COMBINATORICS SECTION

ERDŐS CENTENNIAL MEETING BUDAPEST, HUNGARY

July 1, 2013

Saturation Numbers for Graphs

Ralph Faudree University of Memphis

June 4, 2013

SATURATED GRAPHS

Definition

Given a fixed graph H, a graph G is H-Saturated if it contains no copy of H, but G + e contains a copy of H for any edge $e \notin G$.

Definition

 $ex(n, F) = max\{|E(G)| : |V(G)| = n \text{ and } G \text{ is } F\text{-saturated}\}.$

Definition

$$ex(n, F) = max\{|E(G)| : |V(G)| = n \text{ and } G \text{ is } F\text{-saturated}\}.$$

Definition

$$Ex(n,F) := \{G : |V(G)| = n, |E(G)| = ex(n,F), \text{ and } G \text{ is } F\text{-saturated}\}.$$

Definition

$$ex(n, F) = max\{|E(G)| : |V(G)| = n \text{ and } G \text{ is } F\text{-saturated}\}.$$

Definition

$$Ex(n,F) := \{G : |V(G)| = n, |E(G)| = ex(n,F), \text{ and } G \text{ is } F\text{-saturated}\}.$$

Definition

$$sat(n, F) = min\{|E(G)| : |V(G)| = n \text{ and } G \text{ is } F\text{-saturated}\}.$$

Definition

$$ex(n,F) = max\{|E(G)| : |V(G)| = n \text{ and } G \text{ is } F\text{-saturated}\}.$$

Definition

$$Ex(n,F) := \{G : |V(G)| = n, |E(G)| = ex(n,F), \text{ and } G \text{ is } F\text{-saturated}\}.$$

Definition

$$sat(n, F) = min\{|E(G)| : |V(G)| = n \text{ and } G \text{ is } F\text{-saturated}\}.$$

Definition

$$Sat(n, F) = \{G : |V(G)| = n, |E(G)| = sat(n, F), and G \text{ is } F\text{-saturated}\}.$$

WEAKLY SATURATED GRAPHS

Definition

wsat $(n, F) = \min\{|E(G)| : |V(G)| = n, G \text{ does not have} \}$ F as a subgraph, but edges in \overline{G} can be ordered such that the addition of each edge results in a new copy of $F\}$.

WEAKLY SATURATED GRAPHS

Definition

wsat $(n, F) = \min\{|E(G)| : |V(G)| = n, G \text{ does not have} \}$ F as a subgraph, but edges in \overline{G} can be ordered such that the addition of each edge results in a new copy of $F\}$.

Definition

 $WSat(n, F) = \{G : |V(G)| = n, |E(G)| = wsat(n, F), and G \text{ is } F\text{-weakly } saturated\}.$

EXAMPLES

Example

The complete bipartite graph $K_{n/2,n/2}$ is a K_3 -saturated of order n that has $n^2/4$ edges.

EXAMPLES

Example

The complete bipartite graph $K_{n/2,n/2}$ is a K_3 -saturated of order n that has $n^2/4$ edges.

Example

The star $K_{1,n-1}$ is a K_3 -saturated of order n that has n-1 edges.

COMPLETE BIPARTITE – STAR GRAPHS

COMPLETE BIPARTITE – STAR GRAPHS

$wsat(n, K_3)$

 P_n

$wsat(n, K_3)$

SATURATION NUMBERS FOR P_3

$$ex(n, P_3) = \lfloor n/2 \rfloor.$$

SATURATION NUMBERS FOR P₃

Theorem

$$ex(n, P_3) = \lfloor n/2 \rfloor.$$

$$sat(n, P_3) = \lfloor n/2 \rfloor$$
.

SATURATION NUMBERS FOR *P*₃

Theorem

$$ex(n, P_3) = \lfloor n/2 \rfloor.$$

Theorem

$$sat(n, P_3) = \lfloor n/2 \rfloor$$
.

$$wsat(n, P_3) = 1.$$

EXTREMAL NUMBERS FOR MATCHINGS

Theorem

For $t \geq 2$,

$$ex(n, tP_2) = (t-1)n - t(t-1)/2.$$

EXTREMAL NUMBERS FOR MATCHINGS

Theorem

For $t \geq 2$,

$$ex(n, tP_2) = (t-1)n - t(t-1)/2.$$

Example

The extremal graph is $K_{t-1} + \overline{K}_{n-t+1}$.

