THE MAHLER MEASURE OF THE RUDIN-SHAPIRO POLYNOMIALS

Tamás Erdélyi
Texas A\&M University

1. Introduction

Let D be the open unit disk of the complex plane. Its boundary, the unit circle of the complex plane, is denoted by ∂D. Let

$$
\mathcal{K}_{n}:=
$$

$$
\left\{p_{n}: p_{n}(z)=\sum_{k=0}^{n} a_{k} z^{k}, \quad a_{k} \in \mathbb{C},\left|a_{k}\right|=1\right\}
$$

The class \mathcal{K}_{n} is often called the collection of all (complex) unimodular polynomials of degree n. Let

$$
\mathcal{L}_{n}:=\left\{p_{n}: p_{n}(z)=\sum_{k=0}^{n} a_{k} z^{k}, a_{k} \in\{-1,1\}\right\}
$$

The class \mathcal{L}_{n} is often called the collection of all Littlewood polynomials of degree n. By Parseval's formula,

$$
\int_{0}^{2 \pi}\left|P_{n}\left(e^{i t}\right)\right|^{2} d t=2 \pi(n+1)
$$

for all $P_{n} \in \mathcal{K}_{n}$.

Therefore

$$
\min _{z \in \partial D}\left|P_{n}(z)\right|<\sqrt{n+1}<\max _{z \in \partial D}\left|P_{n}(z)\right|
$$

for all $P_{n} \in \mathcal{K}_{n}$. An old problem (or rather an old theme) is the following.

Problem 1.1 (Littlewood's Flatness Problem). Examine that how close a unimodular polynomial $P_{n} \in \mathcal{K}_{n}$ or $P_{n} \in \mathcal{L}_{n}$ can come to satisfying
(1.1) $\quad\left|P_{n}(z)\right|=\sqrt{n+1}, \quad z \in \partial D$.

Obviously (1.1) is impossible if $n \geq 1$. So one must look for less than (1.1), but then there are various ways of seeking such an "approximate situation". One way is the following.

In his paper [Lii] Littlewood had suggested that, conceivably, there might exist a sequence $\left(P_{n}\right)$ of polynomials $P_{n} \in \mathcal{K}_{n}$ (possibly even $\left.P_{n} \in \mathcal{L}_{n}\right)$ such that

$$
(n+1)^{-1 / 2}\left|P_{n}\left(e^{i t}\right)\right|
$$

converges to 1 uniformly in $t \in \mathbb{R}$. We shall call such sequences of unimodular polynomials "ultraflat".

Definition 1.2. Given a positive number ε, we say that a polynomial $P_{n} \in \mathcal{K}_{n}$ is ε-flat if

$$
\begin{gathered}
(1-\varepsilon) \sqrt{n+1} \leq\left|P_{n}(z)\right| \leq(1+\varepsilon) \sqrt{n+1} \\
z \in \partial D
\end{gathered}
$$

Definition 1.3. Given a sequence (ε_{n}) of posilive numbers tending to 0 , we say that a sequence $\left(P_{n}\right)$ of unimodular polynomials $P_{n} \in \mathcal{K}_{n}$ is $\left(\varepsilon_{n}\right)$ ultraflat if

$$
\begin{gathered}
\left(1-\varepsilon_{n}\right) \sqrt{n+1} \leq\left|P_{n}(z)\right| \leq\left(1+\varepsilon_{n}\right) \sqrt{n+1} \\
z \in \partial D
\end{gathered}
$$

5

The existence of an ultraflat sequence of unimodular polynomials seemed very unlikely, in view of a 1957 conjecture of P. Erdős (Problem 22 in [Er]) asserting that there is an absolute constant $\varepsilon>0$ (independent of n) such that
(1.2) $\max _{z \in \partial D}\left|P_{n}(z)\right| \geq(1+\varepsilon) \sqrt{n+1}$,
for all $P_{n} \in \mathcal{K}_{n}$ with $n \geq 1$. Yet, refining a method of Körner, Kahane (1985) proved that there exists a sequence $\left(P_{n}\right)$ with $P_{n} \in \mathcal{K}_{n}$ which is $\left(\varepsilon_{n}\right)$ ultraflat, where

$$
\varepsilon_{n}=O\left(n^{-1 / 17} \sqrt{\log n}\right)
$$

Thus the Erdős conjecture (1.2) was disproved for the classes \mathcal{K}_{n}. For the more restricted class \mathcal{L}_{n} the analogous Erdős conjecture is unsettled to this date. It is a common belief that the analogous Erdős conjecture for \mathcal{L}_{n} is true, and consequently there is no sequence of ultraflat unimodular polynomials $P_{n} \in \mathcal{L}_{n}$.

