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SATURATED GRAPHS

Definition
Given a fixed graph H, a graph G is H-Saturated if it contains no
copy of H, but G + e contains a copy of H for any edge e ¢ G.
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SATURATED AND EXTREMAL GRAPHS

Definition
ex(n, F) = max{|E(G)| : |V(G)| = n and G is F-saturated}.
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SATURATED AND EXTREMAL GRAPHS

Definition
ex(n, F) = max{|E(G)| : |V(G)| = n and G is F-saturated}.

Definition
Ex(n,F) :={G : |V(G)|=n, |[E(G)| = ex(n,F), and
G is F-saturated}.
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SATURATED AND EXTREMAL GRAPHS

Definition
ex(n, F) = max{|E(G)| : |V(G)| = n and G is F-saturated}.
Definition
Ex(n,F):={G : |V(G)|=n, |[E(G)| = ex(n,F), and
G is F-saturated}.

Definition
sat(n, F) = min{|E(G)| : |V(G)| = n and G is F-saturated}.
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SATURATED AND EXTREMAL GRAPHS

Definition
ex(n, F) = max{|E(G)| : |V(G)| = n and G is F-saturated}.

Definition
Ex(n,F):={G : |V(G)|=n, |[E(G)| = ex(n,F), and
G is F-saturated}.

Definition
sat(n, F) = min{|E(G)| : |V(G)| = n and G is F-saturated}.

Definition

Sat(n,F) ={G : |V(G)| = n, |E(G)| = sat(n,F), and
G is F-saturated}.
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WEAKLY SATURATED GRAPHS

Definition

wsat(n, F) = min{|E(G)| : |V(G)| = n, G does not have
Fas a subgraph, butedges in G can be ordered such that the
addition of each edge results in a new copy of F}.
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WEAKLY SATURATED GRAPHS

Definition

wsat(n, F) = min{|E(G)| : |V(G)| = n, G does not have
Fas a subgraph, butedges in G can be ordered such that the
addition of each edge results in a new copy of F}.

Definition
WSat(n,F) ={G : |V(G)| = n, |E(G)| = wsat(n, F), and
G is F-weakly saturated}.
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EXAMPLES

Example

The complete bipartite graph K2 /2 is a /(3-saturated of order n
that has n?/4 edges.
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EXAMPLES

Example

The complete bipartite graph K, /> is a K3-saturated of order n
that has n?/4 edges.

Example
The star Ky n—1 is a K3-saturated of order n that has n — 1 edges.
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COMPLETE BIPARTITE - STAR GRAPHS




COMPLETE BIPARTITE - STAR GRAPHS
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Ki,n-1
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SATURATION NUMBERS FOR P;

Theorem

ex(n, P3) = |n/2].
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SATURATION NUMBERS FOR P;

Theorem

ex(n, P3) = |n/2].

Theorem

sat(n, P3) = [n/2].
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SATURATION NUMBERS FOR P;

Theorem

ex(n, P3) = |n/2].
Theorem

sat(n, P3) = [n/2].
Theorem

wsat(n, P3) = 1.
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EXTREMAL NUMBERS FOR MATCHINGS

Theorem
Fort > 2,
ex(n, tPy) = (t — 1)n — t(t — 1)/2.
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EXTREMAL NUMBERS FOR MATCHINGS

Theorem
Fort > 2,

ex(n, tPp) = (t — 1)n — t(t — 1)/2.

Example
The extremal graph is Ky_1 + W,,,Hl.
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SATURATION NUMBERS FOR MATCHINGS

Theorem
Fort > 2,
sat(n, tPy) = 3t — 3.
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SATURATION NUMBERS FOR MATCHINGS

Theorem
Fort > 2,

sat(n, tP;) = 3t — 3.

