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Fibonacci (1202) showed that any positive rational can
be expressed as a sum of distinct unit fractions by using
the greedy algorithm.

Namely, if

then

SO

and the numerator has decreased.



Another way to see this is to write
_ 1,11 1
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Another way to see this is to write
_ 1,11 1
%— bTEt+TgT..TF

and then repeatedly use the transformation
1 1 4 1

b — b+l " b(b+1) *

Related diversion:

Show that
O<x,<x, ,+Xx, for nzn,

implies that ) x, diverges.
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For every n>1, there is always a prime p satisfying n <p < 2n.

P. Erdés, Egy Kiirschak-fele elemi szamelméleti tétel altaldnositasa,

(Generalization of an elementary number-theoretic theorem of Kirschak),
Mat. Fiz. Lapok 39 (1932), 17 - 24.

n

pe 1 : :
For positive integers a, d and Kk, 2 kd 'S hever an integer.

k=1

P. Erdés, A theorem of Sylvester and Schur,
J. London Math. Soc. 9 (1934), 282 - 288,

If n> 2k, then (?() contains a prime divisor greater than k.



Erdos says: "Der Grundgedanke des Beweises besteht
darin, dass ein Glied a + kd angegeben wird, welches durch
eine hohere Potenz einer Primzahl teilbar ist, als die
Ubrigen Glieder. Dies ergibt sich aus der Analyse der

Primteiler der Ausdriicke: (a+d)(a+ ﬁld)---(ﬂ +nd) und (5)."




Erdos says: "Der Grundgedanke des Beweises besteht
darin, dass ein Glied a + kd angegeben wird, welches durch
eine hohere Potenz einer Primzahl teilbar ist, als die
Ubrigen Glieder. Dies ergibt sich aus der Analyse der

Primteiler der Ausdriicke: (a+d)(a+ ﬁld)---(ﬂ +nd) und (5)."

The basic idea of the proof is that some term a + kd is
divisible by a higher power of some prime than any other
term. This follows from the analysis of the prime divisors

of the expressions (a+d)a+ 2:1)--.(0 +nd) and (Zn“).
n:
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P. Erdds and I. Niven, On certain variations of the harmonic series,
Bull. Amer. Math. Soc., 52 (1945), 433 - 436.

S u
They show that 2% = 2% implies r=1 and s=u.
k=r k=t

They also prove that for only finitely many n can one or more of
the elementary symmetric functions of 1,%,%, ,% be an integer.

Chen and Tang completely settled this question in 2012 by
showing that the only pairs (k,n) for which the elementary

symmetric function S(k,n) of 1,%,%,...,% IS an integer are

5(1,1)=1 and S(2,3)=1-3+1-3+3-1=1.



P.Erdds, Az + +L++..+L = + egyenlet egéesz szamll

megoldasairdl, Mat. 2Lapok 1 (1n950), 192 - 210.



P.Erdds, Az + +L++..+L = + egyenlet egéesz szamll

megoldasairdl, Mat. 2Lapok 1 (1n950), 192 - 210.

Define N(a,b) to be the least value n such that the equation
n

%: zi has a solutionwith O <x <x <..<X,.

XK
k=1



P.Erdds, Az + +L++..+L = + egyenlet egéesz szamll

megoldasairdl, Mat. 2Lapok 1 (1n950), 192 - 210.

Define N(a,b) to be the least value n such that the equation
n

a _ 1 : .
= 2 = has a solution with O<x1 <X, <L <X

k
k=1

Erdos shows that N(b) = ln;\ang(a,b) satisfies

logb
glogb*

log log b < N(b) < -



P.Erdos, Az - +-L+...+1 —‘t‘) egyenlet egesz szaml
megolddsairdl, Mat. Lapok 1 ({9503, 192 - 210,

Define N(a,b) to be the least value n such that the equation
n

a _ 1 : .
= 2 X has a solution with O<x1 <X, <L <X
k=1

Erdos shows that N(b) :i= max N(a,b) satisfies

1<a<b
logb
oglogb

log log b < N(b) < ;

He conjectures that N(b) < log log b is the truth.



P.Erdos, Az - +-L+...+1 —‘t‘) egyenlet egesz szaml
megolddsairdl, Mat. Lapok 1 ({9503, 192 - 210,

Define N(a,b) to be the least value n such that the equation
n

a _ 1 : .
= 2 X has a solution with O<x1 <X, <L <X
k=1

Erdos shows that N(b) :i= max N(a,b) satisfies

1<a<b
logb
oglogb

log log b < N(b) < ;

He conjectures that N(b) < log log b is the truth.