Theorem

For $t \geq 2$,

$$sat(n, tP_2) = 3t - 3.$$

Theorem

For $t \geq 2$,

$$sat(n, tP_2) = 3t - 3.$$

Example

The extremal graph is $(t-1)K_3 \cup \overline{K}_{n-3t+3}$.

Theorem

For t > 2,

$$wsat(n, tP_2) = t - 1.$$

For
$$t \geq 2$$
,

$$wsat(n, tP_2) = t - 1.$$

$$\frac{1}{(t-1)K_2 \cup \overline{K}_{n-2t+2}} \cdots \cdots$$

COMPLETE GRAPHS

Theorem

(Turán(1954)) If n > t and divisible by t - 1, then

$$ex(n, K_t) = \frac{(t-2)n^2}{2(t-1)}.$$

COMPLETE GRAPHS

Theorem

(Turán(1954)) If n > t and divisible by t - 1, then

$$ex(n, K_t) = \frac{(t-2)n^2}{2(t-1)}.$$

Theorem

(Erdős, Hajnal, Moon(1964)) For $n \ge t$

$$sat(n, K_t) = (t-2)(n-1) - {t-2 \choose 2}.$$

COMPLETE GRAPHS

Theorem

(Turán(1954)) If n > t and divisible by t - 1, then

$$ex(n, K_t) = \frac{(t-2)n^2}{2(t-1)}.$$

Theorem

(Erdős, Hajnal, Moon(1964)) For $n \ge t$

$$sat(n, K_t) = (t-2)(n-1) - {t-2 \choose 2}.$$

Theorem

(Lovász (1977)) For $n \ge t$

$$wsat(n, K_t) = (t-2)(n-1) - {t-2 \choose 2}.$$

COMPLETE GRAPH EXAMPLES

Example

The extremal graph is $K_n - (t-1)K_{n/(t-1)}$.

COMPLETE GRAPH EXAMPLES

Example

The extremal graph is $K_n - (t-1)K_{n/(t-1)}$.

Example

The minimal saturated graph is $K_{t-2} + \overline{K}_{n-t+2}$.

GENERAL EXTREMAL THEORY

Theorem

(Erdős, Simonovits (1972)) If n is sufficiently large and F is a graph with chromatic number $\chi(F) = p$, then

$$ex(n, F) = \frac{(p-2)n^2}{2(p-1)} + o(n^2).$$

GENERAL EXTREMAL THEORY

Theorem

(Erdős, Simonovits (1972)) If n is sufficiently large and F is a graph with chromatic number $\chi(F) = p$, then

$$ex(n, F) = \frac{(p-2)n^2}{2(p-1)} + o(n^2).$$

Theorem

(Erdős, Simonovits (1972)) For n sufficiently and F is a graph with chromatic number $\chi(F) = p$, then

$$K_n - (p-1)\overline{K}_{n/(p-1)} \approx E_X(n, F).$$

SATURATION NUMBERS ARE LINEAR

Theorem

(Kászonyi, Tuza (1986)) For a given graph F of order t and independence number $\alpha = \alpha(F)$, let d = d(F) be the minimum degree of any vertex of F - S relative to a maximum independent set S. Then,

$$sat(n,F) \leq (t-\alpha-1)n + \lfloor (d-1)(n-t+\alpha+1)/2 \rfloor - {t-\alpha \choose 2},$$

and $K_{t-\alpha-1} + H_d$, contains a saturated graph, where H_d is a (d-1)-regular graph of order $n-t+\alpha+1$.

SATURATION NUMBERS ARE LINEAR

Theorem

(Kászonyi, Tuza (1986)) For a given graph F of order t and independence number $\alpha = \alpha(F)$, let d = d(F) be the minimum degree of any vertex of F - S relative to a maximum independent set S. Then,

$$sat(n,F) \leq (t-\alpha-1)n + \lfloor (d-1)(n-t+\alpha+1)/2 \rfloor - {t-\alpha \choose 2},$$

and $K_{t-\alpha-1} + H_d$, contains a saturated graph, where H_d is a (d-1)-regular graph of order $n-t+\alpha+1$.

Corollary

(Kászonyi, Tuza (1986)) For each graph F there is a constant c = c(F) such that

EXAMPLE OF EXTREMAL SATURATED GRAPH

 H_d is a (d-1)-regular graph of order $n-t+\alpha+1$.

