A Relative Szemerédi theorem

David Conlon	Jacob Fox	Yufei Zhao
Oxford	MIT	MIT

Erdős Centennial

July 4, 2013

Introduction

Theorem (van der Waerden 1927)

Any finite coloring of \mathbb{N} has arbitrarily long monochromatic arithmetic progressions.

Introduction

Theorem (van der Waerden 1927)

Any finite coloring of \mathbb{N} has arbitrarily long monochromatic arithmetic progressions.

Conjecture (Erdős-Turán 1936)

Any $A \subset[N]$ with no k-term AP has $|A|=o_{k}(N)$.

Introduction

Theorem (van der Waerden 1927)

Any finite coloring of \mathbb{N} has arbitrarily long monochromatic arithmetic progressions.

Conjecture (Erdős-Turán 1936)
Any $A \subset[N]$ with no k-term AP has $|A|=o_{k}(N)$.

Conjecture

The primes contain arbitrarily long arithmetic progressions.

Introduction

Theorem (van der Waerden 1927)

Any finite coloring of \mathbb{N} has arbitrarily long monochromatic arithmetic progressions.

> Theorem (Szemerédi 1975)
> Any $A \subset[N]$ with no k-term AP has $|A|=o_{k}(N)$.

Conjecture

The primes contain arbitrarily long arithmetic progressions.

Introduction

Theorem (van der Waerden 1927)

Any finite coloring of \mathbb{N} has arbitrarily long monochromatic arithmetic progressions.

```
Theorem (Szemerédi 1975)
Any \(A \subset[N]\) with no \(k\)-term AP has \(|A|=o_{k}(N)\).
```


Theorem (Green-Tao 2008)

The primes contain arbitrarily long arithmetic progressions.

Green-Tao theorem

Theorem (Green-Tao 2008)
The primes contain arbitrarily long arithmetic progressions.

Proof strategy:

Green-Tao theorem

Theorem (Green-Tao 2008)
The primes contain arbitrarily long arithmetic progressions.

Proof strategy:
Part 1: Prove a relative Szemerédi theorem.

Green-Tao theorem

Theorem (Green-Tao 2008)

The primes contain arbitrarily long arithmetic progressions.

Proof strategy:
Part 1: Prove a relative Szemerédi theorem.

Relative Szemerédi Theorem

If $S \subset[N]$ satisfies certain conditions, then any subset of S with no k-term AP has size $o(|S|)$.

Green-Tao theorem

Theorem (Green-Tao 2008)

The primes contain arbitrarily long arithmetic progressions.

Proof strategy:
Part 1: Prove a relative Szemerédi theorem.

Relative Szemerédi Theorem

If $S \subset[N]$ satisfies certain conditions, then any subset of S with no k-term AP has size $o(|S|)$.

Part 2: Show that the primes form a relatively dense subset of a set S that satisfies the desired conditions.

Triangle removal lemma (Ruzsa-Szemerédi 1976)
Every graph on n vertices with $o\left(n^{3}\right)$ triangles can be made triangle-free by removing $o\left(n^{2}\right)$ edges.

Theorem (Roth)

If $A \subset[N]$ has no 3-term arithmetic progression, then $|A|=o(N)$.

Application: Roth's theorem

Theorem (Roth)

If $A \subset[N]$ has no 3-term arithmetic progression, then $|A|=o(N)$.
Proof: Let G be the tripartite graph on

Application: Roth's theorem

Theorem (Roth)

If $A \subset[N]$ has no 3-term arithmetic progression, then $|A|=o(N)$.
Proof: Let G be the tripartite graph on $V_{1}=[N], V_{2}=[2 N], V_{3}=[3 N]$ with:

Application: Roth's theorem

Theorem (Roth)

If $A \subset[N]$ has no 3-term arithmetic progression, then $|A|=o(N)$.
Proof: Let G be the tripartite graph on
$V_{1}=[N], V_{2}=[2 N], V_{3}=[3 N]$ with:
$i \in V_{1}, j \in V_{2}$ adjacent if $j-i \in A$
$j \in V_{2}, k \in V_{3}$ adjacent if $k-j \in A$
$i \in V_{1}, k \in V_{3}$ adjacent if $(k-i) / 2 \in A$