Example
The extremal graph is (t — 1)Kz U K _3t43.
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SATURATION NUMBERS FOR MATCHINGS

(t—1)K3 U Kp_3e13
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SATURATION NUMBERS FOR MATCHINGS

(t—1)K3 U Kp_3e13
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SATURATION NUMBERS FOR MATCHINGS

AAAA ce .

t—1

(t— 1)Kz U Kp_3e43
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SATURATION NUMBERS FOR MATCHINGS

AANA o .

t—1

(t— 1)Kz U Kp_3e43
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SATURATION NUMBERS FOR MATCHINGS

(t— 1)Kz U Kp_3e43
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SATURATION NUMBERS FOR MATCHINGS

(t— 1)Kz U Kp_3e43
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WEAK SATURATION NUMBERS FOR
MATCHINGS

Theorem
Fort > 2,
wsat(n, tPy) =t — 1.
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WEAK SATURATION NUMBERS FOR
MATCHINGS

Theorem
Fort> 2,
wsat(n, tPy) =t — 1.
1 2 ... t—=1 ..
*—=e *—=e [ ] *—=0 e— [ ] [ ] [ )

(t—1)Ka UKn 212
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COMPLETE GRAPHS

Theorem
(Turan(1954)) If n > t and divisible by t — 1, then

(t —2)n?

ex(n, K;) = EtEE
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COMPLETE GRAPHS

Theorem
(Turan(1954)) If n > t and divisible by t — 1, then

B (t —2)n?
2(t—1)°

ex(n, K¢)

Theorem
(Erd6s, Hajnal, Moon(1964)) For n >t

sat(n, Ke) = (t — 2)(n— 1) — <t B 2).
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COMPLETE GRAPHS

Theorem
(Turan(1954)) If n > t and divisible by t — 1, then

(t —2)n?

ex(n, K;) = 2=1)

Theorem
(Erdés, Hajnal, Moon(1964)) Forn >t

sat(n, Ke) = (t — 2)(n— 1) — <t B 2).

Theorem
(Lovasz (1977)) Forn>t

wsat(n, K;) = (t — 2)(n— 1) — <t ; 2>.
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COMPLETE GRAPH EXAMPLES

Example
The extremal graph is K, — (t — 1)Ky, /(¢—1)-
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COMPLETE GRAPH EXAMPLES

Example
The extremal graph is K, — (t — 1)K;,/(¢—1)-

~N_ /N N
RO =R

The minimal saturated graph is Ki—o + K n_t42.

Example

Ki—2

i)
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GENERAL EXTREMAL THEORY

Theorem
(Erdés, Simonovits (1972)) If n is sufficiently large and F is a
graph with chromatic number x(F) = p, then

(p —2)n?

ex(n, F) = 20— 1)

+ 0(172).
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GENERAL EXTREMAL THEORY

Theorem
(Erdos, Simonovits (1972)) If n is sufficiently large and F is a
graph with chromatic number x(F) = p, then

(p —2)n?

ex(n, F) = 20p— 1)

+o(n?).

Theorem
(Erdos, Simonovits (1972)) For n sufficiently and F is a graph
with chromatic number x(F) = p, then

Ko — (p — 1)K (p—1) = Ex(n, F).

Ralph Faudree University of Memphis Saturation Numbers for Graphs



SATURATION NUMBERS ARE LINEAR

Theorem
(Kaszonyi, Tuza (1986)) For a given graph F of order t and
independence number oo — o(F ), let d = d(F) be the minimum

degree of any vertex of F — S relative to a maximum independent
set S. Then,

sat(n F) < (¢ —a = Do+ (@~ Dln—t+a+1/2) - (7).

and K;_, 1 + Hy, contains a saturated graph, where H, is a
(d — 1)-regular graph of order n — t + v + 1.
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SATURATION NUMBERS ARE LINEAR

Theorem

(Kaszonyi, Tuza (1986)) For a given graph F of order t and
independence number oo — o(F ), let d = d(F) be the minimum
degree of any vertex of F — S relative to a maximum independent
set S. Then,

sat(n, F) < (t—a—1)n+ |(d—1)(n—t+a+1)/2] <t2“>.

and K, . 1+ Hy, contains a saturated graph, where H, is a
(d — 1)-regular graph of order n — t + o + 1.

Corollary

(Kaszonyi, Tuza (1986)) For each graph F there is a constant
¢ = ¢(F) such that
sat(n, F) < cn.
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EXAMPLE OF EXTREMAL SATURATED GRAPH

Hy is a (d — 1)-regular graph of order n — t + o 4 1.
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GENERAL WEAK SATURATION THEORY

Theorem
Let F be a graph with p vertices, q edges, and minimal degree §.
Then, for any n > p

q—14+(6—-1)(n—p)/2 < wsat(n, F) < (p—1)(p—2)/2+(6—1)(n—p+1).
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GENERAL WEAK SATURATION THEORY

Theorem
Let F be a graph with p vertices, q edges, and minimal degree §.