Theorem

Let F be a graph with p vertices, q edges, and minimal degree δ . Then, for any $n \geq p$

$$q-1+(\delta-1)(n-p)/2 \le wsat(n,F) \le (p-1)(p-2)/2+(\delta-1)(n-p+1).$$

Theorem

Let F be a graph with p vertices, q edges, and minimal degree δ . Then, for any $n \geq p$

$$q-1+(\delta-1)(n-p)/2 \le wsat(n,F) \le (p-1)(p-2)/2+(\delta-1)(n-p+1).$$

Example

The extremal graph is $K_{\delta-1} + (K_{p-\delta} \cup \overline{K}_{n-p+1})$.

Theorem

Let F be a graph with p vertices, q edges, and minimal degree δ . Then, for any $n \geq p$

$$q-1+(\delta-1)(n-p)/2 \le wsat(n,F) \le (p-1)(p-2)/2+(\delta-1)(n-p+1).$$

Theorem

Let F be a graph with p vertices, q edges, and minimal degree δ . Then, for any $n \ge p$

$$q-1+(\delta-1)(n-p)/2 \leq wsat(n,F) \leq (p-1)(p-2)/2+(\delta-1)(n-p+1).$$

Theorem

(F. Gould, Jacobson) If F is a graph with p vertices and minimal degree δ , then,

$$\frac{\delta n}{2} - \frac{n}{\delta + 1} \le wsat(n, F) \le (\delta - 1)n + (p - 1)(p - 2\delta)/2$$

for any n sufficiently large.

Theorem

(F. Gould, Jacobson) Let F be a graph with p vertices, q edges, and minimal degree δ . Then, for any $n \ge p$

$$\frac{(\delta(F)-1)n}{2}+c_1\leq wsat(n,F)\leq (\delta(F)-1)n+c_2.$$

Theorem

(F. Gould, Jacobson) Let F be a graph with p vertices, q edges, and minimal degree δ . Then, for any $n \ge p$

$$\frac{(\delta(F)-1)n}{2}+c_1\leq wsat(n,F)\leq (\delta(F)-1)n+c_2.$$

Theorem

$$wsat(n,F) = (\delta(F)-1)n + c_2 \text{ for } \delta(F) = 1 \text{ or } 2.$$

Theorem

(F. Gould, Jacobson) Let F be a graph with p vertices, q edges, and minimal degree δ . Then, for any $n \ge p$

$$\frac{(\delta(F)-1)n}{2}+c_1\leq wsat(n,F)\leq (\delta(F)-1)n+c_2.$$

Theorem

$$wsat(n,F) = (\delta(F)-1)n + c_2 \text{ for } \delta(F) = 1 \text{ or } 2.$$

Question

Is
$$wsat(n, F) = (\delta(F) - 1)n + c_2$$
 for $\delta(F) \ge 3$? **NO**

Let $\mathcal F$ be a family of graphs. Then, $ex(n,\mathcal F)$ satisfies:

Let \mathcal{F} be a family of graphs. Then, $ex(n, \mathcal{F})$ satisfies:

(1) $ex(n, H) \le ex(n, G)$ if H is a subgraph of G.

Let \mathcal{F} be a family of graphs. Then, $ex(n, \mathcal{F})$ satisfies:

- (1) $ex(n, H) \le ex(n, G)$ if H is a subgraph of G.
- (2) $ex(n, \mathcal{F}) \leq ex(n, \mathcal{F}')$ if $\mathcal{F}' \subset \mathcal{F}$

Let \mathcal{F} be a family of graphs. Then, $ex(n, \mathcal{F})$ satisfies:

- (1) $ex(n, H) \le ex(n, G)$ if H is a subgraph of G.
- (2) $ex(n, \mathcal{F}) \leq ex(n, \mathcal{F}')$ if $\mathcal{F}' \subset \mathcal{F}$
- (3) $ex(n, \mathcal{F}) \leq ex(n+1, \mathcal{F})$

Let \mathcal{F} be a family of graphs. Then, $ex(n, \mathcal{F})$ satisfies:

- (1) $ex(n, H) \le ex(n, G)$ if H is a subgraph of G.
- (2) $ex(n, \mathcal{F}) \leq ex(n, \mathcal{F}')$ if $\mathcal{F}' \subset \mathcal{F}$
- (3) $ex(n, \mathcal{F}) \leq ex(n+1, \mathcal{F})$

 $sat(n,\mathcal{G})$ and $wsat(n,\mathcal{F})$ does not satisfy any of these properties.

BAD BEHAVIOR FOR (1) FOR SATURATION

Theorem

J. Faudree, R. Faudree, R. Gould, M. Jacobson Given any positive integer C, any tree T is a subtree of a tree T' = T'(T, C) such that for n sufficiently large

$$sat(T', n) \geq Cn$$
.

