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1. Introduction

Let D be the open unit disk of the complex
plane. Its boundary, the unit circle of the complex
plane, is denoted by ∂D. Let

Kn :=
{
pn : pn(z) =

n∑

k=0

akz
k, ak ∈ C , |ak| = 1

}
.

The class Kn is often called the collection of all
(complex) unimodular polynomials of degree n.
Let

Ln :=

{
pn : pn(z) =

n∑

k=0

akz
k, ak ∈ {−1, 1}

}
.

The class Ln is often called the collection of all
Littlewood polynomials of degree n. By Parseval’s
formula,

∫ 2π

0

|Pn(e
it)|2 dt = 2π(n+ 1)

for all Pn ∈ Kn.
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Therefore

min
z∈∂D

|Pn(z)| <
√
n+ 1 < max

z∈∂D
|Pn(z)|

for all Pn ∈ Kn. An old problem (or rather an old
theme) is the following.

Problem 1.1 (Littlewood’s Flatness Prob-
lem). Examine that how close a unimodular poly-

nomial Pn ∈ Kn or Pn ∈ Ln can come to satisfying

(1.1) |Pn(z)| =
√
n+ 1 , z ∈ ∂D .

Obviously (1.1) is impossible if n ≥ 1. So one
must look for less than (1.1), but then there are
various ways of seeking such an “approximate sit-
uation”. One way is the following.
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In his paper [Li1] Littlewood had suggested
that, conceivably, there might exist a sequence
(Pn) of polynomials Pn ∈ Kn (possibly even
Pn ∈ Ln) such that

(n+ 1)−1/2|Pn(e
it)|

converges to 1 uniformly in t ∈ R. We shall call
such sequences of unimodular polynomials “ultra-
flat”.

Definition 1.2. Given a positive number ε, we

say that a polynomial Pn ∈ Kn is ε-flat if

(1− ε)
√
n+ 1 ≤ |Pn(z)| ≤ (1 + ε)

√
n+ 1 ,

z ∈ ∂D .

Definition 1.3. Given a sequence (εn) of posi-

tive numbers tending to 0, we say that a sequence

(Pn) of unimodular polynomials Pn ∈ Kn is (εn)-
ultraflat if

(1− εn)
√
n+ 1 ≤ |Pn(z)| ≤ (1 + εn)

√
n+ 1 ,

z ∈ ∂D .
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The existence of an ultraflat sequence of uni-
modular polynomials seemed very unlikely, in view
of a 1957 conjecture of P. Erdős (Problem 22 in
[Er]) asserting that there is an absolute constant
ε > 0 (independent of n) such that

(1.2) max
z∈∂D

|Pn(z)| ≥ (1 + ε)
√
n+ 1 ,

for all Pn ∈ Kn with n ≥ 1. Yet, refining a method
of Körner, Kahane (1985) proved that there ex-
ists a sequence (Pn) with Pn ∈ Kn which is (εn)-
ultraflat, where

εn = O
(
n−1/17

√
log n

)
.

Thus the Erdős conjecture (1.2) was disproved for
the classes Kn. For the more restricted class Ln

the analogous Erdős conjecture is unsettled to this
date. It is a common belief that the analogous
Erdős conjecture for Ln is true, and consequently
there is no sequence of ultraflat unimodular poly-
nomials Pn ∈ Ln.
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Based on certain properties satisfied by the ul-
raflat sequences of unimodular polynomials con-
structed by Kahane, in 1992 Saffari formulated a
few conjectures on the behavior of all possible ul-
traflat sequences of unimodular polynomials.

Most of these conjectures, including Saffari’s
“phase problem” and Saffari’s “near orthogonality
conjecture”, were proved in [E-01a], [E-01b], and
[E-03].

A recent paper of Bombieri and Bourgain [BB]
is devoted to the construction of ultraflat sequences
of unimodular polynomials. In particular, one ob-
tains a much improved estimate for the error term.
A major part of this paper deals also with the long-
standing problem of the effective construction of
ultraflat sequences of unimodular polynomials.
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A weaker version of Erdős’s conjecture states
that there is an absolute constant ε > 0 (indepen-
dent of n) such that

max
z∈∂D

|Pn(z)| ≥
√
n+ 1 + ǫ

for every Pn ∈ Ln with n ≥ 1.

It is conjectured that there are sequences of flat
Littlewood polynomials Pn ∈ Ln satisfying

c1
√
n+ 1 ≤ |Pn(z)| ≤ c2

√
n+ 1

for all z ∈ C on the unit circle with absolute con-
stants c1 > 0 and c2 > 0.

