Perfect powers in products with terms from arithmetic progression -A survey

Kálmán Győry

University of Debrecen Hungary

Erdős 100 Conference Diophantine Number Theory Budapest

5th July, 2013

Kálmán Győry

An old problem

Let $k \ge 3$, $n \ge 2$, $m, d \ge 1$ be integers with gcd(m, d) = 1. Can

$$m(m+d)\ldots(m+(k-1)d)$$

be an *n*-th power?

n = **2**

k = **3**,
$$m = x^2$$
, $m + d = z^2$, $m + 2d = y^2 \iff x^2 + y^2 = 2z^2$, $gcd(x, y) = 1$, infinitely many solutions

k = **4**, Fermat: each of m, m + d, m + 2d, m + 3dcannot be square; Euler: $m(m + d)(m + 2d)(m + 3d) \neq \Box$

n > **2**, very rich literature **k** = **3**, $m = x^n$, $m + d = z^n$, $m + 2d = y^n \iff$ $x^n + y^n = 2z^n$, gcd(x, y) = 1, y, z > 1 **Darmon and Merel (1997)**: There is no solution

For **products**, a great number of partial results, but the **general problem** is still **open**.

Product of consecutive integers

After a lot of *special results* (Euler, Erdős, Rigge, Siegel and others), the problem has been solved for d = 1.

Theorem A (Erdős and Selfridge, 1975)

The equation

$$m(m+1)\ldots(m+k-1)=y^n \qquad (1)$$

has no solutions in positive integers m, k, y, n with $k \ge 2$, $n \ge 2$.

Proof: elementary but complicated and ingenious

A related equation is

$$\binom{m+k-1}{k} = y^n, \tag{2}$$

m, k, y, n integers with k, y, n ≥ 2 and m ≥ k + 1
k = n = 2: Pell equation, infinitely many solutions

• (k, n) = (3, 2), Meyl (1878), Watson(1919): The only solution is $\binom{50}{3} = 140^2$

Erdős (1951): for $k \ge 4$, there is no solution elementary method, does not work for k < 4.

Gy (1997): for k = 2, 3, n > 2, there is no solution. Baker's method and deep results on generalized Fermat's equations.

Theorem B (Erdős $k \ge 4$, Győry, k = 2, 3)

Apart from the case k = n = 2, (m, k, y, n) = (48, 3, 140, 2) is the only solution of (2). Common generalization of equations (1) and (2)

$$m(m+1)\ldots(m+k-1)=by^n,$$
 (3)

m, k, b, y, n positive integers with $k \ge 2$, $n \ge 2$, $P(b) \le k$; P(b) the greatest prime factor of b.

- $\mathbf{k} = \mathbf{b} = \mathbf{n} = \mathbf{2}$: infinitely many solutions
- given k: (m, y) yields a solution with
 P(y) ≤ k ⇔ m ∈ {1, 2, ..., p^(k) k}, where
 p^(k) is the least prime with p^(k) > k; such
 solutions are called trivial, they can be easily
 found.

non-trivial solutions: P(y) > k.

Theorem C (Erdős and Selfridge, 1975, P(b) < k; Saradha, 1997, $k \geq 4;$ Gy, 1998, k=2,3)

Apart from the case (k, b, n) = (2, 2, 2), the only non-trivial solution of equation (3) is (m, k, b, y, n) = (48, 3, 6, 140, 2).

Consequences

- Erdős-Selfridge theorem on equation (1), (b = 1),
- Erdős-Gy theorem on equation (2), (b = k!),
- complete solution of (3) with $P(b) < p^{(k)}$

Extensions of Theorem C

• to the case $P(b) \le p_k$, p_k is the *k*-th prime $(p_k > p^{(k)} \text{ if } k > 3)$: Pintér and Gy $(k \le 5)$

Conjecture 1 (Pintér and Gy, 2005)

For $k \ge 3$ and n > 2, equation (3) has no non-trivial solution with $P(b) \le p_k$.

More general equations

$$m(m+d)\cdots(m+(k-1)d)=y^n; \qquad (4)$$

$$m(m+d)\cdots(m+(k-1)d)=by^n;\qquad (5)$$

m, k, d, b, y, n positive integers with $k \ge 3$, $n \ge 2$, gcd(m, d) = 1 and $P(b) \le k$. Assume that d > 1.

