P-adic decomposable form inequalities

Jan-Hendrik Evertse

Universiteit Leiden

report on work of Junjiang Liu (Leiden, Bordeaux) (PhD-student of Pascal Autissier and J.-H. E.)

Erdős Centennial Conference, Budapest, July 4, 2013

Thue inequalities

Let $F(X, Y)=a_{0} X^{d}+a_{1} X^{d-1} Y+\cdots+a_{d} Y^{d} \in \mathbb{Z}[X, Y]$ be an irreducible binary form of degree $d \geq 3$. Define

$$
N(F, m):=\#\left\{(x, y) \in \mathbb{Z}^{2}:|F(x, y)| \leq m\right\} .
$$

Theorem (Thue, 1909)
$N(F, m)<\infty$ for all $m>0$.

Thue inequalities

Let $F(X, Y)=a_{0} X^{d}+a_{1} X^{d-1} Y+\cdots+a_{d} Y^{d} \in \mathbb{Z}[X, Y]$ be an irreducible binary form of degree $d \geq 3$. Define

$$
N(F, m):=\#\left\{(x, y) \in \mathbb{Z}^{2}:|F(x, y)| \leq m\right\} .
$$

Theorem (Thue, 1909)
$N(F, m)<\infty$ for all $m>0$.

Let $V(F, m):=\operatorname{area}\left(\left\{(x, y) \in \mathbb{R}^{2}:|F(x, y)| \leq m\right\}\right)$.
Then $V(F, m)=V(F, 1) m^{2 / d}$.
Theorem (Mahler, 1933)

$$
N(F, m)=V(F, 1) m^{2 / d}+O_{F}\left(m^{1 /(d-1)}\right) \text { as } m \rightarrow \infty .
$$

Results of Bean and Thunder

Let $F \in \mathbb{Z}[X, Y]$ be an irreducible binary form of degree $d \geq 3$.
Theorem (Bean, 1994)
$V(F, 1) \leq 16|D(F)|^{-1 / d(d-1)}$, where $D(F)$ denotes the discriminant of F.

Results of Bean and Thunder

Let $F \in \mathbb{Z}[X, Y]$ be an irreducible binary form of degree $d \geq 3$.
Theorem (Bean, 1994)
$V(F, 1) \leq 16|D(F)|^{-1 / d(d-1)}$, where $D(F)$ denotes the discriminant of F.

Theorem (Thunder, 2001)
$N(F, m) \leq C(d) m^{2 / d}$ for $m \geq 1$.

Results of Bean and Thunder

Let $F \in \mathbb{Z}[X, Y]$ be an irreducible binary form of degree $d \geq 3$.
Theorem (Bean, 1994)
$V(F, 1) \leq 16|D(F)|^{-1 / d(d-1)}$, where $D(F)$ denotes the discriminant of F.

Theorem (Thunder, 2001)
$N(F, m) \leq C(d) m^{2 / d}$ for $m \geq 1$.

Theorem (Thunder, 2005)
Assume that d is odd. Then

$$
\left|N(F, m)-V(F, 1) m^{2 / d}\right| \leq C^{\prime}(d) m^{2 /(d+1)} .
$$

Norm form inequalities

Let K be a number field of degree $d, \alpha_{1}, \ldots, \alpha_{n} \in K$ and $b \in \mathbb{Z} \backslash\{0\}$ such that

$$
F:=b N_{K / \mathbb{Q}}\left(\alpha_{1} X_{1}+\cdots+\alpha_{n} X_{n}\right) \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right] .
$$

Define $W:=\left\{x_{1} \alpha_{1}+\cdots+x_{n} \alpha_{n}: x_{i} \in \mathbb{Q}\right\}$ and

$$
W^{J}:=\{\xi \in W: \xi J \subseteq W\} \text { for each subfield } J \text { of } K
$$

The norm form F is called non-degenerate, if

- $\alpha_{1}, \ldots, \alpha_{n}$ are linearly independent over \mathbb{Q}, and
- $W^{J}=(0)$ for each subfield J of K with $J \neq \mathbb{Q}$, imag. quadr. field.

Theorem (Schmidt, 1971)

For every $m>0$, the norm form inequality $|F(\mathbf{x})| \leq m$ has only finitely many solutions $\mathbf{x} \in \mathbb{Z}^{n}$
$\Longleftrightarrow F$ is non-degenerate.

