On the L_{∞}-norm of the L_{2}-spline projector

Budapest, July 2, 2013

Manfred v. Golitschek
Universität Würzburg, Germany

§1. Introduction

Many important linear operators $\mathbf{P}: X \rightarrow U$ of a linear space X of functions onto a linear subspace U of X are defined by the minimum problem

$$
\|f-\mathbf{P} f\|=\min \{\|f-u\|: u \in U\}, \quad f \in X,
$$

where the semi-norm $\|\cdot\|=\sqrt{\langle\cdot, \cdot\rangle}$ on X is induced by some semi-definite inner product $\langle\cdot, \cdot\rangle$.
Such operators \mathbf{P} are linear projectors,
i.e. they satisfy $\mathbf{P} u=u$, for all $u \in U$.

In my talk, $X=C[a, b]$ and $\|\cdot\|_{\infty}$ is the uniform norm on $[a, b]$. I am interested in the L_{∞}-norm of the projectors \mathbf{P},

$$
\|\mathbf{P}\|_{\infty}:=\sup \left\{\|\mathbf{P} f\|_{\infty}: f \in C[a, b], \quad\|f\|_{\infty}=1\right\} .
$$

The Lebesgue function $\Lambda_{\mathbf{P}} \in C[a, b]$,

$$
\Lambda_{\mathbf{P}}(x):=\sup \left\{|\mathbf{P} f(x)|: \quad f \in C[a, b],\|f\|_{\infty}=1\right\}, x \in[a, b],
$$

will play an essential role. It provides the local error estimate

$$
|f(x)-\mathbf{P} f(x)| \leq\left(1+\Lambda_{\mathbf{P}}(x)\right) \operatorname{dist}(f, U)_{\infty}
$$

for all $f \in C[a, b]$ and all $x \in[a, b]$.
Moreover,

$$
\|\mathbf{P}\|_{\infty}=\max _{x \in[a, b]} \Lambda_{\mathbf{P}}(x)
$$

and

$$
\|f-\mathbf{P} f\|_{\infty} \leq\left(1+\|\mathbf{P}\|_{\infty}\right) \operatorname{dist}(f, U)_{\infty},
$$

§2. Examples

Example 1.

Let $[a, b]=[-\pi, \pi], X=\{f \in C[-\pi, \pi], f(-\pi)=f(\pi)\}$,

$$
\langle f, g\rangle:=\int_{-\pi}^{\pi} f(t) g(t) d t, \quad f, g \in X
$$

Let $U=\mathcal{T}_{n}$ be the trigonometric polynomials of degree $\leq n$, $\mathbf{P} f=\mathbf{s}_{n}(f)$ is the n-th partial sum of the Fourier series of f. The Lebesgue function is the constant function

$$
\Lambda_{\mathbf{s}_{n}}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\frac{\sin ((n+1 / 2) t)}{\sin (t / 2)}\right| d t, \quad \text { for all } x \in[-\pi, \pi],
$$

and one has (L. Fejér)

$$
\left\|\mathbf{s}_{n}\right\|_{\infty}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\frac{\sin ((n+1 / 2) t)}{\sin (t / 2)}\right| d t=\frac{4}{\pi^{2}} \log (n+1)+O(1) .
$$

Example 2.

Let $[a, b]=[-1,1]$ and $X=C[-1,1]$.
Let $n \in \mathbb{N}, U=\Pi_{n}$ be the algebraic polynomials of degree $\leq n$.
For fixed $n+1$ points $\Delta:-1 \leq t_{0}<t_{1}<\ldots<t_{n} \leq 1$,
let $\langle\cdot, \cdot\rangle$ be defined by $\langle f, g\rangle:=\sum_{j=0}^{n} f\left(t_{j}\right) g\left(t_{j}\right)$.
The corresponding linear projector $\mathbf{P}: C[-1,1] \rightarrow \Pi_{n}$ is the Lagrange interpolation operator. Its Lebesgue function

$$
\Lambda_{\mathbf{P}}(x)=\sum_{j=0}^{n}\left|\prod_{k=0, k \neq j} \frac{x-t_{k}}{t_{j}-t_{k}}\right|, \quad x \in[-1,1],
$$

has been studied for various point sets Δ by many authors. Paul Erdös has contributed essentially to this important topic, partly in cooperation with his Hungarian colleagues Paul Turan, Jozsef Szabados, Peter Vertesi, Andras Kroo.