Based on certain properties satisfied by the ulraflat sequences of unimodular polynomials constructed by Kahane, in 1992 Saffari formulated a few conjectures on the behavior of all possible ultraflat sequences of unimodular polynomials.

Most of these conjectures, including Saffari's "phase problem" and Saffari's "near orthogonality conjecture", were proved in [E-01a], [E-01b], and [E-03].

A recent paper of Bombieri and Bourgain [BB] is devoted to the construction of ultraflat sequences of unimodular polynomials. In particular, one obtains a much improved estimate for the error term. A major part of this paper deals also with the longstanding problem of the effective construction of ultraflat sequences of unimodular polynomials.

A weaker version of Erdős's conjecture states that there is an absolute constant $\varepsilon>0$ (independent of n) such that

$$
\max _{z \in \partial D}\left|P_{n}(z)\right| \geq \sqrt{n+1}+\epsilon
$$

for every $P_{n} \in \mathcal{L}_{n}$ with $n \geq 1$.

It is conjectured that there are sequences of flat Littlewood polynomials $P_{n} \in \mathcal{L}_{n}$ satisfying

$$
c_{1} \sqrt{n+1} \leq\left|P_{n}(z)\right| \leq c_{2} \sqrt{n+1}
$$

for all $z \in \mathbb{C}$ on the unit circle with absolute constants $c_{1}>0$ and $c_{2}>0$.

However, the lower bound part of this conjecture, by itself, seems hard, and no sequence is known that satisfies just the lower bound. A sequence of Littlewood polynomials satisfying just the upper bound is given by the Rudin-Shapiro polynomials. They appear in Harold Shapiro's 1951 thesis at MIT and are sometimes called just Shapiro polynomials.

They also arise independently in Golay's paper [Go-51]. They are remarkably simple to construct and are a rich source of counterexamples to possible conjectures. The Rudin-Shapiro polynomials are defined recursively as follows:

$$
P_{0}(z):=1, \quad Q_{0}(z):=1
$$

and

$$
\begin{aligned}
P_{n+1}(z) & :=P_{n}(z)+z^{2^{n}} Q_{n}(z) \\
Q_{n+1}(z) & :=P_{n}(z)-z^{2^{n}} Q_{n}(z)
\end{aligned}
$$

for $n=0,1,2, \ldots$ Note that both P_{n} and Q_{n} are polynomials of degree $N-1$ with $N:=2^{n}$ having each of their coefficients in $\{-1,1\}$. It is well known and easy to check by using the parallelogram law that

$$
\left|P_{n+1}(z)\right|^{2}+\left|Q_{n+1}(z)\right|^{2}=2\left(\left|P_{n}(z)\right|^{2}+\left|Q_{n}(z)\right|^{2}\right)
$$

for every $z \in \partial D$. Hence

$$
\left|P_{n}(z)\right|^{2}+\left|Q_{n}(z)\right|^{2}=2^{n+1}=2 N, \quad z \in \partial D
$$

and

$$
\left|P_{n}(z)\right| \leq \sqrt{2 N}, \quad z \in \partial D
$$

9

Let $\alpha<\beta$ be real numbers. The Mahler measure $M_{0}(P,[\alpha, \beta])$ is defined for bounded measurable functions P defined on $[\alpha, \beta]$ as

$$
M_{0}(P,[\alpha, \beta]):=\exp \left(\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} \log \left|P\left(e^{i t}\right)\right| d t\right) .
$$

It is well known that

$$
M_{0}(P,[\alpha, \beta])=\lim _{q \rightarrow 0+} M_{q}(P,[\alpha, \beta]),
$$

where, for $q>0$,

$$
M_{q}(P,[\alpha, \beta]):=\left(\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta}\left|P\left(e^{i t}\right)\right|^{q} d t\right)^{1 / q} .
$$

It is a simple consequence of the Jensen formula that

$$
M_{0}(P):=M_{0}(P,[0,2 \pi])=|c| \prod_{k=1}^{n} \max \left\{1,\left|z_{k}\right|\right\}
$$

for every polynomial of the form

$$
P(z)=c \prod_{k=1}^{n}\left(z-z_{k}\right), \quad c, z_{k} \in \mathbb{C} .
$$

P. Borwein's book [B-02] presents a few more basic results on the Rudin-Shapiro polynomials. Various other properties of them are discussed in [BLM-76]. Obviously

$$
M_{2}\left(P_{n},[0,2 \pi]\right)=\sqrt{N}, \quad N:=2^{n}
$$

by the Parseval formula. In 1969 Littlewood [Li68] evaluated $M_{4}\left(P_{n},[0,2 \pi]\right)$ and found that

$$
M_{4}\left(P_{n},[0,2 \pi]\right) \sim\left(4 N^{2} / 3\right)^{1 / 4}, \quad N:=2^{n}
$$

