Multiplicative structure of integers, shifted primes and arithmetic functions

Kevin Ford
http://www.math.uiuc.edu/~ford/erdos100.pdf University of Illinois at Urbana-Champaign

$$
\text { July 2, } 2013
$$

Probabilistic model of integers 1. Kubilius' model

For primes p, let X_{p} be independent Bernoulli random variables with

$$
\operatorname{Prob}\left(X_{p}=1\right)=\frac{1}{p}, \quad \operatorname{Prob}\left(X_{p}=0\right)=1-\frac{1}{p} .
$$

Each models whether a random integer is divisible by p.

Theorem (Kubilius, 1956. Universal transference principle)

For any $\varepsilon>0$, the sequence $\left\{X_{p}: p \leqslant y^{\varepsilon}\right\}$ models "within ε " the prime factors $\leqslant y^{\varepsilon}$ of a random integer $\leqslant y$.

Roughly speaking, for any theorem about the sequence $\left\{X_{p}: p \leqslant y^{\varepsilon}\right\}$, the corresponding theorem about prime factors of random integers will be true with a small error term.

Example: The Erdős-Kac theorem

$\operatorname{Recall} \operatorname{Prob}\left(X_{p}=1\right)=1 / p$ and $\operatorname{Prob}\left(X_{p}=0\right)=1-1 / p$.
Example. From $\mathbf{E} X_{p}=1 / p$ and $\mathbf{V} X_{p}=1 / p-1 / p^{2}$, get
$\mathbf{E}\left(\sum_{p \leqslant y^{\varepsilon}} X_{p}\right)=\log \log y+O_{\varepsilon}(1), \quad \mathbf{V}\left(\sum_{p \leqslant y^{\varepsilon}} X_{p}\right)=\log \log y+O_{\varepsilon}(1)$.
From the Central Limit Theorem for $\sum_{p \leqslant y^{\varepsilon}} X_{p}$, get

Theorem (Erdős-Kac, 1939)

Let $\omega(n)$ be the number of distinct prime factors of n. For each real z,

$$
\lim _{y \rightarrow \infty} \frac{1}{y} \#\left\{n \leqslant y: \frac{\omega(n)-\log \log y}{\sqrt{\log \log y}} \leqslant z\right\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-\frac{1}{2} t^{2}} d t .
$$

Hardy-Ramanujan: $\omega(n) \sim \log \log n$ for almost all n

Kubilius' model and random walks

Kubilius, Billingsly (1960s). Connect $\omega(n, t)=\#\{p \mid n: p \leqslant t\}$ to Brownian motion.

- (Erdős, 1930s-). Prime factors in any interval are Poisson. Provided $I=[\exp \exp (t), \exp \exp (u)]$ isn't too short,
$\mathbf{P}($ random integer has k prime factors in $I) \sim \mathrm{e}^{t-u} \frac{(u-t)^{k}}{k!}$.
Normal number of prime factors is $\sim u-t$.
- Prime divisors in disjoint intervals are independent.

Probabilistic model 2 (Galambos, Maier, DeKoninck 1970s,80s).

By a theorem of Rényi, these properties characterize the Poisson process: the sequence of (all but the smallest and the largest) prime factors of a random integer, taken on a $\log \log$ - scale, behave like a random walk with exponentially distributed steps.

Recall: X has exponential distribution if $\mathbf{P}(X \geqslant y)=e^{-y}$ for $y>0$.

Random walks and "Unconventional problems"

Probabilistic model 2: The sequence of prime factors of a random integer, taken on a $\log \log -$ scale, behave like a random walk with exponentially distributed steps.

Theorem (Maier, Tenenbaum (1984); was a 1948 conjecture of Erdős)

Almost all integers have two divisors d_{1}, d_{2} satisfying $d_{1}<d_{2}<2 d_{1}$.

Multiplication table problem (Erdős, 1955). Let

$$
A(N)=\#\{d e: 1 \leqslant d \leqslant N, 1 \leqslant e \leqslant N\} .
$$

Equivalently, count integers $\leqslant N^{2}$ with a divisor near N.
Easy (Erdôs): $A(N)=o\left(N^{2}\right)$. Proof: For most pairs (d, e),
$\omega(d e) \approx \omega(d)+\omega(e) \approx \log \log N+\log \log N=2 \log \log \left(N^{2}\right)+O(1)$.

Multiplication tables, II

Improved bounds by Erdős (1960) and Tenenbaum (1984).
Theorem (KF, 2008)
$A(N) \asymp \frac{N^{2}}{(\log N)^{c}(\log \log N)^{3 / 2}}, \quad c=1-\frac{1+\log \log 2}{\log 2} \approx 0.08607$

Key: Fine analysis of the prime factor random walk; small deviations of the prime factor random walk lead to large discrepancies in the distribution of divisors.