Any tree T' is a subtree of a tree T'' = T''(T', C) such that for n sufficiently large

BAD BEHAVIOR FOR (1) FOR SATURATION

Theorem

J. Faudree, R. Faudree, R. Gould, M. Jacobson Given any positive integer C, any tree T is a subtree of a tree T' = T'(T, C) such that for n sufficiently large

$$sat(T', n) \geq Cn$$
.

Any tree T' is a subtree of a tree T'' = T''(T', C) such that for n sufficiently large

Theorem

There are sequences of trees $T(1) \subset T(2) \subset \cdots T(m)$ such that for any positive integer C and n sufficiently large

sat(T(i), n) < n, for i odd and sat(T(i), n) > Cn, for i even.

BAD BEHAVIOR FOR (2) FOR SATURATION

Theorem

J. Faudree, R. Faudree, R. Gould, M. Jacobson For $t \ge 2$ and n > t + 1,

$$sat(n, K_{1,t} + e) = n - 1,$$

and
$$Sat(n, K_{1,t} + e) = \{K_{1,n-1}\}.$$

BAD BEHAVIOR FOR (2) FOR SATURATION

Theorem

J. Faudree, R. Faudree, R. Gould, M. Jacobson For $t \ge 2$ and n > t + 1.

$$sat(n, K_{1,t} + e) = n - 1,$$

and
$$Sat(n, K_{1,t} + e) = \{K_{1,n-1}\}.$$

Theorem

For $t \geq 2$ and $n \geq t + 1$,

$$sat(n, \{K_{1,t} + e, K_{1,t}\}) = sat(n, K_{1,t}) = (t-1)n/2 - \frac{1}{2}\lfloor t^2/4 \rfloor.$$

BAD BEHAVIOR FOR (3) FOR SATURATION

Theorem

(Kászonyi, Tuza (1986)) For $t \ge 2$,

$$sat(2k-1, P_4) = k+1$$
; $Sat(2k-1, P_4) = K_3 \cup (k-2)K_2$.

and

$$sat(2k, P_4) = k$$
; $Sat(2k, P_4) = kK_2$.

BAD BEHAVIOR FOR (1) - WEAK SATURATION

(a) G_p graph obtained from K_p by adding a pendant edge.

BAD BEHAVIOR FOR (1) - WEAK SATURATION

(a) G_p graph obtained from K_p by adding a pendant edge.

- (b) $wsat(n, G_p) = \binom{p}{2}$ for all $n \ge p + 1$.
- (c) $wsat(n, K_p) = {p-2 \choose 2} + (p-2)(n-p+2)$ for $n \ge p$.

BAD BEHAVIOR FOR (2) - WEAK SATURATION

(a) S_p star with p vertices, S_p^* graph obtained from S_p by adding an edge.

BAD BEHAVIOR FOR (2) - WEAK SATURATION

(a) S_p star with p vertices, S_p^* graph obtained from S_p by adding an edge.

(b)
$$wsat(n, S_p^*) = p - 1.$$

(c)
$$wsat(n, \{S_p, S_p^*\}) = \binom{p-1}{2}$$
.

BAD BEHAVIOR FOR (3) - WEAK SATURATION

BAD BEHAVIOR FOR (3) - WEAK SATURATION

- (a) $wsat(6, H_1) = 7.$
- (b) $wsat(7, H_1) = 6$

BAD BEHAVIOR FOR (3) - WEAK SATURATION

- (a) $wsat(6, H_1) = 7.$
- (b) $wsat(7, H_1) = 6$
- (a) $wsat(6, 2K_3) = 10 \text{ and } H_2 \in WSat(6, K_3).$
- (b) $wsat(7, 2K_3) = 8 \text{ and } H_3 \in WSat(6, K_3).$
- (c) $wsat(8, 2K_3) = 8 \text{ and } H_4 \in WSat(6, K_3).$

Theorem

Let F be a graph with p vertices, q edges, and minimal degree δ . Then,

$$wsat(n, F) \le wsat(p, F) + (\delta - 1)(n - p)$$

for any $n \ge p$.

Theorem

Let F be a graph with p vertices, q edges, and minimal degree δ . Then,

$$wsat(n, F) \leq wsat(p, F) + (\delta - 1)(n - p)$$

for any $n \geq p$.

Let $F'_p \in WSat(p, F)$.