Then, for any n > p
q—1+(6—-1)(n—p)/2 < wsat(n, F) < (p—1)(p—2)/2+(6—1)(n—p+1).

Example
The extremal graph is Ks_1 + (Kp—s U V,,,pﬂ).
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GENERAL WEAK SATURATION THEORY

Theorem
Let F be a graph with p vertices, q edges, and minimal degree §.
Then, for any n > p

q—14+(6—1)(n—p)/2 < wsat(n, F) < (p—1)(p—2)/2+(6—1)(n—p+1).
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GENERAL WEAK SATURATION THEORY

Theorem
Let F be a graph with p vertices, q edges, and minimal degree §.
Then, for any n > p

q—1+(3—1)(n—p)/2 < wsat(n, F) < (p—1)(p—2)/2+(5~1)(n—p-+1).

Theorem
(F. Gould, Jacobson) If F is a graph with p vertices and minimal
degree §, then,

W < wsat(n, F) < (5~ D+ (p— 1)(p - 26)/2

for any n sufficiently large.
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GENERAL WEAK SATURATION THEORY

Theorem
(F. Gould, Jacobson) Let F be a graph with p vertices, q edges,
and minimal degree §. Then, for any n > p

(0(F) —1)n

5 + a < wsat(n,F) < (6(F) — 1)n+ c.
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GENERAL WEAK SATURATION THEORY

Theorem

(F. Gould, Jacobson) Let F be a graph with p vertices, q edges,
and minimal degree §. Then, for any n > p

M +c < wsat(n,F) < (6(F) —1)n+ c.

Theorem
wsat(n, F) = (6(F) —1)n+ ¢ for 6(F) =1 or 2.
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GENERAL WEAK SATURATION THEORY

Theorem
(F. Gould, Jacobson) Let F be a graph with p vertices, q edges,
and minimal degree §. Then, for any n > p

M +c < wsat(n,F) < (6(F) —1)n+ c.

Theorem
wsat(n, F) = (6(F) —1)n+ ¢ for 6(F) =1 or 2.

Question
Is wsat(n, F) = (6(F) — 1)n + ¢ for 6(F) > 37 NO
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SATURATION NUMBER PROBLEMS

LetF be a family of graphs. Then, ex(n, F) satisfies:
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SATURATION NUMBER PROBLEMS

LetF be a family of graphs. Then, ex(n, F) satisfies:

(1) ex(n,H) < ex(n,G) if H is a subgraph of G.
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SATURATION NUMBER PROBLEMS

LetF be a family of graphs. Then, ex(n, F) satisfies:

(1) ex(n,H) < ex(n,G) if H is a subgraph of G.
(2) ex(n,F)<ex(nF)ifF CcF
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SATURATION NUMBER PROBLEMS

LetF be a family of graphs. Then, ex(n, F) satisfies:

(1) ex(n,H) < ex(n,G) if His a subgraph of G.
(2) ex(n,F)<ex(nF)ifF CcF
(3) ex(nF)<ex(n+1,F)
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SATURATION NUMBER PROBLEMS

LetF be a family of graphs. Then, ex(n, F) satisfies:

(1) ex(n,H) < ex(n,G) if His a subgraph of G.
(2) ex(n,F)<ex(nF)ifF CF
(3) ex(n,F)<ex(n+1,F)

sat(n,G) and wsat(n, F) does not satisfy any of these properties.
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BAD BEHAVIOR FOR (1) FOR SATURATION

Theorem

J. Faudree, R. Faudree, R. Gould, M. Jacobson Given any
positive integer C, any tree T is a subtree of a tree T' = T'(T, C)
such that for n sufficiently large

sat(T',n) > Cn.

Any tree T' is a subtree of a tree T" = T"(T’, C) such that for n
sufficiently large
sat(T",n) < n.
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BAD BEHAVIOR FOR (1) FOR SATURATION

Theorem

J. Faudree, R. Faudree, R. Gould, M. Jacobson Given any
positive integer C, any tree T is a subtree of a tree T' = T'(T, C)
such that for n sufficiently large

sat(T',n) > Cn.

Any tree T' is a subtree of a tree T" = T"(T', C) such that for n
sufficiently large
sat(T",n) < n.

Theorem
There are sequences of trees T(1) C T(2) C --- T(m) such that
for any positive integer C and n sufficiently large

sat(T(i).n) < n. for i odd and sat( T (i), n) > Cn. for i even.