However, the lower bound part of this conjec-
ture, by itself, seems hard, and no sequence is
known that satisfies just the lower bound. A se-
quence of Littlewood polynomials satisfying just
the upper bound is given by the Rudin-Shapiro
polynomials. They appear in Harold Shapiro’s
1951 thesis at MIT and are sometimes called just
Shapiro polynomials.
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They also arise independently in Golay’s paper
[Go-51]. They are remarkably simple to construct
and are a rich source of counterexamples to pos-
sible conjectures. The Rudin-Shapiro polynomials
are defined recursively as follows:

P0(z) := 1 , Q0(z) := 1 ,

and

Pn+1(z) := Pn(z) + z2
n

Qn(z) ,

Qn+1(z) := Pn(z)− z2
n

Qn(z)

for n = 0, 1, 2, . . . . Note that both Pn and Qn are
polynomials of degree N − 1 with N := 2n hav-
ing each of their coefficients in {−1, 1}. It is well
known and easy to check by using the parallelo-
gram law that

|Pn+1(z)|2 + |Qn+1(z)|2 = 2(|Pn(z)|2 + |Qn(z)|2)
for every z ∈ ∂D. Hence

|Pn(z)|2 + |Qn(z)|2 = 2n+1 = 2N , z ∈ ∂D ,

and
|Pn(z)| ≤

√
2N , z ∈ ∂D .
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Let α < β be real numbers. The Mahler mea-
sure M0(P, [α, β]) is defined for bounded measur-
able functions P defined on [α, β] as

M0(P, [α, β]) := exp

(
1

β − α

∫ β

α

log |P (eit)| dt
)

.

It is well known that

M0(P, [α, β]) = lim
q→0+

Mq(P, [α, β]) ,

where, for q > 0,

Mq(P, [α, β]) :=

(
1

β − α

∫ β

α

∣∣P (eit)
∣∣q dt

)1/q

.

It is a simple consequence of the Jensen formula
that

M0(P ) := M0(P, [0, 2π]) = |c|
n∏

k=1

max{1, |zk|}

for every polynomial of the form

P (z) = c

n∏

k=1

(z − zk) , c, zk ∈ C .
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P. Borwein’s book [B-02] presents a few more
basic results on the Rudin-Shapiro polynomials.
Various other properties of them are discussed in
[BLM-76]. Obviously

M2(Pn, [0, 2π]) =
√
N , N := 2n,

by the Parseval formula. In 1969 Littlewood [Li-
68] evaluated M4(Pn, [0, 2π]) and found that

M4(Pn, [0, 2π]) ∼ (4N2/3)1/4 , N := 2n.

Rudin-Shapiro like polynomials in L4 on the unit
circle of the complex pane are studied in [BM-
00]. In 1980 Saffari [Sa-01] conjectured that with
N := 2n we have

Mq(Pn, [0, 2π]) ∼
√
2N

(q/2 + 1)1/q
, q > 0 .
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P. Borwein and Lockhart [BL-01] investigated
the asymptotic behavior of the mean value of nor-
malized Lp norms of Littlewood polynomials for
arbitrary p > 0. Using the Lindeberg Central
Limit Theorem and dominated convergence, they
proved that

lim
n→∞

1

2n+1

∑

f∈Ln

(Mp(f, [0, 2π]))
p

np/2
= Γ

(
1 +

p

2

)
.

The paper [CM-11] establishes beautiful results on
the average value of the Mahler measure and Lp

norms of unimodular polynomials in Kn.
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2 Mahler measure and moments

of the Rudin-Shapiro polynomials

Our first theorem states that the Mahler mea-
sure and the maximum norm of the Rudin-Shapiro
polynomials on the unit circle of the complex plane
have the same size.

Theorem 2.1. Let Pn and Qn be the n-th Rudin-

Shapiro polynomials defined in Section 1. There is

an absolute constant c1 > 0 such that

M0(Pn, [0, 2π]) = M0(Qn, [0, 2π]) ≥ c1
√
N ,

where

N := 2n = deg(Pn) + 1 = deg(Qn) + 1 .
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To formulate our next theorem we define

P̃n := 2−(n+1)/2Pn and Q̃n := 2−(n+1)/2Qn .

By using the above normalization, we have

|P̃n(z)|2 + |Q̃n(z)|2 = 1 , z ∈ ∂D .

For q > 0 let

Iq(P̃n) :=(Mq(P̃n, [0, 2π]))
q

:=
1

2π

∫ 2π

0

|P̃n(e
iτ )|q dτ .

The following result is a simple consequence of
Theorem 2.1.

Theorem 2.2. There exists a constant L < ∞
independent of n such that

∞∑

k=1

Ik(P̃n)

k
< L , n = 0, 1, . . . .
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Theorem 2.3. There exists an absolute constant

c2 > 0 such that

M0(Pn, [α, β]) ≥ c2
√
N

for all n ∈ N with N := 2n, and for all α, β ∈ R

such that

12π

N
≤ (logN)3/2

N1/2
≤ β − α ≤ 2π .

It looks plausible that Theorem 2.3 holds when
12π/N ≤ β − α ≤ 2π , but we do not seem to be
able to handle the case

12π/N ≤ β − α ≤ (logN)3/2N−1/2

at the moment.
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3. Lemmas

A key to the proof of Theorem 2.1 is the fol-
lowing observation which is a straightforward con-
sequence of the definition of the Rudin Shapiro
polynomials Pn and Qn.

