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An old problem

Let k ≥ 3, n ≥ 2, m, d ≥ 1 be integers with
gcd(m, d) = 1. Can

m(m + d) . . . (m + (k − 1)d)

be an n-th power?

n = 2

k = 3, m = x2, m + d = z2, m + 2d = y 2 ⇐⇒
x2 + y 2 = 2z2, gcd(x , y) = 1, infinitely many
solutions

k = 4, Fermat: each of m, m + d , m + 2d , m + 3d
cannot be square;
Euler: m(m + d)(m + 2d)(m + 3d) 6= �

Kálmán Győry



n > 2, very rich literature

k = 3, m = xn, m + d = zn, m + 2d = y n ⇐⇒
xn + y n = 2zn, gcd(x , y) = 1, y , z > 1
Darmon and Merel (1997): There is no
solution

For products, a great number of partial results, but
the general problem is still open.
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Product of consecutive integers

After a lot of special results (Euler, Erdős, Rigge,
Siegel and others), the problem has been solved
for d = 1.

Theorem A (Erdős and Selfridge, 1975)

The equation

m(m + 1) . . . (m + k − 1) = y n (1)

has no solutions in positive integers m, k, y , n with
k ≥ 2, n ≥ 2.

Proof : elementary but complicated and ingenious
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A related equation is(
m + k − 1

k

)
= y n, (2)

m, k , y , n integers with k , y , n ≥ 2 and m ≥ k + 1

k = n = 2: Pell equation, infinitely many
solutions

(k,n) = (3, 2), Meyl (1878), Watson(1919):
The only solution is

(
50
3

)
= 1402

Erdős (1951): for k ≥ 4, there is no solution
elementary method, does not work for k < 4.
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Gy (1997): for k = 2, 3, n > 2, there is no solution.
Baker’s method and deep results on
generalized Fermat’s equations.

Theorem B (Erdős k ≥ 4, Győry, k = 2, 3)

Apart from the case k = n = 2,
(m, k , y , n) = (48, 3, 140, 2) is the only solution of
(2).
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Common generalization of equations (1) and (2)

m(m + 1) . . . (m + k − 1) = by n, (3)

m, k , b, y , n positive integers with k ≥ 2, n ≥ 2,
P(b) ≤ k ; P(b) the greatest prime factor of b.

k = b = n = 2: infinitely many solutions

given k: (m, y) yields a solution with
P(y) ≤ k ⇐⇒ m ∈ {1, 2, . . . , p(k) − k}, where
p(k) is the least prime with p(k) > k ; such
solutions are called trivial, they can be easily
found.
non-trivial solutions: P(y) > k .
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Theorem C (Erdős and Selfridge, 1975,
P(b) < k; Saradha, 1997, k ≥ 4; Gy, 1998,
k = 2, 3)

Apart from the case (k , b, n) = (2, 2, 2), the only
non-trivial solution of equation (3) is
(m, k , b, y , n) = (48, 3, 6, 140, 2).

Consequences

Erdős-Selfridge theorem on equation (1),
(b = 1),

Erdős-Gy theorem on equation (2), (b = k!),

complete solution of (3) with P(b) < p(k)
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Extensions of Theorem C

to the case P(b) ≤ p(k): Saradha (k ≥ 9),
Hanrot, Saradha, Shorey (6 ≤ k ≤ 8),
Bennett (k ≤ 5)

to the case P(b) ≤ pk , pk is the k-th prime
(pk > p(k) if k > 3): Pintér and Gy (k ≤ 5)

Conjecture 1 (Pintér and Gy, 2005)

For k ≥ 3 and n > 2, equation (3) has no
non-trivial solution with P(b) ≤ pk .
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Product of consecutive terms in arithmetic progression

More general equations

m(m + d) · · · (m + (k − 1)d) = y n; (4)

m(m + d) · · · (m + (k − 1)d) = by n; (5)

m, k , d , b, y , n positive integers with k ≥ 3, n ≥ 2,
gcd(m, d) = 1 and P(b) ≤ k . Assume that d > 1.