BAD BEHAVIOR FOR (2) FOR SATURATION

Theorem
J. Faudree, R. Faudree, R. Gould, M. Jacobson For t > 2 and
n>t+1,

sat(n, K1t +e)=n—1,

and Sat(n, K1+ +e) = {Kin-1}-
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BAD BEHAVIOR FOR (2) FOR SATURATION

Theorem
J. Faudree, R. Faudree, R. Gould, M. Jacobson For t > 2 and
n>t+1,

sat(n, K1+ +e)=n—1,

and Sat(n, Ky +e) = {Kin-1}

Theorem
Fort>2andn>t+1,

sat(n,{Ki++ e, Ki+}) =sat(n,Ki¢) = (t —1)n/2 — %LtZ/le.
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BAD BEHAVIOR FOR (3) FOR SATURATION

Theorem
(Kaszonyi, Tuza (1986)) For t > 2,

sat(2k —1,Py) = k+ 1, Sat(2k —1,Ps) = K3 U (k — 2)K>.

and
sat(2k, Py) = k;  Sat(2k, Ps) = kK.
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BAD BEHAVIOR FOR (1) - WEAK SATURATION

(a) Gp, graph obtained from K, by adding a pendant edge.

Ralph Faudree University of Memphis Saturation Numbers for Graphs



BAD BEHAVIOR FOR (1) - WEAK SATURATION

(a) Gp, graph obtained from K, by adding a pendant edge.

(b) wsat(n, Gp) = (5) for all n > p+ 1.

(c) wsat(n, Kp) = (°5%) + (p — 2)(n — p+2) for n > p.
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BAD BEHAVIOR FOR (2) - WEAK SATURATION

(a) Sp star with p vertices, S; graph obtained from S, by
adding an edge.
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BAD BEHAVIOR FOR (2) - WEAK SATURATION

(a) Sp star with p vertices, S; graph obtained from S, by
adding an edge.

S sz

(b) wsat(n, S;) =p— 1.
(c) wsat(n, {Sp, S3}) = (P31).
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BAD BEHAVIOR FOR (3) - WEAK SATURATION

N Dl AL LA
Hy Ho Hs H,
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BAD BEHAVIOR FOR (3) - WEAK SATURATION

Nt D AL AL

4

(a) wsat(6, H1) = 7.
(b) wsat(7,H1) = 6
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BAD BEHAVIOR FOR (3) - WEAK SATURATION

4

(a) wsat(6, H1) = 7.
(b) wsat(7,H;) = 6
(a) wsat(6,2K3) = 10 and H, € WSat(6, K3).

(b) wsat(7,2K3) = 8 and H3 € WSat(6, K3).
(c) wsat(8,2K3) = 8 and Hy € WSat(6, K3).
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GENERAL WEAK SATURATION UPPER BOUNDS

Theorem
Let F be a graph with p vertices, q edges, and minimal degree §.
Then,
wsat(n, F) < wsat(p, F) + (6 — 1)(n — p)
for any n > p.

Ralph Faudree University of Memphis Saturation Numbers for Graphs



GENERAL WEAK SATURATION UPPER BOUNDS

Theorem
Let F be a graph with p vertices, q edges, and minimal degree §.

Then,
wsat(n, F) < wsat(p, F) + (6 —1)(n — p)

for any n > p.

Let F, € WSat(p, F).

Saturation Numbers for Graphs

Ralph Faudree University of Memphis



GENERAL WEAK SATURATION UPPER BOUNDS

Theorem
Let F be a graph with p vertices, q edges, and minimum degree

5 =0(F). Let g’ = wsat(p, F). Then, for n divisible by p,

n n 6
wsat(n, F g—’+<—1)<>.
(n,F) P )
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GENERAL WEAK SATURATION UPPER BOUNDS

Theorem

Let F be a graph with p vertices, q edges, and minimum degree
d = (F). Let g = wsat(p, F). Then, for n divisible by p,

n n é
wsat(n, F g—’+<—1><).
(n, F) P )

Let F, € WSat(p, F).

________ () - K
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SELF WEAKLY SATURATED GRAPHS

Definition
A graph G of order p with q edges is self weakly saturated if
wsat(p,G) = q — 1.
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SELF WEAKLY SATURATED GRAPHS

Definition
A graph G of order p with q edges is self weakly saturated if
wsat(p,G) = q — 1.