Decomposable forms

Let $F \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ be a decomposable form, i.e., $F=\ell_{1} \cdots \ell_{d}$ with $\ell_{1}, \ldots, \ell_{d}$ homogeneous linear forms in n variables with algebraic coefficients.

We can express F as a product of (possibly equal) norm forms

$$
F=b \prod_{i=1}^{q} N_{K_{i} / \mathbb{Q}}\left(\alpha_{i 1} X_{1}+\cdots+\alpha_{i n} X_{n}\right)
$$

Define the \mathbb{Q}-algebra $\Omega:=K_{1} \times \cdots \times K_{q}$ with coordinatewise addition $\left(\alpha_{1}, \ldots, \alpha_{q}\right)+\left(\beta_{1}, \ldots, \beta_{q}\right)=\left(\alpha_{1}+\beta_{1}, \ldots, \alpha_{q}+\beta_{q}\right)$ and multiplication $\left(\alpha_{1}, \ldots, \alpha_{q}\right) \cdot\left(\beta_{1}, \ldots, \beta_{q}\right)=\left(\alpha_{1} \beta_{1}, \ldots, \alpha_{q} \beta_{q}\right)$, and

$$
\begin{aligned}
& W:=\left\{\sum_{j=1}^{n} x_{j} \boldsymbol{\alpha}_{j}: x_{j} \in \mathbb{Q}\right\}, \quad \boldsymbol{\alpha}_{j}=\left(\alpha_{1 j}, \ldots, \alpha_{q j}\right) \in \Omega, \\
& W^{A}:=\{\boldsymbol{\xi} \in W: \boldsymbol{\xi} A \subseteq W\} \quad(A \mathbb{Q} \text {-subalgebra of } \Omega) .
\end{aligned}
$$

Decomposable form inequalities

Let $F \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ be a decomposable form. Write as before

$$
\begin{aligned}
& F=b \prod_{i=1}^{q} N_{K_{i} / \mathbb{Q}}\left(\alpha_{i 1} X_{1}+\cdots+\alpha_{i n} X_{n}\right), \quad \Omega=K_{1} \times \cdots \times K_{q}, \\
& W:=\left\{\sum_{j=1}^{n} x_{j} \alpha_{j}: x_{j} \in \mathbb{Q}\right\}, \quad \boldsymbol{\alpha}_{j}=\left(\alpha_{1 j}, \ldots, \alpha_{q j}\right) \\
& W^{A}:=\{\boldsymbol{\xi} \in W: \boldsymbol{\xi} A \subseteq W\} \quad(A \mathbb{Q} \text {-subalgebra of } \Omega) .
\end{aligned}
$$

We call F non-degenerate if

- $\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{n}$ are linearly independent over \mathbb{Q}, and
- $W^{A}=(0)$ for every \mathbb{Q}-subalgebra A of Ω with $A \neq \mathbb{Q}$, im. quadr. field.

Theorem (Györy, E., 1980's, 1990's)

For every $m>0$, the inequality $|F(\mathbf{x})| \leq m$ has only finitely many solutions $\mathbf{x} \in \mathbb{Z}^{n}$
$\Longleftrightarrow F$ is non-degenerate.

Thunder's results on decomposable form inequalities (I)

Let $F=\ell_{1} \cdots \ell_{d} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ be a decomposable form of degree d, with linear factors $\ell_{1}, \ldots, \ell_{d}$ with algebraic coefficients. Define

$$
\begin{aligned}
& N(F, m):=\#\left\{\mathbf{x} \in \mathbb{Z}^{n}:|F(\mathbf{x})| \leq m\right\}, \\
& V(F, m):=\operatorname{Vol}\left(\left\{\mathbf{x} \in \mathbb{R}^{n}:|F(\mathbf{x})| \leq m\right\}\right) .
\end{aligned}
$$

Then $V(F, m)=V(F, 1) m^{n / d}$.

Theorem (Thunder, 2001)
It can be effectively decided in terms of $\ell_{1}, \ldots, \ell_{d}$ whether $V(F, 1)$ is finite. If this is the case, then

$$
V(F, 1) \leq C_{1}(n, d) .
$$

Thunder's results on decomposable form inequalities (II)

Let $F \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ be a decomposable form of degree d.
We say that F is of finite type if for every non-zero linear subspace T of \mathbb{R}^{n} defined over \mathbb{Q}, the set $\{\mathbf{x} \in T:|F(\mathbf{x})| \leq 1\}$ has finite volume in T.