1 Finiteness results
Darmon, Granville (1995): for (4), k ≥ 3,

n ≥ 4
Gy, Hajdu, Saradha (2004): for (5), k ≥ 3,

n ≥ 2, k + n > 6
Tijdeman (1989): k + n > 6 necessary
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2 Resolution of (4) and (5) for fixed d
many deep results: Shorey, Saradha,

Tijdeman,. . .
Saradha, Shorey (2001, 2005) complete

solution of (5) for k ≥ 4, 1 < d ≤ d0(n), n
prime, d0(n) explicitly given for n = 2, 3, 5, 7,
n ≥ 11
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In what follows, consider equations (4) and (5) for
fixed k

3 Resolution of (4) and (5) for fixed k

Equation (4):

infinitely many solutions for k = 2 and
(k , n) = (3, 2)

no solution for (k , n) = (4, 2) (Euler), and for
(k , n) = (5, 2), (3, 3), (3, 4) and (3, 5) (Obláth,
1951)
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For arbitrary n > 2, the first result:
Gy (1999): if k = 3, n > 2 and P(b) ≤ 2, (5) has

no solution
=⇒ for k = 3, n > 2, (4) has no solution

Theorem D (Gy, Hajdu, Saradha, 2004,
4 ≤ k ≤ 5; Bennett, Bruin, Gy, Hajdu, 2006,
6 ≤ k ≤ 11)

(5) has no solution for 3 < k ≤ 6, P(b) ≤ 2 and
6 < k ≤ 11, P(b) ≤ 3
=⇒ for 4 ≤ k ≤ 11, (4) has no solution

Bennett (2008): for k = 5, 6 and n ≥ 7, the same
result with P(b) ≤ 3
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The proofs required different methods according as
n = 2, 3, 5 or n ≥ 7. Since 2006, considerable
progress has been made.

n=2

Theorem E (Hirata-Kohno, Laishram, Shorey,
Tijdeman, 2007; Tengely 2008)

(i) if n = 2, d > 1, 5 ≤ k ≤ 100, then (5) has no
solution

(ii) if n = 2, k ≤ 109, then (4) has no solution
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n=3

Theorem F (Hajdu, Tengely, Tijdeman, 2009)

(i) if n = 3, 8 ≤ k < 32, P(b) < k, then (5) has
no solution

(ii) if n = 3, k < 39, then (4) has no solution

n > 3 prime

Theorem G (Gy, Hajdu, Pintér, 2009)

(i) (5) has no solution if n > 3 prime and
12 ≤ k ≤ 22, P(b) ≤ 7 or 22 < k ≤ 34,
P(b) ≤ k−1

2

(ii) (4) has no solution if n > 3 prime and
12 ≤ k ≤ 34
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Theorems D, E, F, G + Gy (k = 3) ⇒
MAIN RESULT:

Theorem H
Let 3 ≤ k ≤ 34.

(i) if (k , n) 6= (3, 2) and P(b) ≤ 2, then (5) has
no solution

(ii) if (k , n) 6= (3, 2), then (4) has no solution

Remark for (k , n) = (3, 2), b = 1 and for
(k , n) = (3, 2), (4, 2), P(b) = 3, there are
infinitely many solutions
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Corollary 1 (to Theorem H (ii))

Let 2 ≤ k ≤ 34, n ≥ 2 with (k , n) 6= (2, 2). Then
the superelliptic equation

x(x + 1) · · · (x + k − 1) = w n

in positive rationals x ,w has no solution.

Conjecture 2

(i) if (k , n) 6= (3, 2) and P(b) ≤ 2, then (5) has
no solution

(ii) if (k , n) 6= (3, 2), then (4) has no solution
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For b = 1, (ii) is a more precise version of a
conjecture of Erdős.

For n = 5, a further extension has been recently
obtained

Theorem I (Hajdu and Kovács, 2011)

(i) if n = 5 and 3 ≤ k ≤ 36, then equation (5) has
the only solution (m, k , d) = (2, 3, 7)

(ii) if n = 5 and 3 ≤ k ≤ 54, then equation (4) has
no solution
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Basic ideas and main tools in the proofs

k ≥ 3 fixed, n ≥ 2 prime

m(m + d) . . . (m + (k − 1)d) = by n (5)

m
m + id = aix

n
i , P(ai) ≤ k , i = 0, . . . , k − 1 (6)

ai n-th power free, finitely many and effectively
determinable such (a0, . . . , ak−1)

1 if for some i , j < k − 1,
P(aiai+1 . . . ai+j) ≤ j + 1 holds, then replace k
by j + 1 in (5)

2 (5) =⇒ generalized Fermat’s equations
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Possibilities

1 for p, q, r ≥ 0, m + pd , m + qd are m + rd are
linearly dependent =⇒

AX n + BY n = CZ n (7)

with gcd(X ,Y ,Z ) = 1 and P(ABC ) ≤ k .