Definition

If a self weakly saturated graph G has a vertex v (called the root)
and an ordering of the edges of G such that as each edge is added
it is possible to choose a new copy of G in which v is always the
same vertex, then the graph G is a rooted self weakly saturated
graph.
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SELF WEAKLY SATURATED GRAPHS

EXAMPLES
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SELF WEAKLY SATURATED GRAPHS

EXAMPLES

(1) Py is rooted self weakly saturated

Figure: Py is a rooted self weakly saturated graph with vertex 1 as a root.
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SELF WEAKLY SATURATED GRAPHS

EXAMPLES

(1) P, is rooted self weakly saturated

Figure: Py is a rooted self weakly saturated graph with vertex 1 as a root.

(2) K, — Fp, when Fp is a forest with p < n is self weakly
saturated.
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SELF WEAKLY SATURATED GRAPHS

EXAMPLES

(1) P, is rooted self weakly saturated

Figure: Py is a rooted self weakly saturated graph with vertex 1 as a root.

(2) K, — Fp, when Fp is a forest with p < n is self weakly
saturated.

(3) G, U e where e is a 2-chord of C, is self weakly saturated.
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SELF WEAKLY SATURATED GRAPHS

Theorem

Let F be a graph of order p with q edges containing a cut-vertex v
such that one of the components of F — v along with v forms a
rooted self saturated tree, T,, with root v. Then, for n > 2p — m,

wsat(n, F) = q— 1.
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SELF WEAKLY SATURATED GRAPHS

Theorem

Let F be a graph of order p with q edges containing a cut-vertex v
such that one of the components of F — v along with v forms a
rooted self saturated tree, T,, with root v. Then, for n > 2p — m,

wsat(n, F) = q— 1.
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SELF WEAKLY SATURATED GRAPHS

Theorem

For any given pair of positive integers p and q with

p—1<qg< (’2’) there is a connected self weakly saturated graph
with p vertices and q edges.
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SELF WEAKLY SATURATED GRAPHS

Theorem

For any given pair of positive integers p and q with

p—1<q< (5), there is a connected self weakly saturated graph
with p vertices and q edges.

Question

Given a graph G with p vertices and q edges, what conditions on
the graphical parameters of G would imply that G is self weakly
saturated.
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SELF WEAKLY SATURATED GRAPHS

Definition
A graph H is vertex symmetric, if for any pair of vertices u and v
in H, there is an automorphism 6 of G such that 6(u) = v.
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SELF WEAKLY SATURATED GRAPHS

Definition
A graph H is vertex symmetric, if for any pair of vertices u and v
in H, there is an automorphism 0 of G such that 6(u) = v.

Definition

Given a vertex symmetric H, the graph G = H — H will denote the
graph obtained from H U H by adding an edge between the two
copies of H.
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SELF WEAKLY SATURATED GRAPHS

Definition
A graph H is vertex symmetric, if for any pair of vertices u and v
in H, there is an automorphism 0 of G such that 6(u) = v.

Definition

Given a vertex symmetric H, the graph G = H — H will denote the
graph obtained from H U H by adding an edge between the two
copies of H.

Theorem
If H is a vertex symmetric graph of order p with 6(H) = 6, then

wsat(2p, H — H) = dp.
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QUESTIONS

Question

Is there a finite set of graphical parameters that will determine the
saturation number (weak saturation number) of a graph, or at
least determine the order of magnitude?
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QUESTIONS

Question

Is there a finite set of graphical parameters that will determine the
saturation number (weak saturation number) of a graph, or at
least determine the order of magnitude?

Question
For a fixed graphs H, for which integers m with

sat(n,H) < m < ex(H, n)

such that there is a H-saturated graph with m edges (Edge
Saturation Spectrum)
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QUESTIONS

Question

Is there a finite set of graphical parameters that will determine the
saturation number (weak saturation number) of a graph, or at
least determine the order of magnitude?

Question
For a fixed graphs H, for which integers m with

sat(n,H) < m < ex(H, n)

such that there is a H-saturated graph with m edges (Edge
Saturation Spectrum)

Question

Is there a universal lower bound for the weak saturation number in
terms of the minimum degree of a graph? In particular is

ws(n, G) > (dn)/2 + ¢ for some constant c.
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THANKS
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THANKS

QUESTIONS?
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