

Paul Erdös

and

Egyptian Fractions

Paul Erdös

and

Egyptian Fractions

Rhind papyrus ~ 1850 B.C.

Paul Erdös

and

Egyplian Fraclions

Rhind papyrus ~ 1850 B.C.

Expressing rationals as the sum of distinct unit fractions

$$
\frac{2}{35}=\frac{1}{30}+\frac{1}{42} \quad \frac{2}{63}=\frac{1}{56}+\frac{1}{72}
$$

Expressing rationals as the sum of distinct unit fractions

$$
\begin{gathered}
\frac{2}{35}=\frac{1}{30}+\frac{1}{42} \\
\frac{10}{73}=\frac{1}{11}+\frac{1}{22}+\frac{1}{56}+\frac{1}{72}
\end{gathered}
$$

Expressing rationals as the sum of distinct unit fractions

$$
\begin{gathered}
\frac{2}{35}=\frac{1}{30}+\frac{1}{42} \quad \frac{2}{63}=\frac{1}{56}+\frac{1}{72} \\
\frac{10}{73}=\frac{1}{11}+\frac{1}{22}+\frac{1}{1606} \\
\frac{67}{2012}=\frac{1}{11}+\frac{1}{960}+\frac{1}{2138469}+\frac{1}{10670447077440}
\end{gathered}
$$

Expressing rationals as the sum of distinct unit fractions

$$
\begin{gathered}
\frac{2}{35}=\frac{1}{30}+\frac{1}{42} \quad \frac{2}{63}=\frac{1}{56}+\frac{1}{72} \\
\frac{10}{73}=\frac{1}{11}+\frac{1}{22}+\frac{1}{1606} \\
\frac{67}{2012}=\frac{1}{11}+\frac{1}{960}+\frac{1}{2138469}+\frac{1}{10670447077440} \\
1=\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{14}+\frac{1}{15}+\frac{1}{18}+\frac{1}{20}+\frac{1}{24}+\frac{1}{28}+\frac{1}{30}
\end{gathered}
$$

Expressing rationals as the sum of distinct unit fractions

$$
\begin{gathered}
\frac{2}{35}=\frac{1}{30}+\frac{1}{42} \quad \frac{2}{63}=\frac{1}{56}+\frac{1}{72} \\
\frac{10}{73}=\frac{1}{11}+\frac{1}{22}+\frac{1}{1606} \\
\frac{67}{2012}=\frac{1}{11}+\frac{1}{960}+\frac{1}{2138469}+\frac{1}{10670447077440} \\
1=\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{14}+\frac{1}{15}+\frac{1}{18}+\frac{1}{20}+\frac{1}{24}+\frac{1}{28}+\frac{1}{30}
\end{gathered}
$$

Why ?

Fibonacci (1202) showed that any positive rational can be expressed as a sum of distinct unit fractions by using the greedy algorithm.

Fibonacci (1202) showed that any positive rational can be expressed as a sum of distinct unit fractions by using the greedy algorithm.

Namely, if
then

$$
\frac{1}{n} \leq \frac{a}{b}<\frac{1}{n-1}
$$

$$
a n-a<b \text {, i.e., } a n-b<a \text {, }
$$

Fibonacci (1202) showed that any positive rational can be expressed as a sum of distinct unit fractions by using the greedy algorithm.

Namely, if
then

$$
\frac{1}{n} \leq \frac{a}{b}<\frac{1}{n-1}
$$

$$
a n-a<b \text {, i.e., } a n-b<a \text {, }
$$

so

$$
0 \leq \frac{a}{b}-\frac{1}{n}=\frac{a n-b}{b n}
$$

and the numerator has decreased.

Another way to see this is to write

$$
\frac{a}{b}=\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\ldots+\frac{1}{b}
$$

and then repeatedly use the transformation

$$
\frac{1}{b}=\frac{1}{b+1}+\frac{1}{b(b+1)} .
$$

Another way to see this is to write

$$
\frac{a}{b}=\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\ldots+\frac{1}{b}
$$

and then repeatedly use the transformation

$$
\frac{1}{b}=\frac{1}{b+1}+\frac{1}{b(b+1)} .
$$

Related diversion:

Show that

$$
0<x_{n} \leq x_{n+1}+x_{n^{2}} \text { for } n \geq n_{0}
$$

implies that $\sum_{n} x_{n}$ diverges.
P. Erdös, Beweis eines Satzes von Tschebyschef, Acta Litt. Sci. Szeged 5 (1932), 194-198.

