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Fibonacci (1202) showed that any positive rational can
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Fibonacci (1202) showed that any positive rational can
be expressed as a sum of distinct unit fractions by using
the greedy algorithm.

Namely, if 

 
1
n ≤ a

b < 1
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and the numerator has decreased. 

 an − a < b, i.e., an − b < a,
so   

 0 ≤ a
b − 1

n = an−b
bn
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The basic idea of the proof is that some term a + kd is
divisible by a higher power of some prime than any other
term. This follows from the analysis of the prime divisors
of the expressions                            and       .
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They also prove that for only finitely many n can one or more of
the elementary symmetric functions of                     be an integer. 1,

1
2 , 1

3 , ..., 1
n

Chen and Tang completely settled this question in 2012 by
showing that the only pairs (k,n) for which the elementary
symmetric function S(k,n) of                     is an integer are
  1,

1
2 , 1

3 , ..., 1
n

 S(1,1) = 1 and S(2,3) = 1 ⋅ 1
2 + 1 ⋅ 1

3 + 1
2 ⋅ 1

3 = 1.
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What about N(4,b) ?    
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The conjecture is known to hold for  n ≤ 1014.
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Vaughan has shown that the number of n   x
for which the Erdos - Straus conjecture fails
is

≤

 O(x exp(−c(logx)
3
5 )).
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Theorem: (Martin, Croot)

Dense unit fractions

Suppose that r > 0 is a given rational number.

Then for all N > 1, there exist integers                   with   x1
, x

2
, ..., xn

such that

Moreover, the error term                 is best possible.
 
Or (

log log N
log N
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Warm-up:  Prove this for r = 2.
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Can this always be accomplished using the odd greedy algorithm ?

For this fraction, the odd greedy algorithm terminates in 37 steps.

For example, suppose our starting fraction is  
5

1444613 .
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For this fraction, the odd greedy algorithm terminates in 37 steps.
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For example, suppose our starting fraction is  
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1444613 .
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Greedy decompositions in odd unit fractions

It is known that every positive rational 
with an odd denominator can be expressed as  

a
2b+1

with
 

a
2b+1 = 1

2x1+1 +
1

2x2+1 + ... + 1
2xn+1

 1 < x
1
< x

2
< ... < xn.

Can this always be accomplished using the odd greedy algorithm ?

For this fraction, the odd greedy algorithm terminates in 37 steps.

The last denominator has 384,122,451,172 decimal digits !

Conjecture ($1000) The odd greedy algorithm always terminates. 

For example, suppose our starting fraction is  
5

1444613 .
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Similar questions can be asked for more restricted unit fractions.

Theorem (RLG)

A rational     can be written as the finite sum of
reciprocals of distinct perfect squares if and only if:  

p
q

 
p
q ∈[0, π2

6 − 1) ∪[1, π2

6 ).
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For example,
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2 = 1

22 + 1
32 + 1

42 + 1
52 + 1

62 + 1
152 + 1

162 + 1
362 + 1

602 + 1
1802 .
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Challenge:

Show that the greedy algorithm does not always 
terminate in this case.
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Theorem (RLG)
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reciprocals of distinct perfect squares if and only if:  
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