Open problem. Is there an asymptotic formula?
Generalization. Find the order of

$$
A_{k}\left(N_{1}, \ldots, N_{k}\right)=\#\left\{d_{1} \cdots d_{k}: 1 \leqslant d_{j} \leqslant N_{j}(1 \leqslant j \leqslant k)\right\}
$$

Order known for all N_{1}, \ldots, N_{k} for $k=2(\mathrm{KF}, 2008), 3 \leqslant k \leqslant 6$ (Koukoulopoulos 2010, 2013). Partial results for $k>6$.

Distribution of large prime factors

Notation: $P_{1}(n)=$ largest prime factor of $n, P_{2}(n)=2$ nd largest, etc.
Distribution of $P_{1}(n)$. Early work of Ramanujan, Dickman, Erdős and others. $\Psi(x, y)=\#\left\{n \leqslant x: P_{1}(n) \leqslant y\right\}$ is well understood now.

Joint distribution of $P_{1}(n), \ldots, P_{k}(n)$. (Billingsly, 1972).
(Donnelly and Grimmett, 1993): It's the Poisson-Dirichlet distribution Simple description: Let $\left(x_{1}, x_{2}, \ldots\right)$ be a random partition of $[0,1]$:

Let $y_{1}=$ largest $x_{i}, y_{2}=$ the 2 nd largest, etc.
Then $\left(y_{1}, y_{2}, \ldots\right)$ and $\left(\frac{\log P_{1}(n)}{\log n}, \frac{\log P_{2}(n)}{\log n}, \ldots\right)$ have the same distribution.
Same distribution appears in the cycle lengths of random permutations, factor sizes of random polynomials in $\mathbb{F}_{q}[t]$, certain physical processes, etc.

Anatomy of shifted primes

Sets $\mathscr{P}_{a}=\{p+a: p$ prime $\}$, where $a \neq 0$ fixed.
Used to study arithmetic functions ϕ, σ, orders in $\mathbb{Z} / p \mathbb{Z}$, primality testing, factorization algorithms, cyclotomic fields, Fermat's Last Theorem, etc. Important cases $a=-1,1$.

Small and intermediate prime factors. Essentially the same distibution as for a random integer via sieve methods, Bombieri-Vinogradov, Gallagher. Ideas originate from 1935 paper of Erdős.

- $\omega(p+a)$ has normal order $\log \log p$ (Erdős, 1935)
- $\omega(p+a)$ satisfies the same CLT as $\omega(n)$ (Halberstam, 1956).
- $\#\left\{d_{1} d_{2} \in \mathscr{P}_{a}: 1 \leqslant d_{i} \leqslant N\right\} \asymp \frac{A(N)}{\log N} \quad$ (Koukoulopoulos, 2011)

Large prime factors ($>p^{1 / 2}$) of shifted primes largely unknown due to lack of knowledge of primes in progressions to large moduli.

Anatomy of values of arithmetic functions

Let $\mathcal{V}_{f}=\{f(n): n \in \mathbb{N}\}, \quad V_{f}(x)=\# \mathcal{V}_{f}(x) \cap[1, x]$.
Pillai, 1929. $V_{\phi}(x)=o(x)$. Idea: $\omega(n) \approx \log \log x$ for most $n \leqslant x$, and $2^{\omega(n)-1} \mid \phi(n)$.

Erdős, 1935. $V_{\phi}(x)=x(\log x)^{-1+o(1)}$. Idea: $\omega(p-1) \sim \log \log p$ for most $p \mid n$. Hence, for typical $n, \omega(\phi(n))$ is abnormally large.

Improvements by Erdős, Erdős-Hall, Pomerance, Maier-Pomerance. $\mathbf{K F}$, 1998. exact order of $V_{\phi}(x)$ found:

$$
\begin{aligned}
V_{\phi}(x) \asymp \frac{x}{\log x} \exp \left\{C_{1}(\log \log \log x\right. & =\log \log \log \log x)^{2} \\
& \left.+C_{2} \log \log \log x+C_{3} \log \log \log \log x\right\} .
\end{aligned}
$$

Same order for $V_{\sigma}(x)$ and for the counting function of the semigroup generated by $\mathscr{P}_{a}, a \neq 0$.
Open problem. Is there an asymptotic formula?