For every $n>1$, there is always a prime p satisfying $n<p<2 n$.
P. Erdös, Beweis eines Satzes von Tschebyschef,

Acta Litt. Sci. Szeged 5 (1932), 194-198.

For every $n>1$, there is always a prime p satisfying $n<p<2 n$.
P. Erdös, Egy Kürschák-féle elemi számelméleti tétel általánosítása,
P. Erdös, Beweis eines Satzes von Tschebyschef,

Acta Litt. Sci. Szeged 5 (1932), 194-198.

For every $n>1$, there is always a prime p satisfying $n<p<2 n$.
P. Erdös, Egy Kürschák-féle elemi számelméleti tétel általánositása, (Generalization of an elementary number-theoretic theorem of Kürschák), Mat. Fiz. Lapok 39 (1932), 17-24.
P. Erdös, Beweis eines Satzes von Tschebyschef, Acta Litt. Sci. Szeged 5 (1932), 194-198.

For every $n>1$, there is always a prime p satisfying $n<p<2 n$.
P. Erdös, Egy Kürschák-féle elemi számelméleti tétel általánositása, (Generalization of an elementary number-theoretic theorem of Kürschák), Mat. Fiz. Lapok 39 (1932), 17-24.

For positive integers a, d and k,

$$
\sum_{k=1}^{n} \frac{1}{a+k d} \text { is never an integer. }
$$

P. Erdös, Beweis eines Satzes von Tschebyschef, Acta Litt. Sci. Szeged 5 (1932), 194-198.

For every $n>1$, there is always a prime p satisfying $n<p<2 n$.
P. Erdös, Egy Kürschák-féle elemi számelméleti tétel általánositása, (Generalization of an elementary number-theoretic theorem of Kürschák), Mat. Fiz. Lapok 39 (1932), 17-24.

For positive integers a, d and $k, \quad \sum_{k=1}^{n} \frac{1}{a+k d}$ is never an integer.
P. Erdős, A theorem of Sylvester and Schur,
J. London Math. Soc. 9 (1934), 282-288,
P. Erdös, Beweis eines Satzes von Tschebyschef,

Acta Litt. Sci. Szeged 5 (1932), 194-198.

For every $n>1$, there is always a prime p satisfying $n<p<2 n$.
P. Erdös, Egy Kürschák-féle elemi számelméleti tétel általánositása, (Generalization of an elementary number-theoretic theorem of Kürschák), Mat. Fiz. Lapok 39 (1932), 17-24.

For positive integers a, d and $k, \quad \sum_{k=1}^{n} \frac{1}{a+k d}$ is never an integer.
P. Erdős, A theorem of Sylvester and Schur,
J. London Math. Soc. 9 (1934), 282-288,

If $n>2 k$, then $\binom{n}{k}$ contains a prime divisor greater than k.

Erdös says: "Der Grundgedanke des Beweises besteht darin, dass ein Glied a + kd angegeben wird, welches durch eine höhere Potenz einer Primzahl teilbar ist, als die übrigen Glieder. Dies ergibt sich aus der Analyse der Primteiler der Ausdrücke: $\frac{(a+d)(a+2 d) . . .(a+n d)}{n!}$ und $\binom{2 n}{n} . "$

Erdös says: "Der Grundgedanke des Beweises besteht darin, dass ein Glied a + kd angegeben wird, welches durch eine höhere Potenz einer Primzahl teilbar ist, als die übrigen Glieder. Dies ergibt sich aus der Analyse der Primteiler der Ausdrücke: $\frac{(a+d)(a+2 d) \ldots(a+n d)}{n!}$ und $\binom{2 n}{n} . "$

The basic idea of the proof is that some term $a+k d$ is divisible by a higher power of some prime than any other term. This follows from the analysis of the prime divisors of the expressions $\frac{(a+d)(a+2 d) \ldots(a+n d)}{n!}$ and $\binom{2 n}{n}$.
P. Erdös and I. Niven, On certain variations of the harmonic series, Bull. Amer. Math. Soc., 52 (1945), 433-436.
P. Erdös and I. Niven, On certain variations of the harmonic series, Bull. Amer. Math. Soc., 52 (1945), 433-436.