Example 3.

Let $X=C[a, b]$,
$\langle f, g\rangle=\int_{a}^{b} f(t) g(t) d t, \quad\|f\|_{2}: \sqrt{\langle f, f\rangle}, \quad f, g \in X$.
Let $m \in \mathbb{N}$ and

$$
\Delta: a=t_{0}<t_{1}<\cdots<t_{n}=b
$$

be fixed. Let

$$
\mathcal{S}_{m}(\Delta):=\left\{S \in C^{m-1}[a, b]: \quad S_{\mid\left[t_{i}, t_{i+1}\right]} \in \Pi_{m}, \quad 0 \leq i \leq n-1\right\} .
$$

The L_{2}-spline projector $\mathbf{P}=\mathbf{P}_{m}(\Delta): C[a, b] \rightarrow \mathcal{S}_{m}(\Delta)$ is defined by

$$
\|f-\mathbf{P} f\|_{2}=\min \left\{\|f-S\|_{2}: S \in \mathcal{S}_{m}(\Delta)\right\}, \quad f \in C[a, b] .
$$

We want to study the Lebesgue function $\Lambda_{\mathbf{P}}$ and thus bounds for the L_{∞}-norm Moreover,

$$
\|\mathbf{P}\|_{\infty}=\max _{x \in[a, b]} \Lambda_{\mathbf{P}}(x)
$$

of the L_{2}-spline projector $\mathbf{P}=\mathbf{P}_{m}(\Delta)$.
It is obvious that $\left\|\mathbf{P}_{1}(\Delta)\right\|_{\infty} \leq K_{1}$ for some constant K_{1} independent of Δ.
Carl de Boor proved in 1968 that $\left\|\mathbf{P}_{2}(\Delta)\right\|_{\infty} \leq K_{2}$ for some constant K_{2} independent of Δ and formulated his famous conjecture in 1973 that

$$
\begin{equation*}
\left\|\mathbf{P}_{m}(\Delta)\right\|_{\infty} \leq K_{m} \tag{1}
\end{equation*}
$$

holds for all m where the constant K_{m} depend only on m. He proved his conjecture for $m=3$ in 1979 .

Finally, in 2001, S. Shadrin proved de Boor's conjecture for all $m \in \mathbb{N}$,

A. Shadrin

"The L_{∞}-norm of the L_{2}-spline projector $\mathbf{P}_{m}(\Delta)$
is bounded independently of the knot sequence:
a proof of de Boor's conjecture",
Acta Math. 187 (2001), pp. 59-137.

§3. An alternative proof of Shadrin's theorem

My new proof consists of two steps : $\mathbf{P}=\mathbf{P}_{m}(\Delta)$.

1. Prove that the Lebesgue function $\Lambda_{\mathbf{P}}$ is bounded at the endpoint a by a constant C_{m} depending only on m.
2. Prove that there exists C_{m}^{*} depending only on m such that

$$
\max _{x \in[a, b]} \Lambda_{\mathbf{P}}(x) \leq C_{m}^{*} \Lambda_{\mathbf{P}}(a)
$$

so that $\|\mathbf{P}\|_{\infty} \leq C_{m}^{*} C_{m}$
It is not difficult to derive Step 2.
I will focuss on the proof in Step 1, which was much harder to find, but is easier to explain.
Let $\mathcal{B}=\left\{N_{k}\right\}_{k=1}^{n+m}$ be the B-spline basis of $\mathcal{S}_{m}(\Delta)$ for the extended knot sequence