Euler's function. More open problems

Carmichael, 1907. $\forall m \in \mathcal{V}_{\phi}, \phi(x)=m$ has at least 2 solutions x.
Known: such an m, if it exists, exceeds $10^{10^{10}}(\mathrm{KF}, 1998)$.
Known: $\forall k \geqslant 2, \exists m$ so that $\phi(x)=m$ has exactly k sol's (KF, 1999).

Erdốs. $\forall C>1$, is there an $m \in \mathcal{V}_{\phi}$ so that $\phi(x)=m \Longrightarrow x>C m$?
KF, 1998. Is there an $m \in \mathcal{V}_{\phi}$ so that $\phi(x)=m \Longrightarrow 6 \mid x$? The corresponding question with 6 replaced by $2,3,4,5,7,8$ or 9 is affirmative. I think for 6 , the answer is no. Perhaps for 10 also.

Erdốs. Are there infinitely many n with $\phi(n)=\phi(n+1)$? $\forall \varepsilon$, are there infinitely many n with $|\phi(n)-\phi(n+1)|<n^{\varepsilon}$? Alkan-Ford-Zaharescu (2009). True with $\varepsilon=0.84$.

Prime Chains

Definition

Let $a \prec b$ if $b \equiv 1(\bmod a)$; that is, $a \mid(b-1)$.

Prime chains: $p_{1} \prec p_{2} \prec \cdots \prec p_{k}$
Example: $2 \prec 5 \prec 11 \prec 23 \prec 47 \prec 283 \prec 2432669$
Prime chain problems arise in the study of iterates of ϕ and applications thereof; value distribution of ϕ, σ, λ; primality certificates (complexity of the Pratt certificate).

Basic question. Are there arbitrarily long prime chains? Yes - Infinitely long (Dirichlet, 1837).

Prime chains with a given starting prime

Prime chains: $p_{1} \prec p_{2} \prec \cdots \prec p_{k}, \quad p_{j+1} \equiv 1\left(\bmod p_{j}\right)$ for each j.

Theorem (Ford-Konyagin-Luca, 2010)

Let $N(x ; p)$ be the number of prime chains starting at a prime p and ending at a prime $\leqslant x p$. Then for every $\varepsilon>0, N(x ; p) \leqslant C(\varepsilon) x^{1+\varepsilon}$.

Note $N(x ; p) \geqslant \pi(x p ; p, 1) \approx x / \log x$.
An (perhaps unexpected) application to a 1958 conjecture of Erdős.
Theorem (Ford-Luca-Pomerance, 2010)
$\phi(n)=\sigma(m)$ has infinitely many solutions (i.e., $\mathcal{V}_{\phi} \cap \mathcal{V}_{\sigma}$ is infinite)

Theorem (Ford-Pollack, 2012)

Almost all values of ϕ are not values of σ and vice-versa. That is, the counting function of $\mathcal{V}_{\phi} \cap \mathcal{V}_{\sigma}$ is $o\left(V_{\phi}(x)+V_{\sigma}(x)\right)$.

Pratt trees

The aggregate of all prime chains ending at a given prime p has a tree structure, the Pratt tree of p (related to the Pratt primality certificates).

Pratt tree height

Height $H(p)$, = length of longest prime chain ending at p.
Trivially, $H(p) \leqslant \frac{\log p}{\log 2}+1$.
$H(p)=2$ for Fermat primes.
Conjecture (Erdős ?): For each $k \geqslant 3$, there are infinitely many primes with $H(p)=k$.
Katai, 1968. $H(p) \gg \log \log p$ for almost all p.
Ford-Konyagin-Luca, 2010. $H(p) \ll(\log p)^{0.9503}$ for almost all p.
Assuming the large prime factors of the shifted primes in the Pratt tree obey the Poisson-Dirichlet distribution, and are all independent of one another, one can model $H(p)$ be a branching random walk. Fine analysis of this process leads to the collowing conjecture.

Conjecture (Ford-Konyagin-Luca, 2010)

For most primes $p, H(p) \approx \mathrm{e} \log \log p-\frac{3}{2} \log \log \log p+" O(1)^{\prime}$.

Pratt trees with missing primes

Let \mathscr{P}_{q} be the set of primes p such that the Pratt tree for p doesn't contain the prime q. For example,

$$
\mathscr{P}_{3}=\{2,5,11,17,23,41,47,83,89,101,137,167,179,251, \ldots\}
$$

Sieve methods quickly imply the counting function is $O\left(x / \log ^{2} x\right)$. Numerical comutations of \mathscr{P}_{3} up to 10^{13} indicate that the counting function is $\approx x^{0.62}$.