They show that $\sum_{k=r}^{s} \frac{1}{k}=\sum_{k=\dagger}^{u} \frac{1}{k}$ implies $r=t$ and $s=u$.
P. Erd"̈s and I. Niven, On certain variations of the harmonic series, Bull. Amer. Math. Soc., 52 (1945), 433-436.

They show that $\sum_{k=r}^{s} \frac{1}{k}=\sum_{k=t}^{u} \frac{1}{k}$ implies $r=t$ and $s=u$.
They also prove that for only finitely many n can one or more of the elementary symmetric functions of $1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}$ be an integer.
P. Erdös and I. Niven, On certain variations of the harmonic series, Bull. Amer. Math. Soc., 52 (1945), 433-436.

They show that $\sum_{k=r}^{s} \frac{1}{k}=\sum_{k=t}^{u} \frac{1}{k}$ implies $r=t$ and $s=u$.

They also prove that for only finitely many n can one or more of the elementary symmetric functions of $1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}$ be an integer.

Chen and Tang completely settled this question in 2012 by showing that the only pairs (k, n) for which the elementary symmetric function $S(k, n)$ of $1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}$ is an integer are

$$
S(1,1)=1 \text { and } S(2,3)=1 \cdot \frac{1}{2}+1 \cdot \frac{1}{3}+\frac{1}{2} \cdot \frac{1}{3}=1
$$

P. Erdös, $A z \frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}}=\frac{a}{b}$ egyenlet egész számú megoldásairól, Mat. Lapok 1 (1950), 192-210.
P. Erdös, $A z \frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{\chi_{2}}}=\frac{a}{b}$ egyenlet egész számú megoldásairobl, Mat. Lapok 1 (1950), 192-210.

Define $N(a, b)$ to be the least value n such that the equation

$$
\frac{a}{b}=\sum_{k=1}^{n} \frac{1}{x_{k}} \text { has a solution with } 0<x_{1}<x_{2}<\ldots<x_{n} .
$$

P. Erdös, $A z \frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}}=\frac{a}{b}$ egyenlet egész számú megoldásairól, Mat. Lapok 1 (1950), 192-210.

Define $N(a, b)$ to be the least value n such that the equation

$$
\frac{a}{b}=\sum_{k=1}^{n} \frac{1}{x_{k}} \text { has a solution with } 0<x_{1}<x_{2}<\ldots<x_{n} .
$$

Erdös shows that $N(b):=\max _{1 \leq a \leq b} N(a, b)$ satisfies

$$
\log \log b \ll N(b) \ll \frac{\log b}{\log \log b}
$$

P. Erdős, $A z \frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{x^{\prime}}}=\frac{a}{b}$ egyenlet egész számú megoldásairobl, Mat. Lapok 1 (1950), 192-210.

Define $N(a, b)$ to be the least value n such that the equation

$$
\frac{a}{b}=\sum_{k=1}^{n} \frac{1}{x_{k}} \text { has a solution with } 0<x_{1}<x_{2}<\ldots<x_{n}
$$

Erdös shows that $N(b):=\max _{1 \leq a \leq b} N(a, b)$ satisfies

$$
\log \log b \ll N(b) \ll \frac{\log b}{\log \log b}
$$

He conjectures that $N(b) \ll \log \log b$ is the truth.
P. Erdős, $A z \frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}}=\frac{a}{b}$ egyenlet egész számú megoldásairobl, Mat. Lapok 1 (1950), 192-210.

Define $N(a, b)$ to be the least value n such that the equation

$$
\frac{a}{b}=\sum_{k=1}^{n} \frac{1}{x_{k}} \text { has a solution with } 0<x_{1}<x_{2}<\ldots<x_{n}
$$

Erdös shows that $N(b):=\max _{1 \leq a \leq b} N(a, b)$ satisfies

$$
\log \log b \ll N(b) \ll \frac{\log b}{\log \log b}
$$

He conjectures that $N(b) \ll \log \log b$ is the truth.
The best upper bound currently available (due to Vose) is $N(b) \ll \sqrt{\log b}$.

Define $N(a, b)$ to be the least value n such that the equation

$$
\frac{a}{b}=\sum_{k=1}^{n} \frac{1}{x_{k}} \text { has a solution with } 0<x_{1}<x_{2}<\ldots<x_{n} \text {. }
$$

Define $N(a, b)$ to be the least value n such that the equation
$\frac{a}{b}=\sum_{k=1}^{n} \frac{1}{x_{k}}$ has a solution with $0<x_{1}<x_{2}<\ldots<x_{n}$.