$$
\Delta_{e}: t_{-m}=\cdots=t_{0}<t_{1}<\cdots<t_{n}=\cdots=t_{n+m} .
$$

The L_{1}-normalized basis $\left\{M_{k}\right\}_{k=1}^{n+m}$ of $\mathcal{S}_{m}(\Delta)$ is defined by

$$
M_{k}:=\frac{(m+1) N_{k}}{t_{k}-t_{k-m-1}}, \quad k=1, \ldots, n+m .
$$

They have the properties (de Boor, 1976)

$$
\begin{aligned}
& \operatorname{supp}\left(N_{k}\right)=\operatorname{supp}\left(M_{k}\right)=\left[t_{k-m-1}, t_{k}\right] \\
& N_{k} \geq 0, \quad M_{k} \geq 0 \\
& \sum_{k=1}^{n+m} N_{k}=1, \quad \int_{a}^{b} M_{k}(t) d t=1
\end{aligned}
$$

In Shadrin's proof, a spline $\phi \in \mathcal{S}_{m}(\Delta)$ plays the main role. It has the following properties :

Theorem Φ (Shadrin [2001]). There exist positive numbers $c_{\text {min }}$ and $c_{\text {max }}$ depending only on m such that

$$
\begin{align*}
& \phi(a)=m! \\
& \operatorname{sign}\left(\left\langle\phi, M_{j}\right\rangle\right)=(-1)^{j+1}, \quad j=1,2, \ldots, n+m \tag{1}\\
& \left|\left\langle\phi, M_{j}\right\rangle\right| \geq c_{\min }, \quad j=1,2, \ldots, n+m \tag{2}\\
& \|\phi\|_{\infty} \leq c_{\max } \tag{3}
\end{align*}
$$

The proof of $(A 1)$ and $(A 2)$ is short and not difficult, while the proof of (A3) is very difficult. Fortunately, I need only $\left(A_{1}\right)$ and $\left(A_{2}\right)$ in my proof of de Boor's conjecture.

Proof of Step 1.

Definition 3.1. We define the spline $Q_{a} \in \mathcal{S}_{m}(\Delta)$ by

$$
v(a)=\left\langle v, Q_{a}\right\rangle, \quad \text { for all } v \in \mathcal{S}_{m}(\Delta)
$$

The importance of Q_{a} follows from
Lemma 3.2. For $\mathbf{P}=\mathbf{P}_{m}(\Delta)$,

$$
\begin{equation*}
\Lambda_{\mathbf{P}}(a)=\left\|Q_{a}\right\|_{1} \tag{3.1}
\end{equation*}
$$

Proof: Recall that

$$
\Lambda_{\mathbf{P}}(a):=\sup \left\{|\mathbf{P} f(a)|: \quad f \in C[a, b], \quad\|f\|_{\infty}=1\right\} .
$$

Let $f \in C[a, b],\|f\|_{\infty}=1$.
Definition 3.1 and the orthogonality relations imply

$$
\mathbf{P} f(a)=\left\langle\mathbf{P} f, Q_{a}\right\rangle=\left\langle f, Q_{a}\right\rangle .
$$

Taking the supremum for $f \in C[a, b],\|f\|_{\infty}=1$, we obtain (3.1) for $f=\operatorname{sign}\left(Q_{a}\right)$.
Lemma 3.3. Let

$$
Q_{a}=\sum_{k=1}^{n+m} c_{k} M_{k}
$$

then

$$
c_{k+1} c_{k}<0, \quad k=1, \ldots, n+m-1
$$

Now we complete the proof of Step 1 as follows :
Using Definition 3.1 for $v=\phi$, Lemma 3.3, $\left(A_{1}\right)$ and $\left(A_{2}\right)$, we obtain

$$
\begin{aligned}
m! & =\phi(a)=\left\langle\phi, Q_{a}\right\rangle=\sum_{k=1}^{n+m} c_{k}\left\langle\phi, M_{k}\right\rangle \\
& =\sum_{k=1}^{n+m}\left|c_{k}\right|\left|\left\langle\phi, M_{k}\right\rangle\right| \geq c_{\min } \sum_{k=1}^{n+m}\left|c_{k}\right|
\end{aligned}
$$