Rudin-Shapiro like polynomials in L_{4} on the unit circle of the complex pane are studied in [BM00]. In 1980 Saffari [Sa-01] conjectured that with $N:=2^{n}$ we have

$$
M_{q}\left(P_{n},[0,2 \pi]\right) \sim \frac{\sqrt{2 N}}{(q / 2+1)^{1 / q}}, \quad q>0
$$

11

P. Borwein and Lockhart [BL-01] investigated the asymptotic behavior of the mean value of normalized L_{p} norms of Littlewood polynomials for arbitrary $p>0$. Using the Lindeberg Central Limit Theorem and dominated convergence, they proved that

$$
\lim _{n \rightarrow \infty} \frac{1}{2^{n+1}} \sum_{f \in \mathcal{L}_{n}} \frac{\left(M_{p}(f,[0,2 \pi])\right)^{p}}{n^{p / 2}}=\Gamma\left(1+\frac{p}{2}\right) .
$$

The paper [CM-11] establishes beautiful results on the average value of the Mahler measure and L_{p} norms of unimodular polynomials in \mathcal{K}_{n}.

12

2 Mahler measure and moments of the Rudin-Shapiro polynomials

Our first theorem states that the Mahler measure and the maximum norm of the Rudin-Shapiro polynomials on the unit circle of the complex plane have the same size.

Theorem 2.1. Let P_{n} and Q_{n} be the n-th RudinShapiro polynomials defined in Section 1. There is an absolute constant $c_{1}>0$ such that

$$
M_{0}\left(P_{n},[0,2 \pi]\right)=M_{0}\left(Q_{n},[0,2 \pi]\right) \geq c_{1} \sqrt{N}
$$

where

$$
N:=2^{n}=\operatorname{deg}\left(P_{n}\right)+1=\operatorname{deg}\left(Q_{n}\right)+1
$$

13

To formulate our next theorem we define

$$
\widetilde{P}_{n}:=2^{-(n+1) / 2} P_{n} \quad \text { and } \quad \widetilde{Q}_{n}:=2^{-(n+1) / 2} Q_{n}
$$

By using the above normalization, we have

$$
\left|\widetilde{P}_{n}(z)\right|^{2}+\left|\widetilde{Q}_{n}(z)\right|^{2}=1, \quad z \in \partial D
$$

For $q>0$ let

$$
\begin{aligned}
I_{q}\left(\widetilde{P}_{n}\right) & :=\left(M_{q}\left(\widetilde{P}_{n},[0,2 \pi]\right)\right)^{q} \\
& :=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\widetilde{P}_{n}\left(e^{i \tau}\right)\right|^{q} d \tau
\end{aligned}
$$

The following result is a simple consequence of Theorem 2.1.

Theorem 2.2. There exists a constant $L<\infty$ independent of n such that

$$
\sum_{k=1}^{\infty} \frac{I_{k}\left(\widetilde{P}_{n}\right)}{k}<L, \quad n=0,1, \ldots
$$

Theorem 2.3. There exists an absolute constant $c_{2}>0$ such that

$$
M_{0}\left(P_{n},[\alpha, \beta]\right) \geq c_{2} \sqrt{N}
$$

for all $n \in \mathbb{N}$ with $N:=2^{n}$, and for all $\alpha, \beta \in \mathbb{R}$ such that

$$
\frac{12 \pi}{N} \leq \frac{(\log N)^{3 / 2}}{N^{1 / 2}} \leq \beta-\alpha \leq 2 \pi
$$

It looks plausible that Theorem 2.3 holds when $12 \pi / N \leq \beta-\alpha \leq 2 \pi$, but we do not seem to be able to handle the case

$$
12 \pi / N \leq \beta-\alpha \leq(\log N)^{3 / 2} N^{-1 / 2}
$$

at the moment.

15

3. Lemmas

A key to the proof of Theorem 2.1 is the following observation which is a straightforward consequence of the definition of the Rudin Shapiro polynomials P_{n} and Q_{n}.

Lemma 3.1. Let $n \geq 2, N:=2^{n}$, and

$$
z_{j}:=e^{i t_{j}}, \quad t_{j}:=\frac{2 \pi j}{N}, \quad j=0,1, \ldots, N-1
$$

We have

$$
\begin{aligned}
& P_{n}\left(z_{j}\right)=2 P_{n-2}\left(z_{j}\right), \quad j=2 u, \\
& P_{n}\left(z_{j}\right)=(-1)^{\frac{j-1}{2}} 2 i Q_{n-2}\left(z_{j}\right), \quad j=2 u+1,
\end{aligned}
$$

$$
\text { for } u=0,1, \ldots, N / 2-1
$$

16

Combining this with a "Riesz Lemma type" polynomial inequality we obtain the following.