For $0<a<b, N(a, b) \leq a$, by the greedy algorithm.

Define $N(a, b)$ to be the least value n such that the equation
$\frac{a}{b}=\sum_{k=1}^{n} \frac{1}{x_{k}}$ has a solution with $0<x_{1}<x_{2}<\ldots<x_{n}$.

For $0<a<b, N(a, b) \leq a$, by the greedy algorithm.
Thus, $N(2, b) \leq 2$, and $N(3, b) \leq 3$.

Define $N(a, b)$ to be the least value n such that the equation
$\frac{a}{b}=\sum_{k=1}^{n} \frac{1}{x_{k}}$ has a solution with $0<x_{1}<x_{2}<\ldots<x_{n}$.

For $0<a<b, N(a, b) \leq a$, by the greedy algorithm.
Thus, $N(2, b) \leq 2$, and $N(3, b) \leq 3$.

What about $N(4, b)$?

The Erdös - Straus Conjecture

For all $n>2, N(4, n) \leq 3$.

The Erdös - Straus Conjecture

$$
\text { For all } n>2, N(4, n) \leq 3
$$

In other words, we can always express

$$
\frac{4}{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}
$$

with $0<x_{1}<x_{2}<x_{3}$.

The Erdös - Straus Conjecture

$$
\text { For all } n>2, N(4, n) \leq 3
$$

In other words, we can always express

$$
\frac{4}{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}
$$

with $0<x_{1}<x_{2}<x_{3}$.

Note that it is enough to prove this for n prime.

The Erdös - Straus Conjecture

$$
\text { For all } n>2, N(4, n) \leq 3
$$

In other words, we can always express

$$
\frac{4}{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}
$$

with $0<x_{1}<x_{2}<x_{3}$.

Note that it is enough to prove this for n prime.
The conjecture is known to hold for $n \leq 10^{14}$.

Let $f(n)$ denote the number of solutions of

$$
\frac{4}{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}
$$

where here the x_{i} are not assumed to be distinct or ordered by size.

Let $f(n)$ denote the number of solutions of

$$
\frac{4}{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}
$$

where here the x_{i} are not assumed to be distinct or ordered by size.

Theorem (Elsholtz-Tao [2013+])
(i) $N \log ^{2} N \ll \sum_{q \leq N} f(q) \ll N \log ^{2} N \log \log N$ where q ranges over primes.

Let $f(n)$ denote the number of solutions of

$$
\frac{4}{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}
$$

where here the x_{i} are not assumed to be distinct or ordered by size.

Theorem (Elsholtz-Tao [2013+])
(i) $N \log ^{2} N \ll \sum_{q \leq N} f(q) \ll N \log ^{2} N \log \log N$ where q ranges over primes.
(ii) For infinitely many n, one has

$$
f(n) \geq \exp \left((\log 3+o(1)) \frac{\log n}{\log \log n}\right)
$$

Let $f(n)$ denote the number of solutions of

$$
\frac{4}{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}
$$

where here the x_{i} are not assumed to be distinct or ordered by size.

Theorem (Elsholtz-Tao [2013+])
(i) $N \log ^{2} N \ll \sum_{q \leq N} f(q) \ll N \log ^{2} N \log \log N$ where q ranges over primes.
(ii) For infinitely many n, one has

$$
f(n) \geq \exp \left((\log 3+o(1)) \frac{\log n}{\log \log n}\right)
$$

Vaughan has shown that the number of $n \leq x$ for which the Erdos - Straus conjecture fails is $O\left(x \exp \left(-c(\log x)^{\frac{3}{5}}\right)\right)$.

Sierpiński's Conjecture
For all $n \geq 5$, we can always express

$$
\frac{5}{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}
$$

with $0<x_{1}<x_{2}<x_{3}$.

Sierpiński's Conjecture

For all $n \geq 5$, we can always express

$$
\begin{aligned}
& \frac{5}{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}} \\
& \text { with } 0<x_{1}<x_{2}<x_{3} .
\end{aligned}
$$

This is known to be true for $5 \leq n \leq 1057438801$.