so that

$$
\left\|Q_{a}\right\|_{1}=\left\|\sum_{k=1}^{n+m} c_{k} M_{k}\right\|_{1} \leq \sum_{k=1}^{n+m}\left|c_{k}\right| \leq \frac{m!}{c_{m i n}}=: C_{m}
$$

and thus by Lemma 3.2, $\Lambda_{\mathbf{P}}(a)=\left\|Q_{a}\right\|_{1} \leq C_{m}$

§4. Local lower bounds

Recall that for $\Delta: a=t_{0}<t_{1}<\cdots<t_{n}=b$
and the L_{2}-spline projector $\mathbf{P}:=\mathbf{P}_{m}(\Delta): C[a, b] \rightarrow \mathcal{S}_{m}(\Delta)$,
the Lebesgue function $\Lambda_{\mathbf{P}} \in C[a, b]$ is defined by

$$
\Lambda_{\mathbf{P}}(x):=\sup \left\{|\mathbf{P} f(x)|: \quad f \in C[a, b], \quad\|f\|_{\infty}=1\right\}, x \in[a, b] .
$$

It satisfies (by Shadrin's theorem)

$$
\|\mathbf{P}\|_{\infty}=\max _{x \in[a, b]} \Lambda_{\mathbf{P}}(x) \leq K_{m}
$$

for some constant K_{m} depending only on m.
Shadrin [2001] and later also his student Simon Foucart [JAT 140, 2006] proved that at the endpoint a

$$
\sup _{\Delta} \Lambda_{\mathbf{P}_{m}(\Delta)}(a) \geq 2 m+1
$$

which implies that $K_{m} \geq 2 m+1$.
Shadrin [2001] conjectures that even

$$
K_{m}=\sup _{\Delta} \Lambda_{\mathbf{P}_{m}(\Delta)}(a)=2 m+1
$$

is true.
Recently I obtained further results which seem to support Shadrin's conjecture :
Definition. Let $1 \leq \rho<\infty$. We say that a knot sequence Δ : $a=t_{0}<t_{1}<\cdots<t_{n}=b$ belongs to the set $\Omega_{\rho, n}$ of knot sequences if

$$
\min _{0 \leq i \leq n-2} \frac{t_{i+2}-t_{i+1}}{t_{i+1}-t_{i}}=\rho .
$$

Lemma 4.1. There exists a constant $\gamma_{m}>0$ depending only on m with the following property: If $\Delta \in \Omega_{\rho, n}$, then

$$
\left|\Lambda_{\mathbf{P}_{m}(\Delta)}(a)-2 m-1\right| \leq \gamma_{m}\left(\frac{n}{\rho}+\left(\frac{m}{m+1}\right)^{n}\right)
$$

Corollary 4.2. Let $\left(\rho_{n}\right)_{n=1}^{\infty}$ satisfy

$$
\lim _{n \rightarrow \infty} \frac{n}{\rho_{n}}=0
$$

Let $\left(\Delta_{n}\right)_{n=1}^{\infty}$ satisfy $\Delta_{n} \in \Omega_{\rho_{n}, n}$ for all $n \in \mathbb{N}$, then

$$
\lim _{n \rightarrow \infty} \Lambda_{\mathbf{P}_{m}\left(\Delta_{n}\right)}(a)=2 m+1
$$

See also K. Höllig [JAT, 1981] for "geometric knot sequences" Δ_{n}.

I conclude my talk with the following
Theorem 4.3. For any $x \in[a, b]$, there exists a sequence $\left(\Delta_{n}\right)_{n=1}^{\infty}$ (depending on x) such that

$$
\lim _{n \rightarrow \infty} \Lambda_{\mathbf{P}_{m}\left(\Delta_{n}\right)}(x)=2 m+1
$$