The best upper bound currently available (due to Vose) is N(b) <« 4/log b.
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Define N(a,b) to be the least value n such that the equation

a _ 1 : :
F = Z " has a solution with O<x1 <X, <L <X

k
k=1
For O <a<b, N(a,b) <a, by the greedy algorithm.
Thus, N(2,b) < 2, and N(3,b) < 3.

What about N(4,b) ?
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The Erdds - Straus Conjecture

Foralln>2, N(4,n) <3.

In other words, we can always express

1|1|1
n— Xx X, X,

with O<x <X, <X,

Note that it is enough to prove this for n prime.

The conjecture is known to hold for n<10*
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Let f(n) denote the number of solutions of
4 _ 1 , 1 , 1

n — | |
n >(1 )(2 X3

where here the X are not assumed to be
distinct or ordered by size.

Theorem (Elsholtz-Tao [2013+])
(i)  Nlog?N< ) f(q) <Nlog’N loglogN

qg<N
where g ranges over primes.

(ii) For infinitely many n, one has

f(n) > exp((log3 +0(1)) Iolgoiqog n)'

Vaughan has shown that the number of n<x
for which the Erdos - Straus conjecture fails
is O(x exp(- c(logx)b'))
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Sierpinski's Conjecture

For all n>5, we can always express

1, 1, 1
xl XZ X3

5
- =
with O<x1<x2<x3.

This is known to be true for 5 <n < 1057438801.

Schinzel's Conjecture

We can always express

n X1 X2 X3

with O< X <X, <Xy, provided n>n_(a).
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Suppose

n
— 1
1= ” wherel<x1<x2<...<xn.

k
k=1

Erd8s conjectured that we must always have Xn > 3

X,
with the extreme case being 1=1+141

Note that since H(h)=) £ ~logn then we must have
k=1
X

X—ze+o(1) as X — o,

In fact, he suggested that in this case it may be that % —> o0,

1

However, it turns out that this is not the case |



Dense unit fractions

Theorem: (Martin, Croot)

Suppose that r > 0 is a given rational humber.

Then for all N > 1, there exist integers XXt X, with

log log N
N<x1<x2<...<an(e"+Or(°f’o;9N ))N

such that

1 | 1
r : I I ...+ _.
X, ! X, ! X

Moreover, the error term Or('°fog°[9\l'\’) is best possible.
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$500 Theorem (Croot)

For any r-coloring of {2,3,4,....}, there is a
monochromatic solution to
_ 1,1 1
1= ctct et

with 1<x <x <..<x.
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Is the stronger density version true ?

Conjecture: Suppose X &N has positive upper density,
| X~ [1,n]] S

l.e., limsup 0.

n— oo

Then there exist X <X, <..<X in X

with 1=+ +..+x.

Perhaps this can be proved under the stronger hypothesis
that x_ —x.is bounded.

For example, suppose you assume that x —x <2.
i+1
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A related result of Brown and Rodl

In any r-coloring of N there is always a
monochromatic solution to the equation

1 1,

X Y

1
Z

More generally, if the system Zcxilkxk =0, 1<i<r,
k=1

is partition regular, then the system > a x.'=0, 1<i<r,
k=1

is also partition regular.
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$250 Conjecture

In any r-coloring of N there is always a
monochromatic solution to the equation

X°+y°=2°

Warm-up: Prove this for r =2,
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Greedy decompositions in odd unit fractions

I't is known that every positive rational 2§+1

with an odd denominator can be expressed as
a 1 | 1 | | 1

L1 — | T e T
2b+1 2x1+1 2x2+1 2xn+1

with T<x <x <..<x.

Can this always be accomplished using the odd greedy algorithm ?

: . 5
For example, suppose our starting fractionis ;7,15-

For this fraction, the odd greedy algorithm terminates in 37 steps.
The last denominator has 384,122,451,172 decimal digits |

Conjecture ($1000) The odd greedy algorithm always terminates.

P
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Similar questions can be asked for more restricted unit fractions.

Theorem (RLG)

A rational % can be written as the finite sum of
reciprocals of distinct perfect squares if and only if:

FeloE-1)uU[,%)

For example,
11,1, 1,1, 1,1 ;1 4 1 , 1 , 1
2 22 1 32 7 42 T 52 T g2 U152 162 362 60° @ 1807

Challenge: $25

Show that the greedy algorithm does not always
terminate in this case.
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A classic conjecture of Erdds

If XcNwith )~ =c then X contains k-AP's for every k.

$3000 XeX -

Warm-up problem. Prove this holds for k = 3.

(Two-dimensional analogue - RLG).

= o then X contains 4 vertices of a square.

$1000 (cpex y