Sierpiński's Conjecture

For all $n \geq 5$, we can always express

$$
\frac{5}{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}
$$

with $0<x_{1}<x_{2}<x_{3}$.
This is known to be true for $5 \leq n \leq 1057438801$.
Schinzel's Conjecture
We can always express

$$
\begin{gathered}
\frac{a}{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}} \\
\text { with } 0<x_{1}<x_{2}<x_{3}, \text { provided } n \geq n_{0}(a) .
\end{gathered}
$$

Suppose

$$
1=\sum_{k=1}^{n} \frac{1}{x_{k}} \text { where } 1<x_{1}<x_{2}<\ldots<x_{n} .
$$

Erdös conjectured that we must always have $\frac{x_{n}}{x_{1}} \geq 3$ with the extreme case being $1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$.

Suppose

$$
1=\sum_{k=1}^{n} \frac{1}{x_{k}} \text { where } 1<x_{1}<x_{2}<\ldots<x_{n} .
$$

Erdös conjectured that we must always have $\frac{x_{n}}{x_{1}} \geq 3$ with the extreme case being $1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$.
Note that since $H(n)=\sum_{k=1}^{n} \frac{1}{k} \sim \log n$ then we must have

$$
\frac{x_{n}}{x_{1}} \geq e+o(1) \text { as } x_{1} \rightarrow \infty \text {. }
$$

Suppose

$$
1=\sum_{k=1}^{n} \frac{1}{x_{k}} \text { where } 1<x_{1}<x_{2}<\ldots<x_{n} .
$$

Erdös conjectured that we must always have $\frac{x_{n}}{x_{1}} \geq 3$ with the extreme case being $1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$.
Note that since $H(n)=\sum_{k=1}^{n} \frac{1}{k} \sim \log n$ then we must have

$$
\frac{x_{n}}{x_{1}} \geq e+o(1) \text { as } x_{1} \rightarrow \infty \text {. }
$$

In fact, he suggested that in this case it may be that $\frac{x_{n}}{x_{1}} \rightarrow \infty$.

Suppose

$$
1=\sum_{k=1}^{n} \frac{1}{x_{k}} \text { where } 1<x_{1}<x_{2}<\ldots<x_{n} .
$$

Erdös conjectured that we must always have $\frac{x_{n}}{x_{1}} \geq 3$ with the extreme case being $1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$.
Note that since $H(n)=\sum_{k=1}^{n} \frac{1}{k} \sim \log n$ then we must have

$$
\frac{x_{n}}{x_{1}} \geq e+o(1) \text { as } x_{1} \rightarrow \infty \text {. }
$$

In fact, he suggested that in this case it may be that $\frac{x_{n}}{x_{1}} \rightarrow \infty$. However, it turns out that this is not the case!

Dense unit fractions
Theorem: (Martin, Croot)
Suppose that $r>0$ is a given rational number.
Then for all $N>1$, there exist integers $x_{1}, x_{2}, \ldots, x_{n}$ with

$$
N<x_{1}<x_{2}<\ldots<x_{n} \leq\left(e^{r}+O_{r}\left(\frac{\log \log N}{\log N}\right)\right) N
$$

such that

$$
r=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}} .
$$

Moreover, the error term $O_{r}\left(\frac{\log \log N}{\log N}\right)$ is best possible.

Ramsey properties of Egyptian fractions

Ramsey properties of Egyptian fractions
Graham and y paned some yeas ans the following question: Color the integer lo k colors. Fit the

$$
\text { that } \sum_{i} \frac{1}{x_{i}}=1, x_{1}<x_{2}<\cdots
$$

is monochromatically solvable? The sum (1) is of rouse repponed to lo finite, but the number of summand can be as large as MY pleare.

Let $f(\mathrm{~m})$ be the largest integer for which then is a sequence $x_{1}<x_{2}<\ldots, x_{1} \leqslant m, t=f(n)$ which does not untain a solution of (1). Trivially

$$
f(m)>m\left(1-\frac{1}{l}-E\right)
$$

but perhaps $f(n)=m+\sigma(n)$. We weld not get mon trivial upper or locorer bounds for \& (n).

Ramsey properties of Egyptian fractions

\$500 Conjecture (Erdos - RLG)

For any r-coloring of $\{2,3,4, \ldots$,$\} , there is a$ monochromatic solution to

$$
1=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}} .
$$

with $1<x_{1}<x_{2}<\ldots<x_{n}$.

