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Introduction

Theorem (van der Waerden 1927)

Any finite coloring of N has arbitrarily long monochromatic

arithmetic progressions.

Conjecture (Erdős-Turán 1936)

Any A ⊂ [N] with no k-term AP has |A| = ok(N).

Conjecture

The primes contain arbitrarily long arithmetic progressions.
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Green-Tao theorem

Theorem (Green-Tao 2008)

The primes contain arbitrarily long arithmetic progressions.

Proof strategy:

Part 1: Prove a relative Szemerédi theorem.

Relative Szemerédi Theorem

If S ⊂ [N] satisfies certain conditions, then

any subset of S with no k-term AP has size o(|S |).

Part 2: Show that the primes form a relatively dense subset of a
set S that satisfies the desired conditions.
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Triangle removal lemma

Triangle removal lemma (Ruzsa-Szemerédi 1976)

Every graph on n vertices with o(n3) triangles can be made

triangle-free by removing o(n2) edges.



Application: Roth’s theorem

Theorem (Roth)

If A ⊂ [N] has no 3-term arithmetic progression, then |A| = o(N).

Proof: Let G be the tripartite graph on
V1 = [N], V2 = [2N], V3 = [3N] with:

i ∈ V1, j ∈ V2 adjacent if j − i ∈ A
j ∈ V2, k ∈ V3 adjacent if k − j ∈ A
i ∈ V1, k ∈ V3 adjacent if (k − i)/2 ∈ A

(i , j , k) ∈ V1 × V2 × V3 is a triangle in G if and only if

the elements of the 3-term AP j − i , (k − i)/2, k − j are in A.

|A|N trivial triangles (i , i + a, i + 2a) that are edge-disjoint.

Hence, |A| = o(N) or, by the triangle removal lemma, G has
Ω(N3) triangles and hence A contains a nontrivial 3-term AP.
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Hypergraph Removal Lemma

Removal Lemma (Gowers, Nagle-Rödl-Schacht-Skokan)

Let H be a k-uniform hypergraph on h vertices.

Every k-uniform hypergraph on n vertices with o(nh) copies of H

can be made H-free by removing o(nk) edges.

Remarks:

Implies Szemerédi’s theorem.

Solymosi showed it further implies the multidimensional

generalization of Furstenberg-Katznelson.
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Relative Hypergraph Removal Lemma

Relative Hypergraph Removal Lemma (Conlon-F.-Zhao)

Let H be a k-uniform hypergraph on h vertices and e edges and

Γ be a k-uniform hypergraph on n vertices with edge density p

that is H-pseudorandom.

Every subgraph of Γ with o(penh) copies of H can be made H-free

by removing o(pnk) edges.

H-pseudorandom means that Γ contains the right count of each
subgraph of the 2-blow-up of H.

Remark: In his proof that the Gaussian primes contain arbitrarily
shaped constellations, Tao proved a relative hypergraph removal
lemma with a stronger pseudorandomness condition.
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Weighted Framework

A hypergraph is a function ν :
(V
k

)
→ R≥0.

ν is a measure if E[ν] = 1.

f is majorized by ν if 0 ≤ f ≤ ν.

Example: The count of triangles when k = 2

The count of triangles in ν is

E[ν(x , y)ν(x , z)ν(y , z)].

We say that the count is correct if it is 1 + o(1).
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Transference Lemma

Definition: Discrepancy pair

We say that (f , g) forms an ε-discrepancy pair if, for all

h :
( V
k−1
)
→ [0, 1], we have∣∣∣E[(f (x)− g(x))

∏
y∈x ,|y |=k−1

h(y)
]∣∣∣ ≤ ε.

Transference lemma

If (ν, 1) is a o(1)-discrepancy pair and 0 ≤ f ≤ ν, then there is g

with 0 ≤ g ≤ 1 and (f , g) is a o(1)-discrepancy pair.
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Definition

ν is H-pseudorandom if it has the correct count of the 2-blow-up

of H and its subgraphs.

For example, if H = K3, then this means that

E
[ ∏
i ,j∈{0,1}

ν(xi , yj)ν(xi , zj)ν(yi , zj)
]

= 1 + o(1)

and the same holds if any of the twelve factors are deleted.

Counting Lemma (Conlon-F.-Zhao)

If ν is a H-pseudorandom measure, 0 ≤ f ≤ ν, 0 ≤ g ≤ 1, and

(f , g) is a o(1)-discrepancy pair,

then the count of H in f and the count of H in g differ by o(1).
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Weighted Arithmetic Framework

Let ν : ZN → R≥0.

ν is a measure if E[ν] = 1.

f is majorized by ν if 0 ≤ f ≤ ν.

Example: The count of 3APs

The count of 3-term arithmetic progressions in ν is

E[ν(x)ν(x + d)ν(x + 2d)].

We say the count is correct if it is 1 + o(1).
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Theorem (Conlon-F.-Zhao)
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ν is k-pseudorandom if it contains the correct count of certain
linear forms. For example, for k = 3, it says that

E
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]

= 1 + o(1),

and the same holds if any of the twelve factors are deleted.
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