Application: Roth's theorem

Theorem (Roth)

If $A \subset[N]$ has no 3-term arithmetic progression, then $|A|=o(N)$.
Proof: Let G be the tripartite graph on
$V_{1}=[N], V_{2}=[2 N], V_{3}=[3 N]$ with:
$i \in V_{1}, j \in V_{2}$ adjacent if $j-i \in A$
$j \in V_{2}, k \in V_{3}$ adjacent if $k-j \in A$
$i \in V_{1}, k \in V_{3}$ adjacent if $(k-i) / 2 \in A$
$(i, j, k) \in V_{1} \times V_{2} \times V_{3}$ is a triangle in G if and only if the elements of the 3 -term AP $j-i,(k-i) / 2, k-j$ are in A.

Application: Roth's theorem

Theorem (Roth)

If $A \subset[N]$ has no 3-term arithmetic progression, then $|A|=o(N)$.
Proof: Let G be the tripartite graph on
$V_{1}=[N], V_{2}=[2 N], V_{3}=[3 N]$ with:
$i \in V_{1}, j \in V_{2}$ adjacent if $j-i \in A$
$j \in V_{2}, k \in V_{3}$ adjacent if $k-j \in A$
$i \in V_{1}, k \in V_{3}$ adjacent if $(k-i) / 2 \in A$
$(i, j, k) \in V_{1} \times V_{2} \times V_{3}$ is a triangle in G if and only if the elements of the 3 -term AP $j-i,(k-i) / 2, k-j$ are in A.
$|A| N$ trivial triangles $(i, i+a, i+2 a)$ that are edge-disjoint.

Application: Roth's theorem

Theorem (Roth)

If $A \subset[N]$ has no 3-term arithmetic progression, then $|A|=o(N)$.
Proof: Let G be the tripartite graph on $V_{1}=[N], V_{2}=[2 N], V_{3}=[3 N]$ with:
$i \in V_{1}, j \in V_{2}$ adjacent if $j-i \in A$
$j \in V_{2}, k \in V_{3}$ adjacent if $k-j \in A$
$i \in V_{1}, k \in V_{3}$ adjacent if $(k-i) / 2 \in A$
$(i, j, k) \in V_{1} \times V_{2} \times V_{3}$ is a triangle in G if and only if the elements of the 3 -term AP $j-i,(k-i) / 2, k-j$ are in A.
$|A| N$ trivial triangles $(i, i+a, i+2 a)$ that are edge-disjoint. Hence, $|A|=o(N)$ or, by the triangle removal lemma, G has $\Omega\left(N^{3}\right)$ triangles and hence A contains a nontrivial 3-term AP.

Removal Lemma (Gowers, Nagle-Rödl-Schacht-Skokan)

Let H be a k-uniform hypergraph on h vertices.
Every k-uniform hypergraph on n vertices with $o\left(n^{h}\right)$ copies of H can be made H-free by removing $o\left(n^{k}\right)$ edges.

Removal Lemma (Gowers, Nagle-Rödl-Schacht-Skokan)

Let H be a k-uniform hypergraph on h vertices.
Every k-uniform hypergraph on n vertices with $o\left(n^{h}\right)$ copies of H can be made H-free by removing $o\left(n^{k}\right)$ edges.

Remarks:

- Implies Szemerédi's theorem.

Removal Lemma (Gowers, Nagle-Rödl-Schacht-Skokan)

Let H be a k-uniform hypergraph on h vertices.
Every k-uniform hypergraph on n vertices with $o\left(n^{h}\right)$ copies of H can be made H-free by removing $o\left(n^{k}\right)$ edges.

Remarks:

- Implies Szemerédi's theorem.
- Solymosi showed it further implies the multidimensional generalization of Furstenberg-Katznelson.

Relative Hypergraph Removal Lemma

Relative Hypergraph Removal Lemma (Conlon-F.-Zhao)

Let H be a k-uniform hypergraph on h vertices and e edges and Γ be a k-uniform hypergraph on n vertices with edge density p that is H -pseudorandom.