Lemma 3.1. Let n ≥ 2, N := 2n, and

zj := eitj , tj :=
2πj

N
, j = 0, 1, . . . , N − 1.

We have

Pn(zj) = 2Pn−2(zj) , j = 2u,

Pn(zj) = (−1)
j−1

2 2iQn−2(zj) , j = 2u+ 1 ,

for u = 0, 1, . . . , N/2− 1.
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Combining this with a “Riesz Lemma type”
polynomial inequality we obtain the following.

Lemma 3.2. Let Pn and Qn be the n-th Rudin-

Shapiro polynomials. Let N := 2n, γ := sin2(π/8),
and

zj := eitj , tj :=
2πj

N
, j = 0, 1, . . . , N − 1.

We have

max{|Pn(zj)|2, |Pn(zj+1)|2} ≥ 2γN

for all j = 2u, u = 0, 1, . . . , N/2− 1.
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Another key to the proof of Theorem 2.1 is a sieve-
type lower bound for the Mahler measure of poly-
nomials proved in [EL-07]. Let PN be the set of
all polynomials of degree at most N with real co-
efficients.

Lemma 3.3. Assume that N,m ≥ 1,

0 < τ1 ≤ τ2 ≤ · · · ≤ τm ≤ 2π ,

τ0 := τm − 2π , τm+1 := τ1 + 2π .

Let

δ := max{τ1 − τ0, τ2 − τ1, . . . , τm − τm−1} .

For every A > 0 there is a B > 0 depending only

on A such that

m∑

j=1

τj+1 − τj−1

2
log |P (eiτj )|

≤
∫ 2π

0

log |P (eiτ )| dτ +B

for all P ∈ PN and δ ≤ AN−1.
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4. The Mahler measure of

the Fekete polynomials

Finding polynomials with suitably restricted
coefficients and maximal Mahler measure has in-
terested many authors.

Beller and Newman [BN-73] constructed uni-
modular polynomials of degree n whose Mahler
measure is at least

√
n − c/ log n. For a prime

number p the p-th Fekete polynomial is defined as

fp(z) :=

p−1∑

k=1

(
k

p

)
zk ,

where

(
k

p

)
=





1, if x2 ≡ k (mod p) for an x 6= 0 ,

0, if p divides k ,

−1, otherwise

is the usual Legendre symbol.Note that gp(z) :=
fp(z)/z is a Littlewood polynomial, and has the
same Mahler measure as fp.



19

In [Mo-80] Montgomery proved the following
fundamental result.

Theorem 4.1. There are absolute constants c1 >
0 and c2 > 0 such that

c1
√
p log log p ≤ max

z∈∂D
|fp(z)| ≤ c2

√
p log p .

In [EL-07] we proved the following result.

Theorem 4.2. For every ε > 0 there is a con-

stant cε such that

M0(fp, [0, 2π]) ≥
(
1

2
− ε

)√
p

for all primes p ≥ cε.

One of the key lemmas in the proof of the above
theorem formulates a remarkable property of the
Fekete polynomials. A simple proof of it is given
in [B-02, pp. 37-38].
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Lemma 4.3 (Gauss). We have

fp(z
j
p) = εp

(
j

p

)
p1/2 , j = 1, 2, . . . , p− 1 ,

and fp(1) = 0, where

zp := exp

(
2πi

p

)

is the first p-th root of unity, and εp ∈ {±1,±i}.

The choice of εp is more subtle. This is also a
result of Gauss, see [Hua-82].

Lemma 4.4 (Gauss). In Lemma 4.3 we have

εp =

{
1, if p ≡ 1 (mod 4)

i, if p ≡ 3 (mod 4) .
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In [E-11] Theorem 4.2 is extended to subarcs
of the unit circle.

Theorem 4.5. There exists an absolute constant

c1 > 0 such that

M0(fp, [α, β]) ≥ c1p
1/2

for all prime numbers p and for all α, β ∈ R such

that (log p)3/2p−1/2 ≤ β − α ≤ 2π.

In [E-12] we gave an upper bound for the aver-
age value of |fp(z)|q over any subarc I of the unit
circle, valid for all sufficiently large primes p and
all exponents q > 0.

Theorem 4.6. There exists a constant c2(q, ε)
depending only on q > 0 and ε > 0 such that

Mq(fp, [α, β]) ≤ c2(q, ε)p
1/2 ,

for all prime numbers p and for all α, β ∈ R such

that β − α ≥ 2p−1/2+ε.
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We remark that a combination of Theorems 4.5
and 4.6 shows that there is an absolute constant
c1 > 0 and a constant c2(q, ε) > 0 depending only
on q > 0 and ε > 0 such that

c1p
1/2 ≤ Mq(fp, [α, β]) ≤ c2(q, ε)p

1/2

for all prime numbers p and for all α, β ∈ R such
that β − α ≥ 2p−1/2+ε ≥ (log p)3/2p−1/2.

Conrey, Granville, Poonen, and Soundararajan
(2000) showed that fp has asymptotically κp zeros
on the unit circle, where

0.500668 < κ < 0.500813 .