Theorem (Thunder)

Assume F is of finite type. Then
(i) $N(F, m) \leq C_{2}(n, d) m^{n / d}$ (2001),
(ii) $N(F, m)=V(F, 1) m^{n / d}+O_{F}\left(m^{n /\left(d+n^{-2}\right)}\right)$ as $m \rightarrow \infty$ (2001),
(iii) $\left|N(F, m)-V(F, 1) m^{n / d}\right| \leq C_{3}(n, d) m^{n /\left(d+(n-1)^{-2}\right)}$ if $\operatorname{gcd}(n, d)=1$ (2005).

Thunder's results on decomposable form inequalities (II)

Let $F \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ be a decomposable form of degree d.
We say that F is of finite type if for every non-zero linear subspace T of \mathbb{R}^{n} defined over \mathbb{Q}, the set $\{\mathbf{x} \in T:|F(\mathbf{x})| \leq 1\}$ has finite volume in T.

Theorem (Thunder)

Assume F is of finite type. Then
(i) $N(F, m) \leq C_{2}(n, d) m^{n / d}$ (2001),
(ii) $N(F, m)=V(F, 1) m^{n / d}+O_{F}\left(m^{n /\left(d+n^{-2}\right)}\right)$ as $m \rightarrow \infty$ (2001),
(iii) $\left|N(F, m)-V(F, 1) m^{n / d}\right| \leq C_{3}(n, d) m^{n /\left(d+(n-1)^{-2}\right)}$ if $\operatorname{gcd}(n, d)=1$ (2005).

Fact:

F is of finite type $\Longleftrightarrow F$ is non-degenerate.

P-adic decomposable form inequalities

Let $F \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ be a decomposable form and $S=\left\{\infty, p_{1}, \ldots, p_{t}\right\}$, where p_{1}, \ldots, p_{t} are distinct primes.

Let $|\cdot|_{\infty}$ denote the ordinary absolute value, and $|\cdot|_{p}$ the p-adic absolute value with $|p|_{p}=p^{-1}$.

We consider the inequality
(1) $\quad \prod_{p \in S}|F(\mathbf{x})|_{p} \leq m$ in $\mathbf{x} \in \mathbb{Z}^{n}$ with $\operatorname{gcd}\left(\mathbf{x}, p_{1} \cdots p_{t}\right)=1$
where $\operatorname{gcd}\left(\mathbf{x}, p_{1} \cdots p_{t}\right):=\operatorname{gcd}\left(x_{1}, \ldots, x_{n}, p_{1} \cdots p_{t}\right)$ for $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}$.

Fact:

$\prod_{p \in S}|F(\mathbf{x})|_{p} \leq m \Longleftrightarrow$

$$
\exists a, z_{1}, \ldots, z_{t} \in \mathbb{Z} \text { with } F(\mathbf{x})=a p_{1}^{z_{1}} \cdots p_{t}^{z_{t}}, \quad z_{i} \geq 0, \quad|a| \leq m .
$$

P-adic decomposable form inequalities

Let $F \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ be a decomposable form and $S=\left\{\infty, p_{1}, \ldots, p_{t}\right\}$, where p_{1}, \ldots, p_{t} are distinct primes.

Let $|\cdot|_{\infty}$ denote the ordinary absolute value, and $|\cdot|_{p}$ the p-adic absolute value with $|p|_{p}=p^{-1}$.

We consider the inequality
(1) $\quad \prod_{p \in S}|F(\mathbf{x})|_{p} \leq m$ in $\mathbf{x} \in \mathbb{Z}^{n}$ with $\operatorname{gcd}\left(\mathbf{x}, p_{1} \cdots p_{t}\right)=1$
where $\operatorname{gcd}\left(\mathbf{x}, p_{1} \cdots p_{t}\right):=\operatorname{gcd}\left(x_{1}, \ldots, x_{n}, p_{1} \cdots p_{t}\right)$ for $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}$.

Aim:

Compare the number $N(F, S, m)$ of solutions of (1) with the "volume" $V(F, S, m)$ of a subset of $\prod_{p \in S} \mathbb{Q}_{p}^{n}$.