Relative Hypergraph Removal Lemma

Relative Hypergraph Removal Lemma (Conlon-F.-Zhao)

Let H be a k-uniform hypergraph on h vertices and e edges and Γ be a k-uniform hypergraph on n vertices with edge density p that is H -pseudorandom.

Every subgraph of Γ with $o\left(p^{e} n^{h}\right)$ copies of H can be made H-free by removing $o\left(p n^{k}\right)$ edges.

Relative Hypergraph Removal Lemma

Relative Hypergraph Removal Lemma (Conlon-F.-Zhao)

Let H be a k-uniform hypergraph on h vertices and e edges and Γ be a k-uniform hypergraph on n vertices with edge density p that is H -pseudorandom.

Every subgraph of Γ with $o\left(p^{e} n^{h}\right)$ copies of H can be made H-free by removing $o\left(p n^{k}\right)$ edges.
H-pseudorandom means that Γ contains the right count of each subgraph of the 2-blow-up of H.

Relative Hypergraph Removal Lemma

Relative Hypergraph Removal Lemma (Conlon-F.-Zhao)

Let H be a k-uniform hypergraph on h vertices and e edges and Γ be a k-uniform hypergraph on n vertices with edge density p that is H -pseudorandom.

Every subgraph of Γ with $o\left(p^{e} n^{h}\right)$ copies of H can be made H-free by removing $o\left(p n^{k}\right)$ edges.
H-pseudorandom means that Γ contains the right count of each subgraph of the 2-blow-up of H.

Remark: In his proof that the Gaussian primes contain arbitrarily shaped constellations, Tao proved a relative hypergraph removal lemma with a stronger pseudorandomness condition.

Weighted Framework

A hypergraph is a function $\nu:\binom{V}{k} \rightarrow \mathbb{R}_{\geq 0}$.

Weighted Framework

A hypergraph is a function $\nu:\binom{V}{k} \rightarrow \mathbb{R}_{\geq 0}$.
ν is a measure if $\mathbb{E}[\nu]=1$.

Weighted Framework

A hypergraph is a function $\nu:\binom{V}{k} \rightarrow \mathbb{R}_{\geq 0}$.
ν is a measure if $\mathbb{E}[\nu]=1$.
f is majorized by ν if $0 \leq f \leq \nu$.

Weighted Framework

A hypergraph is a function $\nu:\binom{V}{k} \rightarrow \mathbb{R}_{\geq 0}$.
ν is a measure if $\mathbb{E}[\nu]=1$.
f is majorized by ν if $0 \leq f \leq \nu$.

Example: The count of triangles when $k=2$
The count of triangles in ν is

$$
\mathbb{E}[\nu(x, y) \nu(x, z) \nu(y, z)] .
$$

We say that the count is correct if it is $1+o(1)$.

Definition: Discrepancy pair

We say that (f, g) forms an ε-discrepancy pair if, for all $h:(\underset{k-1}{V}) \rightarrow[0,1]$, we have

$$
\left|\mathbb{E}\left[(f(x)-g(x)) \prod_{y \in x,|y|=k-1} h(y)\right]\right| \leq \varepsilon
$$

Transference Lemma

Definition: Discrepancy pair

We say that (f, g) forms an ε-discrepancy pair if, for all $h:\binom{V}{k-1} \rightarrow[0,1]$, we have

$$
\left|\mathbb{E}\left[(f(x)-g(x)) \prod_{y \in x,|y|=k-1} h(y)\right]\right| \leq \varepsilon .
$$

Transference lemma

If $(\nu, 1)$ is a $o(1)$-discrepancy pair and $0 \leq f \leq \nu$, then there is g with $0 \leq g \leq 1$ and (f, g) is a $o(1)$-discrepancy pair.

Counting Lemma

Definition
ν is H-pseudorandom if it has the correct count of the 2-blow-up of H and its subgraphs.

Counting Lemma

Definition

ν is H-pseudorandom if it has the correct count of the 2-blow-up of H and its subgraphs.

