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Green-Tao theorem

Theorem (Green-Tao 2008)

The primes contain arbitrarily long arithmetic progressions.

Proof strategy:

Part 1: Prove a relative Szemerédi theorem.

Relative Szemerédi Theorem

If S C [N] satisfies certain conditions, then
any subset of S with no k-term AP has size o(]S]).

Part 2: Show that the primes form a relatively dense subset of a
set S that satisfies the desired conditions.



Triangle removal lemma

Triangle removal lemma (Ruzsa-Szemerédi 1976)

Every graph on n vertices with o(n®) triangles can be made
triangle-free by removing o(n?) edges.
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Application: Roth’s theorem

Theorem (Roth)

If A C [N] has no 3-term arithmetic progression, then |A| = o(N).

Proof: Let G be the tripartite graph on

Vi= [N], Vo = [2N], V3 = [3N] with:

i€ Vi, je Vyadjacentif j—ic€ A

Jj€ Vo, ke Vsadjacentif k—j €A

i€ Vi,k € V3 adjacent if (k —i)/2€ A

(i,j, k) € Vi x Vo x V3 is a triangle in G if and only if

the elements of the 3-term AP j — i, (k —i)/2,k —j are in A.

|A|N trivial triangles (i, i+ a, i + 2a) that are edge-disjoint.

Hence, |A| = o(N) or, by the triangle removal lemma, G has
Q(N3) triangles and hence A contains a nontrivial 3-term AP.
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Removal Lemma (Gowers, Nagle-RodI-Schacht-Skokan)

Let H be a k-uniform hypergraph on h vertices.
Every k-uniform hypergraph on n vertices with o(n") copies of H
can be made H-free by removing o(n*) edges.

Remarks:
@ Implies Szemerédi's theorem.

@ Solymosi showed it further implies the multidimensional
generalization of Furstenberg-Katznelson.
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Relative Hypergraph Removal Lemma (Conlon-F.-Zhao)

Let H be a k-uniform hypergraph on h vertices and e edges and
I be a k-uniform hypergraph on n vertices with edge density p
that is H-pseudorandom.

Every subgraph of ' with o(p®n") copies of H can be made H-free
by removing o(pn*) edges.

v

H-pseudorandom means that I contains the right count of each
subgraph of the 2-blow-up of H.

Remark: In his proof that the Gaussian primes contain arbitrarily
shaped constellations, Tao proved a relative hypergraph removal
lemma with a stronger pseudorandomness condition.
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k) = Rxo
v is a measure if E[v] = 1.

f is majorized by v if 0 < f < v.

Example: The count of triangles when k = 2
The count of triangles in v is

E[v(x, y)v(x; 2)v(y, 2)].

We say that the count is correct if it is 1 + o(1).
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Transference Lemma

Definition: Discrepancy pair

We say that (f, g) forms an e-discrepancy pair if, for all
h: () — [0,1], we have

LIGORFONI .

YEX|y|=k— 1

Transference lemma

If (v,1) is a o(1)-discrepancy pair and 0 < f < v, then there is g
with 0 < g <1 and (f, g) is a o(1)-discrepancy pair.
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Counting Lemma

Definition

v is H-pseudorandom if it has the correct count of the 2-blow-up
of H and its subgraphs.

For example, if H = K3, then this means that
E[ TI wy)vla vy z)] =1+ o(1)
ije{0,1}

and the same holds if any of the twelve factors are deleted.

Counting Lemma (Conlon-F.-Zhao)

If v is a H-pseudorandom measure, 0 < f <, 0 < g <1, and
(f,g) is a o(1)-discrepancy pair,
then the count of H in f and the count of H in g differ by o(1).
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Weighted Arithmetic Framework
Letv:Zy — Rzo.

v is a measure if E[v] = 1.

f is majorized by v if 0 < f < v.

Example: The count of 3APs

The count of 3-term arithmetic progressions in v is

E[v(x)v(x + d)v(x + 2d)].
We say the count is correct if it is 1 + o(1).




A relative Szemerédi theorem
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A relative Szemerédi theorem

Theorem (Conlon-F.-Zhao)

If v is a k-pseudorandom measure, then any f with 0 < f < v and
E[f(x)f(x +d)---f(x+ (k — 1)d)] = o(1) satisfies E[f] = o(1).

v is k-pseudorandom if it contains the correct count of certain
linear forms. For example, for k = 3, it says that

IE{ H v(yi + 2zj)v(—xi + zj)v(—2x — yj)} =1+ 0(1),
ije{0,1}

and the same holds if any of the twelve factors are deleted.