Ramsey properties of Egyptian fractions

\$500 Theorem (Croot)

For any r-coloring of $\{2,3,4, \ldots$,$\} , there is a$ monochromatic solution to

$$
1=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}} .
$$

with $1<x_{1}<x_{2}<\ldots<x_{n}$.
(Graham) Legren $a_{1}<\cdots, a_{t+1} a_{i}<C$, gana e hogy $1=\sum \frac{1}{a_{i r}}$ megucthatis Ugyuner kindecheto' havak ant temül fel, horoy $\lim a_{k / k}<\infty$.
(3III 291 grakum, Straun) Iot hindes námel felborthatingásoit pl ha $n>m_{0}$ és a namplat n-ig krinx ontgul Lironsisa $\sum x_{1}=n$ an eggie rinben megoldhati, (forhatir $m \cdot x^{?}$). Ye let revere ontyul ahlor $m=x+y$, ragg $m=x+y+z$ is már megoldhatio len. Ha a net nomsuat let nerne ontall whkor mindos. rat nam cliallithuti mint eas mentibliol suspe huilimbl. nám onese-ugraner igar len l vious s a valis nimelsa iside

(Gyraman Legren $a_{1}<\cdots, a_{i+1} a_{i}<C$, Jyan e horg $1=\sum \frac{1}{a_{i, p}}$ megoldhati? Ugguner kinderheti" havxu' ant temül fel, hory $\lim a_{k / l}<\infty$.
$\rightarrow 13$ III 291 grakum, Straus Iot hinde's nainol felborthatinagaroit pl ha $n>m_{0}$ és a namplat n-ig krinx ontgul Lironsisa $\sum x_{1}=n$ an eggie vinlen megoldhati, (fo hatir $m \cdot n^{2}$), Ye let revere ontyul ahlor $m=x+y$, ragg $m=x+y+z$ is már megoldhatio len. Ha a net nomsuat let nerne ontall whkor mindos. rat nam cliallithuti mint regs ontalgliol sxup hiclombl. nám onese-ugraner igar len l vious s a valis nimelsa iside so remo nen igace a valia námolva (lefalibte is he $C=s_{1}$)
(Graham) Legren $a_{1}<\cdots, a_{t+1} a_{i}<C$, gana e hogy $1=\sum \frac{1}{a_{i r}}$ megucthatis Ugyuner kindecheto' havak ant temül fel, horoy $\lim a_{k / k}<\infty$.
(3III 291 grakum, Straun) Iot hindes námel felborthatingásoit pl ha $n>m_{0}$ és a namplat n-ig krinx ontgul Lironsisa $\sum x_{1}=n$ an eggie rinben megoldhati, (forhatir $m \cdot x^{?}$). Ye let revere ontyul ahlor $m=x+y$, ragg $m=x+y+z$ is már megoldhatio len. Ha a net nomsuat let nerne ontall whkor mindos. rat nam cliallithuti mint eas mentibliol suspe huilimbl. nám onese-ugraner igar len l vious s a valis nimelsa iside

Is the stronger density version true?

Conjecture: Suppose $X \subseteq \mathbb{N}$ has positive upper density,
i.e., $\limsup _{n \rightarrow \infty} \frac{|X \cap[1, n]|}{n}>0$.

Is the stronger density version true?

Conjecture: Suppose $X \subseteq \mathbb{N}$ has positive upper density,
i.e., $\limsup _{n \rightarrow \infty} \frac{|X \cap[1, n]|}{n}>0$.

Then there exist $x_{1}<x_{2}<\ldots<x_{k}$ in X with $1=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{k}}$.

Is the stronger density version true?

Conjecture: Suppose $X \subseteq \mathbb{N}$ has positive upper density,

$$
\text { i.e., } \limsup _{n \rightarrow \infty} \frac{|X \cap[1, n]|}{n}>0 \text {. }
$$

Then there exist $x_{1}<x_{2}<\ldots<x_{k}$ in X

$$
\text { with } 1=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{k}} \text {. }
$$

Perhaps this can be proved under the stronger hypothesis that $x_{i+1}-x_{i}$ is bounded.

Is the stronger density version true?

Conjecture: Suppose $X \subseteq \mathbb{N}$ has positive upper density,
i.e., $\limsup _{n \rightarrow \infty} \frac{|X \cap[1, n]|}{n}>0$.

Then there exist $x_{1}<x_{2}<\ldots<x_{k}$ in X with $1=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{k}}$.

Perhaps this can be proved under the stronger hypothesis that $x_{i+1}-x_{i}$ is bounded.

For example, suppose you assume that $x_{i+1}-x_{i} \leq 2$.