1 Finiteness results Darmon, Granville (1995): for (4), $k \ge 3$, $n \ge 4$ Gy, Hajdu, Saradha (2004): for (5), $k \ge 3$, $n \ge 2$, k + n > 6Tijdeman (1989): k + n > 6 necessary 2 Resolution of (4) and (5) for fixed d many deep results: Shorey, Saradha, Tijdeman,... Saradha, Shorey (2001, 2005) complete solution of (5) for $k \ge 4$, $1 < d \le d_0(n)$, nprime, $d_0(n)$ explicitly given for n = 2, 3, 5, 7, $n \ge 11$ In what follows, consider equations (4) and (5) for **fixed** k

3 Resolution of (4) and (5) for fixed k

Equation (4):

- infinitely many solutions for k = 2 and (k, n) = (3, 2)
- no solution for (k, n) = (4, 2) (Euler), and for (k, n) = (5, 2), (3, 3), (3, 4) and (3, 5) (Obláth, 1951)

For arbitrary n > 2, the first result: **Gy** (1999): if k = 3, n > 2 and $P(b) \le 2$, (5) has no solution

 \implies for k = 3, n > 2, (4) has no solution

Theorem D (Gy, Hajdu, Saradha, 2004, $4 \le k \le 5$; Bennett, Bruin, Gy, Hajdu, 2006, $6 \le k \le 11$)

(5) has no solution for $3 < k \le 6$, $P(b) \le 2$ and $6 < k \le 11$, $P(b) \le 3$ \implies for $4 \le k \le 11$, (4) has no solution

Bennett (2008): for k = 5, 6 and $n \ge 7$, the same result with $P(b) \le 3$

The proofs required different methods according as n = 2, 3, 5 or $n \ge 7$. Since 2006, considerable progress has been made.

n=2

Theorem E (Hirata-Kohno, Laishram, Shorey, Tijdeman, 2007; Tengely 2008)

- (i) if n = 2, d > 1, $5 \le k \le 100$, then (5) has no solution
- (ii) if n = 2, $k \le 109$, then (4) has no solution

n=3

Theorem F (Hajdu, Tengely, Tijdeman, 2009)

(i) if $n = 3, 8 \le k < 32$, P(b) < k, then (5) has no solution

(ii) if n = 3, k < 39, then (4) has no solution

$n > 3 \ prime$

Theorem G (Gy, Hajdu, Pintér, 2009)

(i) (5) has no solution if n > 3 prime and $12 \le k \le 22$, $P(b) \le 7$ or $22 < k \le 34$, $P(b) \le \frac{k-1}{2}$

(ii) (4) has no solution if n > 3 prime and $12 \le k \le 34$

Theorems D, E, F, G + Gy $(k = 3) \Rightarrow$ MAIN RESULT:

Theorem H

Let $3 \le k \le 34$. (i) if $(k, n) \ne (3, 2)$ and $P(b) \le 2$, then (5) has no solution

(ii) if $(k, n) \neq (3, 2)$, then (4) has no solution

Remark for (k, n) = (3, 2), b = 1 and for (k, n) = (3, 2), (4, 2), P(b) = 3, there are infinitely many solutions

Corollary 1 (to Theorem H (ii))

Let $2 \le k \le 34$, $n \ge 2$ with $(k, n) \ne (2, 2)$. Then the superelliptic equation

$$x(x+1)\cdots(x+k-1)=w^n$$

in positive rationals x, w has no solution.

Conjecture 2

(i) if $(k, n) \neq (3, 2)$ and $P(b) \leq 2$, then (5) has no solution

(ii) if $(k, n) \neq (3, 2)$, then (4) has no solution

For b = 1, (ii) is a more precise version of a conjecture of **Erdős**.

For $\mathbf{n} = \mathbf{5}$, a further extension has been recently obtained

Theorem I (Hajdu and Kovács, 2011)

(i) if n = 5 and $3 \le k \le 36$, then equation (5) has the only solution (m, k, d) = (2, 3, 7)

(ii) if n = 5 and $3 \le k \le 54$, then equation (4) has no solution

Basic ideas and main tools in the proofs

 a_i *n*-th power free, finitely many and effectively determinable such (a_0, \ldots, a_{k-1})

1 if for some
$$i, j < k - 1$$
,
 $P(a_i a_{i+1} \dots a_{i+j}) \le j + 1$ holds, then replace k
by $j + 1$ in (5)

2 (5) \implies generalized Fermat's equations

Possibilities

1 for $p, q, r \ge 0$, m + pd, m + qd are m + rd are linearly dependent \Longrightarrow

$$AX^n + BY^n = CZ^n \tag{7}$$

with gcd(X, Y, Z) = 1 and $P(ABC) \le k$.