For example, if $H=K_{3}$, then this means that

$$
\mathbb{E}\left[\prod_{i, j \in\{0,1\}} \nu\left(x_{i}, y_{j}\right) \nu\left(x_{i}, z_{j}\right) \nu\left(y_{i}, z_{j}\right)\right]=1+o(1)
$$

Counting Lemma

Definition

ν is H-pseudorandom if it has the correct count of the 2-blow-up of H and its subgraphs.

For example, if $H=K_{3}$, then this means that

$$
\mathbb{E}\left[\prod_{i, j \in\{0,1\}} \nu\left(x_{i}, y_{j}\right) \nu\left(x_{i}, z_{j}\right) \nu\left(y_{i}, z_{j}\right)\right]=1+o(1)
$$

and the same holds if any of the twelve factors are deleted.

Counting Lemma

Definition

ν is H-pseudorandom if it has the correct count of the 2-blow-up of H and its subgraphs.

For example, if $H=K_{3}$, then this means that

$$
\mathbb{E}\left[\prod_{i, j \in\{0,1\}} \nu\left(x_{i}, y_{j}\right) \nu\left(x_{i}, z_{j}\right) \nu\left(y_{i}, z_{j}\right)\right]=1+o(1)
$$

and the same holds if any of the twelve factors are deleted.

Counting Lemma (Conlon-F.-Zhao)

If ν is a H-pseudorandom measure, $0 \leq f \leq \nu, 0 \leq g \leq 1$, and (f, g) is a o(1)-discrepancy pair, then the count of H in f and the count of H in g differ by $o(1)$.

Weighted Arithmetic Framework

Let $\nu: \mathbb{Z}_{N} \rightarrow \mathbb{R}_{\geq 0}$.

Weighted Arithmetic Framework

Let $\nu: \mathbb{Z}_{N} \rightarrow \mathbb{R}_{\geq 0}$.
ν is a measure if $\mathbb{E}[\nu]=1$.

Weighted Arithmetic Framework

Let $\nu: \mathbb{Z}_{N} \rightarrow \mathbb{R}_{\geq 0}$.
ν is a measure if $\mathbb{E}[\nu]=1$.
f is majorized by ν if $0 \leq f \leq \nu$.

Weighted Arithmetic Framework

Let $\nu: \mathbb{Z}_{N} \rightarrow \mathbb{R}_{\geq 0}$.
ν is a measure if $\mathbb{E}[\nu]=1$.
f is majorized by ν if $0 \leq f \leq \nu$.

Example: The count of 3APs

The count of 3-term arithmetic progressions in ν is

$$
\mathbb{E}[\nu(x) \nu(x+d) \nu(x+2 d)] .
$$

We say the count is correct if it is $1+o(1)$.

A relative Szemerédi theorem

Theorem (Conlon-F.-Zhao)

If ν is a k-pseudorandom measure, then any f with $0 \leq f \leq \nu$ and $\mathbb{E}[f(x) f(x+d) \cdots f(x+(k-1) d)]=o(1)$ satisfies $\mathbb{E}[f]=o(1)$.

A relative Szemerédi theorem

Theorem (Conlon-F.-Zhao)

If ν is a k-pseudorandom measure, then any f with $0 \leq f \leq \nu$ and $\mathbb{E}[f(x) f(x+d) \cdots f(x+(k-1) d)]=o(1)$ satisfies $\mathbb{E}[f]=o(1)$.
ν is k-pseudorandom if it contains the correct count of certain linear forms.

A relative Szemerédi theorem

Theorem (Conlon-F.-Zhao)

If ν is a k-pseudorandom measure, then any f with $0 \leq f \leq \nu$ and $\mathbb{E}[f(x) f(x+d) \cdots f(x+(k-1) d)]=o(1)$ satisfies $\mathbb{E}[f]=o(1)$.
ν is k-pseudorandom if it contains the correct count of certain linear forms. For example, for $k=3$, it says that

$$
\mathbb{E}\left[\prod_{i, j \in\{0,1\}} \nu\left(y_{i}+2 z_{j}\right) \nu\left(-x_{i}+z_{j}\right) \nu\left(-2 x_{i}-y_{j}\right)\right]=1+o(1),
$$

and the same holds if any of the twelve factors are deleted.