Measures

Define
$\mu_{\infty}=$ Lebesgue measure on $\mathbb{R}=\mathbb{Q}_{\infty}$ with $\mu_{\infty}([0,1])=1$,
$\mu_{p}=$ Haar measure on \mathbb{Q}_{p} with $\mu_{p}\left(\mathbb{Z}_{p}\right)=1$ (p prime),
$\mu_{S}=\prod_{p \in S} \mu_{p}=$ product measure on $\prod_{p \in S} \mathbb{Q}_{p}=\left\{\left(x_{p}\right)_{p \in S}: x_{p} \in \mathbb{Q}_{p}\right\}$,
$\mu_{S}^{n}=$ product measure on $\prod_{p \in S} \mathbb{Q}_{p}^{n}$.

We view \mathbb{Q} as a subset of $\prod_{p \in S} \mathbb{Q}_{p}$ via the diagonal embedding

$$
\mathbb{Q} \hookrightarrow \prod_{p \in S} \mathbb{Q}_{p}: \quad x \mapsto(x)_{p \in S}
$$

Definitions

Let $F \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ be a decomposable form of degree d, and $S=\left\{\infty, p_{1}, \ldots, p_{t}\right\}$ where p_{1}, \ldots, p_{t} are primes. Define

$$
\left.\begin{array}{l}
N(F, S, m):=\#\left\{\mathbf{x} \in \mathbb{Z}^{n}: \prod_{p \in S}|F(\mathbf{x})|_{p} \leq m, \operatorname{gcd}\left(\mathbf{x}, p_{1} \cdots p_{t}\right)=1\right\}, \\
V(F, S, m)=\mu_{S}^{n}\left(\left\{\begin{array}{c}
\left(\mathbf{x}_{p}\right)_{p \in S} \in \prod_{p \in S} \mathbb{Q}_{p}^{n}: \\
\prod_{p \in S}\left|F\left(\mathbf{x}_{p}\right)\right|_{p} \leq m, \\
\left|\mathbf{x}_{p_{i}}\right|_{p_{i}}=1 \text { for } i=1, \ldots, t
\end{array}\right\}\right.
\end{array}\right\}, ~ \$
$$

where $|\mathbf{x}|_{p}:=\max _{i}\left|x_{i}\right|_{p}$ for $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Q}_{p}^{n}$.
We have $V(F, S, m)=V(F, S, 1) m^{n / d}$.

Old results

Asymptotic formulas

$$
\begin{aligned}
N(F, S, m)= & V(F, S, m)+O_{F, S}\left(m^{a(n, d)}\right) \\
= & V(F, S, 1) m^{n / d}+O_{F, S}\left(m^{a(n, d)}\right) \text { as } m \rightarrow \infty \\
& \text { with } a(n, d)<n / d
\end{aligned}
$$

have been derived in the following cases:

- $F \in \mathbb{Z}[X, Y]$ irreducible binary form of degree $d \geq 3$ (Mahler, 1933)
- $F \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ norm form of degree $d \geq\left(5 n^{5}\right)^{1 / 3}$ with some additional constraints (R. de Jong, Master thesis, Leiden, 1998)

A general criterion

Let $F \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ be a decomposable form of degree d, $S=\left\{\infty, p_{1}, \ldots, p_{t}\right\}$. Write

$$
\begin{aligned}
& F=b \prod_{i=1}^{q} N_{K_{i} / \mathbb{Q}}\left(\alpha_{i 1} X_{1}+\cdots+\alpha_{i n} X_{n}\right), \quad \Omega=K_{1} \times \cdots \times K_{q}, \\
& W:=\left\{\sum_{j=1}^{n} x_{j} \alpha_{j}: x_{j} \in \mathbb{Q}\right\}, \quad \alpha_{j}=\left(\alpha_{1 j}, \ldots, \alpha_{q j}\right) .
\end{aligned}
$$

Theorem (Györy, E., 1990's)

For every m, S, the number $N(F, S, m)$ of $\mathbf{x} \in \mathbb{Z}^{n}$ with
$\prod_{p \in S}|F(\mathbf{x})|_{p} \leq m$ and $\operatorname{gcd}\left(\mathbf{x}, p_{1} \cdots p_{t}\right)=1$ is finite
\Longleftrightarrow

- $\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{n}$ are linearly independent over \mathbb{Q}, and
- $W^{A}=(0)$ for every \mathbb{Q}-subalgebra A of Ω with $A \not \approx \mathbb{Q}$.