2 for p < q ≤ r < s ≤ k − 1 with p + s = q + r ,

(m+qd)(m+rd)−(m+pd)(m+sd) = (qr−ps)d2

=⇒ AX n + BY n = CZ 2 (8)

gcd(X ,Y ,Z ) = 1, P(AB) ≤ k , |C | ≤ (k − 1)2

X ,Y ,Z with XYZ 6= 0,±1, non-trivial
solutions
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Resolution of equations 4 and 5 (proofs of Theorems D to I)

case n = 2: quadratic residues, reduction to elliptic
curves, MAGMA, Chabauty method

case n = 3: Selmer’s classical results on equations
AX 3 + BY 3 = CZ 3, Chabauty method

case n = 5: classical and new results of Dirichlet,
Lebesgue, Dénes, Gy, Bennett, Bruin
and Hajdu on equations
AX 5 + BY 5 = CZ 5, genus 2 curves
and Chabauty method
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case n ≥ 7 prime, main tool: application of the
modular method to ternary equations

(7) AX n + BY n = CZ n and (8) AX n + BY n = CZ 2.

The following ternary equations were used in Gy
(Gy, k = 3), Gy, Hajdu, Saradha (GyHS,
4 ≤ k ≤ 5), Bennett, Bruin, Gy, Hajdu
(BBGyH, 6 ≤ k ≤ 11), Gy, Hajdu, Pintér
(GyHP, 12 ≤ k ≤ 34):
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3 ≤ k ≤ 34, in Gy, GyHS, BBGyH and GyHP,

X n + Y n = 2αZ n, α ≥ 0

has no non-trivial solutions (α = 0, Wiles,
1 ≤ α < n Darmon-Merel and Ribet)

4 ≤ k ≤ 34, in GyHS, BBGyH and GyHP the

following results of Bennett and Skinner
(2004) were used: the equations
X n + 2αY n = 3βZ 2, α 6= 1; X n + Y n = CZ 2,
C ∈ {2, 6}; X n + 5αY n = 2Z 2, n ≥ 11 if α > 0;
AX n + BY n = Z 2, AB = 2αpβ, p ∈ {11, 19} have
no non-trivial solutions
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6 ≤ k ≤ 11, in BBGyH the authors proved and

utilized that X n + 2αY n = Z 2 with p | XY for
p ∈ {3, 5, 7} and five further new ternary
equations have no non-trivial solutions.

To extend the results concerning equations (4) and
(5) from k ≤ 11 to 12 ≤ k ≤ 34, more than 50
new ternary equations had to be solved in GyHP.
Denote by rad(m) =

∏
p|m

p the radical of m.
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GyHP gave explicitly a set S of 54 pairs (a, b) with
a, b ≥ 1 integers such that if n > 31 prime,
A,B ,C coprime positive integers with
(rad(AB),C ) ∈ S and p a prime such that
11 ≤ p ≤ 31 and p - AB, then the equation

AX n + BY n = CZ 2

has no non-trivial solutions X ,Y ,Z with p | XY ,
unless, possibly, for 60 tuples (n, rad(AB),C , p)
(which are listed explicitly)
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For k ≥ 12, one of the main difficulties: the
number of systems of equations, i.e. the number
of (ao, . . . , ak−1) grows so rapidly with k that
practically it is impossible to handle the different
cases as before for k ≤ 11

For k ≥ 12, fundamentally new ideas were

needed: efficient and iterated combination of our
procedure for solving the arising new ternary
equations (corresponding to the pairs in S) with
several sieves based on the ternary equations
already solved. For n ≤ 31 local sieves worked.
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Main novelty in the case k ≥ 12:

we algorithmized our proof =⇒ use of a
computer. Algorithm works for larger k as well,
but there are limits: computation of modular
forms of higher and higher level and
computational time itself.
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Thank you
for your attention!
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