2 for $p < q \leq r < s \leq k - 1$ with p + s = q + r,

$$(m+qd)(m+rd)-(m+pd)(m+sd)=(qr-ps)d^{2}$$

$$\Longrightarrow AX^n + BY^n = CZ^2 \tag{8}$$

gcd(X, Y, Z) = 1, $P(AB) \le k$, $|C| \le (k - 1)^2$ X, Y, Z with $XYZ \ne 0, \pm 1$, non-trivial solutions case n = 2: guadratic residues, reduction to elliptic curves, MAGMA, Chabauty method **case** $\mathbf{n} = \mathbf{3}$: Selmer's classical results on equations $AX^3 + BY^3 = CZ^3$. Chabauty method **case** n = 5: classical and new results of Dirichlet, Lebesgue, Dénes, Gy, Bennett, Bruin and Hajdu on equations $AX^5 + BY^5 = CZ^5$, genus 2 curves and Chabauty method

case n ≥ 7 prime, main tool: application of the modular method to ternary equations

(7) $AX^{n} + BY^{n} = CZ^{n}$ and (8) $AX^{n} + BY^{n} = CZ^{2}$.

The following **ternary equations** were used in **Gy** (**Gy**, k = 3), **Gy**, **Hajdu**, **Saradha** (**GyHS**, $4 \le k \le 5$), **Bennett**, **Bruin**, **Gy**, **Hajdu** (**BBGyH**, $6 \le k \le 11$), **Gy**, **Hajdu**, **Pintér** (**GyHP**, $12 \le k \le 34$):

 $3 \le k \le 34$, in Gy, GyHS, BBGyH and GyHP,

$$X^n + Y^n = 2^{\alpha} Z^n, \quad \alpha \ge 0$$

has no non-trivial solutions ($\alpha = 0$, Wiles, $1 \le \alpha < n$ Darmon-Merel and Ribet)

4 \leq k \leq 34, in GyHS, BBGyH and GyHP the following results of Bennett and Skinner (2004) were used: the equations $X^n + 2^{\alpha}Y^n = 3^{\beta}Z^2$, $\alpha \neq 1$; $X^n + Y^n = CZ^2$, $C \in \{2, 6\}$; $X^n + 5^{\alpha}Y^n = 2Z^2$, $n \geq 11$ if $\alpha > 0$; $AX^n + BY^n = Z^2$, $AB = 2^{\alpha}p^{\beta}$, $p \in \{11, 19\}$ have no non-trivial solutions $6 \le k \le 11$, in **BBGyH** the authors proved and utilized that $X^n + 2^{\alpha}Y^n = Z^2$ with $p \mid XY$ for $p \in \{3, 5, 7\}$ and five further new ternary equations have no non-trivial solutions.

To extend the results concerning equations (4) and (5) from $k \le 11$ to $12 \le k \le 34$, more than 50 new ternary equations had to be solved in **GyHP**. Denote by $rad(m) = \prod_{p|m} p$ the *radical* of *m*. **GyHP** gave explicitly a set S of 54 pairs (a, b) with $a, b \ge 1$ integers such that if n > 31 prime, A, B, C coprime positive integers with $(rad(AB), C) \in S$ and p a prime such that $11 \le p \le 31$ and $p \nmid AB$, then the equation

 $AX^n + BY^n = CZ^2$

has no non-trivial solutions X, Y, Z with $p \mid XY$, unless, possibly, for 60 tuples (n, rad(AB), C, p)(which are listed explicitly) For $k \ge 12$, one of the main difficulties: the number of systems of equations, i.e. the number of (a_o, \ldots, a_{k-1}) grows so rapidly with k that practically it is impossible to handle the different cases as before for $k \le 11$

For $k \ge 12$, fundamentally new ideas were needed: efficient and iterated combination of our procedure for solving the arising new ternary equations (corresponding to the pairs in S) with several **sieves** based on the ternary equations already solved. For $n \le 31$ local sieves worked. Main novelty in the case $k \ge 12$: we algorithmized our proof \implies use of a computer. Algorithm works for *larger* k as well, but there are *limits*: computation of modular forms of higher and higher level and computational time itself.

Thank you for your attention!

Kálmán Győry