A related result of Brown and Rödl

In any r-coloring of \mathbb{N} there is always a monochromatic solution to the equation

$$
\frac{1}{x}=\frac{1}{y}+\frac{1}{z}
$$

A related result of Brown and Rödl

In any r-coloring of \mathbb{N} there is always a monochromatic solution to the equation

$$
\frac{1}{x}=\frac{1}{y}+\frac{1}{z}
$$

More generally, if the system $\sum_{k=1}^{n} a_{i, k} x_{k}=0,1 \leq i \leq r$, is partition regular, then the system $\sum_{k=1}^{n} a_{i, k} x_{k}^{-1}=0,1 \leq i \leq r$, is also partition regular.

Conjecture

In any r-coloring of \mathbb{N} there is always a monochromatic solution to the equation

$$
x^{2}+y^{2}=z^{2}
$$

$\$ 250$ Conjecture

In any r-coloring of \mathbb{N} there is always a monochromatic solution to the equation

$$
x^{2}+y^{2}=z^{2}
$$

\$250 Conjecture

In any r-coloring of \mathbb{N} there is always a monochromatic solution to the equation

$$
x^{2}+y^{2}=z^{2}
$$

Warm-up: Prove this for $r=2$.

Greedy decompositions in odd unit fractions

It is known that every positive rational $\frac{a}{2 b+1}$ with an odd denominator can be expressed as

$$
\frac{a}{2 b+1}=\frac{1}{2 x_{1}+1}+\frac{1}{2 x_{2}+1}+\ldots+\frac{1}{2 x_{n}+1}
$$

with $1<x_{1}<x_{2}<\ldots<x_{n}$.

Greedy decompositions in odd unit fractions

It is known that every positive rational $\frac{a}{2 b+1}$ with an odd denominator can be expressed as

$$
\begin{aligned}
& \quad \frac{a}{2 b+1}=\frac{1}{2 x_{1}+1}+\frac{1}{2 x_{2}+1}+\ldots+\frac{1}{2 x_{n}+1} \\
& \text { with } 1<x_{1}<x_{2}<\ldots<x_{n} .
\end{aligned}
$$

Can this always be accomplished using the odd greedy algorithm?

Greedy decompositions in odd unit fractions

It is known that every positive rational $\frac{a}{2 b+1}$ with an odd denominator can be expressed as

$$
\begin{aligned}
& \quad \frac{a}{2 b+1}=\frac{1}{2 x_{1}+1}+\frac{1}{2 x_{2}+1}+\ldots+\frac{1}{2 x_{n}+1} \\
& \text { with } 1<x_{1}<x_{2}<\ldots<x_{n} .
\end{aligned}
$$

Can this always be accomplished using the odd greedy algorithm?

For example, suppose our starting fraction is $\frac{5}{1444613}$.

Greedy decompositions in odd unit fractions

It is known that every positive rational $\frac{a}{2 b+1}$ with an odd denominator can be expressed as

$$
\begin{aligned}
& \quad \frac{a}{2 b+1}=\frac{1}{2 x_{1}+1}+\frac{1}{2 x_{2}+1}+\ldots+\frac{1}{2 x_{n}+1} \\
& \text { with } 1<x_{1}<x_{2}<\ldots<x_{n} .
\end{aligned}
$$

Can this always be accomplished using the odd greedy algorithm?

For example, suppose our starting fraction is $\frac{5}{1444613}$.

For this fraction, the odd greedy algorithm terminates in 37 steps.

Greedy decompositions in odd unit fractions

It is known that every positive rational $\frac{a}{2 b+1}$ with an odd denominator can be expressed as

$$
\begin{aligned}
& \quad \frac{a}{2 b+1}=\frac{1}{2 x_{1}+1}+\frac{1}{2 x_{2}+1}+\ldots+\frac{1}{2 x_{n}+1} \\
& \text { with } 1<x_{1}<x_{2}<\ldots<x_{n} .
\end{aligned}
$$

Can this always be accomplished using the odd greedy algorithm?

For example, suppose our starting fraction is $\frac{5}{1444613}$.

For this fraction, the odd greedy algorithm terminates in 37 steps.
The last denominator has $384,122,451,172$ decimal digits !