Theorem (KF, 2013)

The counting function of \mathscr{P}_{q} is $O\left(x^{1-c}\right)$ for some positive $c=c(q)$.
Open problem. Show that \mathscr{P}_{q} is infinite.
Likely extremely hard. \mathscr{P}_{5} infinite (almost) implies Carmichael's conjecture.

Largest prime factors. Open problems.

Expected. $P_{1}(n)$ and $P_{1}(n+1)$ are independent.

Theorem (Erdős-Pomerance, 1978)

We have
(1) $P_{1}(n)<P_{1}(n+1)$ for a positive proportion of n;
(2) $P_{1}(n)>P_{1}(n+1)$ for a positive proportion of n;
(3) certain orderings of $P_{1}(n-1), P_{1}(n), P_{1}(n+1)$ occur infinitely often.

Balog, 2001. Showed $P(n-1)>P(n)>P(n+1)$ infinitely often.
Open problem. Does any particular ordering of $P_{1}(n-1), P_{1}(n), P_{1}(n+1)$ occur for a positive proportion of n ?

Open problem. Do all patterns (orderings) of $P_{1}(n), \ldots, P_{1}(n+3)$ occur infinitely often?

Large prime factors of shifted primes

Conjecture. $\left(P_{1}(p+a), \ldots, P_{k}(p+a)\right)$ has the same distribution as $\left(P_{1}(n), \ldots, P_{k}(n)\right)$.

True assuming Elliott-Halberstam conjecture.
Unconditionally, very little known due to lack of knowledge of primes in arithmetic progressions to large moduli.

Smooth shifted primes. Erdős (1935) showed that $P_{1}(p+a)<p^{c}$ infinitely often for some $c<1$. Baker-Harman, 1998: $c=0.2931$. Applications to ϕ and Carmichael numbers.

Large prime factors. $P_{1}(p+a)>p^{c}$ infinitely often. Baker-Harman, 1998: $c=0.677$.

Open problem (Buchstab). (i) Are there infinitely many primes p such that all prime factors of $p+a$ are $3 \bmod 4$?
(ii) Same with $3 \bmod 4$ replaced by an arbitrary $a \bmod q$.

Propinquity of divisors. Hooley's Δ-function.

Theorem (Maier, Tenenbaum (1984); was a 1948 conjecture of Erdős)
Almost all integers have two divisors d_{1}, d_{2} satisfying $d_{1}<d_{2}<2 d_{1}$.
Let $\Delta(n)=\max _{y} \#\{d \mid n: y<d \leqslant \mathrm{e} y\}$ (a concentration function).
Normal order (Maier-Tenenbaum, 1984; 2009). For almost all n,

$$
(\log n)^{c-\varepsilon}<\Delta(n)<(\log n)^{\log 2+\varepsilon}, \quad c \approx 0.33827
$$

They conjecture that the lower bound is closer to the truth.
Average values (Hall-Tenenbaum (lower); Tenenbaum (upper)).

$$
\log \log x \ll \frac{1}{x} \sum_{n \leqslant x} \Delta(n) \ll \exp \{C \sqrt{\log \log x \log \log \log x}\}
$$

Twisted Δ-functions (Daniel; de la Bretèche-Tenenbaum):

$$
\Delta_{f}(n)=\max _{1 \leqslant y<z \leqslant \mathrm{e} y}\left|\sum_{d \mid n, y<d \leqslant z} f(d)\right|, \quad f=\mu, \chi, \ldots
$$

Prime chains ending at a given prime

Prime chains: $p_{1} \prec p_{2} \prec \cdots \prec p_{k}, \quad p_{j+1} \equiv 1\left(\bmod p_{j}\right)$ for each j.

Theorem (Ford-Konyagin-Luca, 2010)

Let $f(p)$ be he number of prime chains that end at a prime p. Then

$$
\frac{1}{3} \log p \leqslant f(p) \leqslant 3 \log p
$$

for almost all p.
$f(p)$ is also the number of nodes in the Pratt tree for p.
Open Problem. Are there infinitely many p with $f(p)=o(\log p)$?
Observations: $f(p)=2$ for Fermat primes. $f(p)$ is small if $p-1$ is very smooth, e.g. $f(p)=4$ if $p=2^{a} 3^{b}+1$.

Miscellaneous problems

D. H. Lehmer, 1930. Is there a composite n with $\phi(n) \mid(n-1)$? Pomerance (1977): The counting function of such n is $O\left(n^{1 / 2}(\log n)^{O(1)}\right)$.

Open Problem: Prove there are infinitely many chains $p_{1} \prec p_{2} \prec p_{3}$ with $\frac{p_{3}-1}{p_{2}}=\frac{p_{2}-1}{p_{1}}$ (quasi-geometric progression of primes).