New results

Let $F \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ be a decomposable form of degree d and $S=\left\{\infty, p_{1}, \ldots, p_{t}\right\}$. Define
$N(F, S, m)=\#\left\{\mathbf{x} \in \mathbb{Z}^{n}: \prod_{p \in S}|F(\mathbf{x})|_{p} \leq m, \operatorname{gcd}\left(\mathbf{x}, p_{1} \cdots p_{t}\right)=1\right\}$,
$V(F, S, 1)=\mu_{S}^{n}\left(\left\{\left(\mathbf{x}_{p}\right)_{p \in S} \in \prod_{p \in S} \mathbb{Q}_{p}^{n}: \prod_{p \in S}\left|F\left(\mathbf{x}_{p}\right)\right|_{p} \leq 1\right.\right.$,

$$
\left.\left.\left.\left|\mathbf{x}_{p_{i}}\right|\right|_{p_{i}}=1 \forall i\right\}\right) .
$$

Assume that

- $\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{n}$ are linearly independent over \mathbb{Q}, and
- $W^{A}=(0)$ for every \mathbb{Q}-subalgebra A of Ω with $A \not \approx \mathbb{Q}$.

New results

Let $F \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ be a decomposable form of degree d and $S=\left\{\infty, p_{1}, \ldots, p_{t}\right\}$. Define
$N(F, S, m)=\#\left\{\mathbf{x} \in \mathbb{Z}^{n}: \prod_{p \in S}|F(\mathbf{x})|_{p} \leq m, \operatorname{gcd}\left(\mathbf{x}, p_{1} \cdots p_{t}\right)=1\right\}$,
$V(F, S, 1)=\mu_{S}^{n}\left(\left\{\left(\mathbf{x}_{p}\right)_{p \in S} \in \prod_{p \in S} \mathbb{Q}_{p}^{n}: \prod_{p \in S}\left|F\left(\mathbf{x}_{p}\right)\right|_{p} \leq 1\right.\right.$,

$$
\left.\left.\left.\left|\mathbf{x}_{p_{i}}\right|\right|_{p_{i}}=1 \forall i\right\}\right)
$$

Assume that

- $\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{n}$ are linearly independent over \mathbb{Q}, and
- $W^{A}=(0)$ for every \mathbb{Q}-subalgebra A of Ω with $A \not \approx \mathbb{Q}$.

Theorem (Liu, 2013)

(i) $N(F, S, m)=V(F, S, 1) m^{n / d}+O_{F, S}\left(m^{n /\left(d+n^{-2}\right)}\right)$ as $m \rightarrow \infty$.
(ii) $N(F, S, m) \leq C_{1}(n, d, S) m^{n / d}$.
(iii) $V(F, S, 1) \leq C_{2}(n, d, S)$.

Open problems

Theorem (Liu, 2013)

(i) $N(F, S, m)=V(F, S, 1) m^{n / d}+O_{F, S}\left(m^{n /\left(d+n^{-2}\right)}\right)$ as $m \rightarrow \infty$.
(ii) $N(F, S, m) \leq C_{1}(n, d, S) m^{n / d}$.
(iii) $V(F, S, 1) \leq C_{2}(n, d, S)$.

Known: $N(F, S, 1) \leq\left(2^{34} d^{2}\right)^{n^{3}(t+1)}(E ., 1996)$.
Can the dependence on S in Liu's bounds be replaced by a dependence on the cardinality of S, and can the dependence on F in the error term be removed, i.e.,

- $N(F, S, m) \leq C_{1}(n, d, t) m^{n / d} ;$
- $V(F, S, 1) \leq C_{2}(n, d, t)$;
- $\left|N(F, S, m)-V(F, S, 1) m^{n / d}\right| \leq C_{3}(n, d, t) m^{a(n, d)}$ with $a(n, d)<n / d$?

Ingredients of the proof

- The quantitative p-adic Subspace Theorem, to deal with the "large" solutions.
- Adelic geometry of numbers, to deal with the "medium" solutions (p-adization of Thunder's method).
- Interpretation of the set of "small" solutions as $\mathcal{S} \cap \mathbb{Z}^{n}$ where \mathcal{S} is a bounded subset of $\prod_{p \in S} \mathbb{Q}_{p}^{n}$, and estimation of $\left|\#\left(\mathcal{S} \cap \mathbb{Z}^{n}\right)-\mu_{S}^{n}(\mathcal{S})\right|$.

Thank you for your attention!