Greedy decompositions in odd unit fractions

It is known that every positive rational $\frac{a}{2 b+1}$ with an odd denominator can be expressed as

$$
\frac{a}{2 b+1}=\frac{1}{2 x_{1}+1}+\frac{1}{2 x_{2}+1}+\ldots+\frac{1}{2 x_{n}+1}
$$

with $1<x_{1}<x_{2}<\ldots<x_{n}$.
Can this always be accomplished using the odd greedy algorithm ?
For example, suppose our starting fraction is $\frac{5}{1444613}$.
For this fraction, the odd greedy algorithm terminates in 37 steps.
The last denominator has 384,122,451,172 decimal digits !
Conjecture (\$1000) The odd greedy algorithm always terminates.

Similar questions can be asked for more restricted unit fractions.

Theorem (RLG)

A rational $\frac{p}{q}$ can be written as the finite sum of reciprocals of distinct perfect squares if and only if:

$$
\frac{p}{q} \in\left[0, \frac{\pi^{2}}{6}-1\right) \cup\left[1, \frac{\pi^{2}}{6}\right)
$$

Similar questions can be asked for more restricted unit fractions.

Theorem (RLG)

A rational $\frac{p}{q}$ can be written as the finite sum of reciprocals of distinct perfect squares if and only if:

$$
\frac{p}{q} \in\left[0, \frac{\pi^{2}}{6}-1\right) \cup\left[1, \frac{\pi^{2}}{6}\right)
$$

For example,

$$
\frac{1}{2}=\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{36^{2}}+\frac{1}{60^{2}}+\frac{1}{180^{2}}
$$

Similar questions can be asked for more restricted unit fractions.

Theorem (RLG)

A rational $\frac{p}{q}$ can be written as the finite sum of reciprocals of distinct perfect squares if and only if:

$$
\frac{p}{q} \in\left[0, \frac{\pi^{2}}{6}-1\right) \cup\left[1, \frac{\pi^{2}}{6}\right)
$$

For example,

$$
\frac{1}{2}=\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{36^{2}}+\frac{1}{60^{2}}+\frac{1}{180^{2}}
$$

Challenge:
Show that the greedy algorithm does not always terminate in this case.

Similar questions can be asked for more restricted unit fractions.

Theorem (RLG)

A rational $\frac{p}{q}$ can be written as the finite sum of reciprocals of distinct perfect squares if and only if:

$$
\frac{p}{q} \in\left[0, \frac{\pi^{2}}{6}-1\right) \cup\left[1, \frac{\pi^{2}}{6}\right)
$$

For example,

$$
\frac{1}{2}=\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{36^{2}}+\frac{1}{60^{2}}+\frac{1}{180^{2}}
$$

Challenge: $\$ 25$
Show that the greedy algorithm does not always terminate in this case.

A classic conjecture of Erdös

If $X \subset \mathbb{N}$ with $\sum_{x \in X} \frac{1}{x}=\infty$ then X contains k-AP's for every k.
$\$ 3000$

A classic conjecture of Erdös

If $X \subset \mathbb{N}$ with $\sum_{x \in X} \frac{1}{x}=\infty$ then X contains k-AP's for every k.
$\$ 3000$ $\$ 3000$

A classic conjecture of Erdös

If $X \subset \mathbb{N}$ with $\sum_{x \in X} \frac{1}{x}=\infty$ then X contains k-AP's for every k.
$\$ 3000$

Warm-up problem. Prove this holds for $k=3$.
(Two-dimensional analogue-RLG).

If $X \subset \mathbb{N} \times \mathbb{N}$ with $\sum_{(x, y) \in X} \frac{1}{x^{2}+y^{2}}=\infty$ then X contains 4 vertices of a square.

A classic conjecture of Erdös

If $X \subset \mathbb{N}$ with $\sum_{x \in X} \frac{1}{x}=\infty$ then X contains k-AP's for every k.
$\$ 3000$

Warm-up problem. Prove this holds for $k=3$.
(Two-dimensional analogue-RLG).

If $X \subset \mathbb{N} \times \mathbb{N}$ with $\sum_{(x, y) \in X} \frac{1}{x^{2}+y^{2}}=\infty$ then X contains 4 vertices of a square.

A classic conjecture of Erdös

If $X \subset \mathbb{N}$ with $\sum_{x \in X} \frac{1}{x}=\infty$ then X contains k-AP's for every k.
$\$ 3000$

Warm-up problem. Prove this holds for $k=3$.
(Two-dimensional analogue - RLG).

If $X \subset \mathbb{N} \times \mathbb{N}$ with $\sum_{(x, y) \in X} \frac{1}{x^{2}+y^{2}}=\infty$ then X contains 4 vertices of a square. \$1000