Theorem

Let F be a graph with p vertices, q edges, and minimum degree $\delta = \delta(F)$. Let q' = wsat(p, F). Then, for n divisible by p,

$$wsat(n, F) \leq \frac{n}{p}q' + \left(\frac{n}{p} - 1\right)\binom{\delta}{2}.$$

Theorem

Let F be a graph with p vertices, q edges, and minimum degree $\delta = \delta(F)$. Let q' = wsat(p, F). Then, for n divisible by p,

$$wsat(n, F) \leq \frac{n}{p}q' + \left(\frac{n}{p} - 1\right)\binom{\delta}{2}.$$

Let $F'_p \in WSat(p, F)$.

Definition

A graph G of order p with q edges is self weakly saturated if wsat(p, G) = q - 1.

Definition

A graph G of order p with q edges is self weakly saturated if wsat(p, G) = q - 1.

Definition

If a self weakly saturated graph G has a vertex v (called the root) and an ordering of the edges of G such that as each edge is added it is possible to choose a new copy of G in which v is always the same vertex, then the graph G is a rooted self weakly saturated graph.

EXAMPLES

EXAMPLES

(1) P_n is rooted self weakly saturated

Figure: P_4 is a rooted self weakly saturated graph with vertex 1 as a root.

EXAMPLES

(1) P_n is rooted self weakly saturated

Figure: P_4 is a rooted self weakly saturated graph with vertex 1 as a root.

(2) $K_n - F_p$, when F_p is a forest with p < n is self weakly saturated.

EXAMPLES

(1) P_n is rooted self weakly saturated

Figure: P_4 is a rooted self weakly saturated graph with vertex 1 as a root.

- (2) $K_n F_p$, when F_p is a forest with p < n is self weakly saturated.
- (3) $C_n \cup e$ where e is a 2-chord of C_n is self weakly saturated.

Theorem

Let F be a graph of order p with q edges containing a cut-vertex v such that one of the components of F-v along with v forms a rooted self saturated tree, T_m with root v. Then, for $n \geq 2p-m$,

$$wsat(n, F) = q - 1.$$

Theorem

Let F be a graph of order p with q edges containing a cut-vertex v such that one of the components of F-v along with v forms a rooted self saturated tree, T_m with root v. Then, for $n \geq 2p-m$,

$$wsat(n, F) = q - 1.$$

Theorem

For any given pair of positive integers p and q with $p-1 \leq q \leq {p \choose 2}$, there is a connected self weakly saturated graph with p vertices and q edges.

Theorem

For any given pair of positive integers p and q with $p-1 \leq q \leq {p \choose 2}$, there is a connected self weakly saturated graph with p vertices and q edges.

Question

Given a graph G with p vertices and q edges, what conditions on the graphical parameters of G would imply that G is self weakly saturated.

Definition

A graph H is vertex symmetric, if for any pair of vertices u and v in H, there is an automorphism θ of G such that $\theta(u) = v$.

Definition

A graph H is vertex symmetric, if for any pair of vertices u and v in H, there is an automorphism θ of G such that $\theta(u) = v$.

Definition

Given a vertex symmetric H, the graph G = H - H will denote the graph obtained from $H \cup H$ by adding an edge between the two copies of H.

Definition

A graph H is vertex symmetric, if for any pair of vertices u and v in H, there is an automorphism θ of G such that $\theta(u) = v$.

Definition

Given a vertex symmetric H, the graph G = H - H will denote the graph obtained from $H \cup H$ by adding an edge between the two copies of H.

Theorem

If H is a vertex symmetric graph of order p with $\delta(H)=\delta$, then

$$wsat(2p, H - H) = \delta p.$$

QUESTIONS

Question

Is there a finite set of graphical parameters that will determine the saturation number (weak saturation number) of a graph, or at least determine the order of magnitude?

QUESTIONS

Question

Is there a finite set of graphical parameters that will determine the saturation number (weak saturation number) of a graph, or at least determine the order of magnitude?

Question

For a fixed graphs H, for which integers m with

$$sat(n, H) \le m \le ex(H, n)$$

such that there is a H-saturated graph with m edges (Edge Saturation Spectrum)

QUESTIONS

Question

Is there a finite set of graphical parameters that will determine the saturation number (weak saturation number) of a graph, or at least determine the order of magnitude?

Question

For a fixed graphs H, for which integers m with

$$sat(n, H) \le m \le ex(H, n)$$

such that there is a H-saturated graph with m edges (Edge Saturation Spectrum)

Question

Is there a universal lower bound for the weak saturation number in terms of the minimum degree of a graph? In particular is $ws(n,G) \ge (\delta n)/2 + c$ for some constant c.

THANKS

THANKS

QUESTIONS?