \neq(3,2)$, then (4) has no solution

For $b=1$, (ii) is a more precise version of a conjecture of Erdős.

For $\mathbf{n}=\mathbf{5}$, a further extension has been recently obtained

Theorem I (Hajdu and Kovács, 2011)

(i) if $n=5$ and $3 \leq k \leq 36$, then equation (5) has the only solution $(m, k, d)=(2,3,7)$
(ii) if $n=5$ and $3 \leq k \leq 54$, then equation (4) has no solution

Basic ideas and main tools in the proofs

$\mathbf{k} \geq \mathbf{3}$ fixed, $\mathbf{n} \geq \mathbf{2}$ prime

$$
\begin{gather*}
m(m+d) \ldots(m+(k-1) d)=b y^{n} \tag{5}\\
\hat{\mathbb{}} \\
m+i d=a_{i} x_{i}^{n}, P\left(a_{i}\right) \leq k, i=0, \ldots, k-1 \tag{6}
\end{gather*}
$$

$a_{i} n$-th power free, finitely many and effectively determinable such $\left(a_{0}, \ldots, a_{k-1}\right)$

1 if for some $i, j<k-1$, $P\left(a_{i} a_{i+1} \ldots a_{i+j}\right) \leq j+1$ holds, then replace k by $j+1$ in (5)
$2(5) \Longrightarrow$ generalized Fermat's equations

Possibilities

1 for $p, q, r \geq 0, m+p d, m+q d$ are $m+r d$ are linearly dependent \Longrightarrow

$$
\begin{equation*}
A X^{n}+B Y^{n}=C Z^{n} \tag{7}
\end{equation*}
$$

with $\operatorname{gcd}(X, Y, Z)=1$ and $P(A B C) \leq k$.
2 for $p<q \leq r<s \leq k-1$ with $p+s=q+r$,

$$
(m+q d)(m+r d)-(m+p d)(m+s d)=(q r-p s) d^{2}
$$

$$
\begin{equation*}
\Longrightarrow A X^{n}+B Y^{n}=C Z^{2} \tag{8}
\end{equation*}
$$

$\operatorname{gcd}(X, Y, Z)=1, P(A B) \leq k,|C| \leq(k-1)^{2}$ X, Y, Z with $X Y Z \neq 0, \pm 1$, non-trivial solutions
case $\mathbf{n}=2$: quadratic residues, reduction to elliptic curves, MAGMA, Chabauty method
case $\mathbf{n}=3$: Selmer's classical results on equations $A X^{3}+B Y^{3}=C Z^{3}$, Chabauty method
case $\mathbf{n}=5$: classical and new results of Dirichlet, Lebesgue, Dénes, Gy, Bennett, Bruin and Hajdu on equations $A X^{5}+B Y^{5}=C Z^{5}$, genus 2 curves and Chabauty method
case $\mathbf{n} \geq \mathbf{7}$ prime, main tool: application of the modular method to ternary equations
(7) $A X^{n}+B Y^{n}=C Z^{n}$ and (8) $A X^{n}+B Y^{n}=C Z^{2}$.

The following ternary equations were used in Gy (Gy, $k=3$), Gy, Hajdu, Saradha (GyHS, $4 \leq k \leq 5$), Bennett, Bruin, Gy, Hajdu (BBGyH, $6 \leq k \leq 11$), Gy, Hajdu, Pintér (GyHP, $12 \leq k \leq 34$):
$\mathbf{3} \leq \mathbf{k} \leq \mathbf{3 4}$, in Gy, GyHS, BBGyH and GyHP,

$$
X^{n}+Y^{n}=2^{\alpha} Z^{n}, \quad \alpha \geq 0
$$

has no non-trivial solutions ($\alpha=0$, Wiles, $1 \leq \alpha<n$ Darmon-Merel and Ribet)
$4 \leq \mathbf{k} \leq 34$, in GyHS, BBGyH and GyHP the following results of Bennett and Skinner (2004) were used: the equations $X^{n}+2^{\alpha} Y^{n}=3^{\beta} Z^{2}, \alpha \neq 1 ; X^{n}+Y^{n}=C Z^{2}$, $C \in\{2,6\} ; X^{n}+5^{\alpha} Y^{n}=2 Z^{2}, n \geq 11$ if $\alpha>0$; $A X^{n}+B Y^{n}=Z^{2}, A B=2^{\alpha} p^{\beta}, p \in\{11,19\}$ have no non-trivial solutions
$\mathbf{6} \leq \mathbf{k} \leq \mathbf{1 1}$, in $\mathbf{B B G y H}$ the authors proved and utilized that $X^{n}+2^{\alpha} Y^{n}=Z^{2}$ with $p \mid X Y$ for $p \in\{3,5,7\}$ and five further new ternary equations have no non-trivial solutions.
To extend the results concerning equations (4) and (5) from $k \leq 11$ to $12 \leq k \leq 34$, more than 50 new ternary equations had to be solved in GyHP.
Denote by $\operatorname{rad}(m)=\prod_{p \mid m} p$ the radical of m.

GyHP gave explicitly a set \mathcal{S} of 54 pairs (a, b) with $a, b \geq 1$ integers such that if $n>31$ prime,
A, B, C coprime positive integers with
$(\operatorname{rad}(A B), C) \in \mathcal{S}$ and p a prime such that $11 \leq p \leq 31$ and $p \nmid A B$, then the equation

$$
A X^{n}+B Y^{n}=C Z^{2}
$$

has no non-trivial solutions X, Y, Z with $p \mid X Y$, unless, possibly, for 60 tuples $(n, \operatorname{rad}(A B), C, p)$ (which are listed explicitly)

For $\mathbf{k} \geq 12$, one of the main difficulties: the number of systems of equations, i.e. the number of $\left(a_{0}, \ldots, a_{k-1}\right)$ grows so rapidly with k that practically it is impossible to handle the different cases as before for $k \leq 11$

For $\mathbf{k} \geq 12$, fundamentally new ideas were needed: efficient and iterated combination of our procedure for solving the arising new ternary equations (corresponding to the pairs in \mathcal{S}) with several sieves based on the ternary equations already solved. For $n \leq 31$ local sieves worked.

Main novelty in the case $\mathbf{k} \geq \mathbf{1 2}$:
we algorithmized our proof \Longrightarrow use of a computer. Algorithm works for larger k as well, but there are limits: computation of modular forms of higher and higher level and computational time itself.

Thank you for your attention!