Lemma 3.2. Let P_{n} and Q_{n} be the n-th RudinShapiro polynomials. Let $N:=2^{n}, \gamma:=\sin ^{2}(\pi / 8)$, and

$$
z_{j}:=e^{i t_{j}}, \quad t_{j}:=\frac{2 \pi j}{N}, \quad j=0,1, \ldots, N-1
$$

We have

$$
\max \left\{\left|P_{n}\left(z_{j}\right)\right|^{2},\left|P_{n}\left(z_{j+1}\right)\right|^{2}\right\} \geq 2 \gamma N
$$

$$
\text { for all } j=2 u, u=0,1, \ldots, N / 2-1 .
$$

Another key to the proof of Theorem 2.1 is a sievetype lower bound for the Mahler measure of polynomials proved in [EL-07]. Let \mathcal{P}_{N} be the set of all polynomials of degree at most N with real coefficients.

Lemma 3.3. Assume that $N, m \geq 1$,

$$
\begin{gathered}
0<\tau_{1} \leq \tau_{2} \leq \cdots \leq \tau_{m} \leq 2 \pi \\
\tau_{0}:=\tau_{m}-2 \pi, \quad \tau_{m+1}:=\tau_{1}+2 \pi
\end{gathered}
$$

Let

$$
\delta:=\max \left\{\tau_{1}-\tau_{0}, \tau_{2}-\tau_{1}, \ldots, \tau_{m}-\tau_{m-1}\right\}
$$

For every $A>0$ there is a $B>0$ depending only on A such that

$$
\begin{aligned}
& \sum_{j=1}^{m} \frac{\tau_{j+1}-\tau_{j-1}}{2} \log \left|P\left(e^{i \tau_{j}}\right)\right| \\
\leq & \int_{0}^{2 \pi} \log \left|P\left(e^{i \tau}\right)\right| d \tau+B
\end{aligned}
$$

for all $P \in \mathcal{P}_{N}$ and $\delta \leq A N^{-1}$.

18

4. The Mahler measure of the Fekete polynomials

Finding polynomials with suitably restricted coefficients and maximal Mahler measure has interested many authors.

Beller and Newman [BN-73] constructed unimodular polynomials of degree n whose Mahler measure is at least $\sqrt{n}-c / \log n$. For a prime number p the p-th Fekete polynomial is defined as

$$
f_{p}(z):=\sum_{k=1}^{p-1}\left(\frac{k}{p}\right) z^{k}
$$

where
$\left(\frac{k}{p}\right)=\left\{\begin{array}{l}1, \quad \text { if } x^{2} \equiv k(\bmod p) \text { for an } x \neq 0, \\ 0, \quad \text { if } p \text { divides } k, \\ -1, \quad \text { otherwise }\end{array}\right.$
is the usual Legendre symbol. Note that $g_{p}(z):=$ $f_{p}(z) / z$ is a Littlewood polynomial, and has the same Mahler measure as f_{p}.

In [Mo-80] Montgomery proved the following fundamental result.

Theorem 4.1. There are absolute constants $c_{1}>$ 0 and $c_{2}>0$ such that

$$
c_{1} \sqrt{p} \log \log p \leq \max _{z \in \partial D}\left|f_{p}(z)\right| \leq c_{2} \sqrt{p} \log p
$$

In $[E L-07]$ we proved the following result.

Theorem 4.2. For every $\varepsilon>0$ there is a constant c_{ε} such that

$$
M_{0}\left(f_{p},[0,2 \pi]\right) \geq\left(\frac{1}{2}-\varepsilon\right) \sqrt{p}
$$

for all primes $p \geq c_{\varepsilon}$.

One of the key lemmas in the proof of the above theorem formulates a remarkable property of the Fekete polynomials. A simple proof of it is given in [B-02, pp. 37-38].

Lemma 4.3 (Gauss). We have

$$
\begin{aligned}
& \qquad f_{p}\left(z_{p}^{j}\right)=\varepsilon_{p}\left(\frac{j}{p}\right) p^{1 / 2}, \quad j=1,2, \ldots, p-1, \\
& \text { and } f_{p}(1)=0, \text { where }
\end{aligned}
$$

$$
z_{p}:=\exp \left(\frac{2 \pi i}{p}\right)
$$

is the first p-th root of unity, and $\varepsilon_{p} \in\{ \pm 1, \pm i\}$.

The choice of ε_{p} is more subtle. This is also a result of Gauss, see [Hua-82].

Lemma 4.4 (Gauss). In Lemma 4.3 we have

$$
\varepsilon_{p}= \begin{cases}1, & \text { if } \quad p \equiv 1(\bmod 4) \\ i, & \text { if } p \equiv 3(\bmod 4)\end{cases}
$$

21

In [E-11] Theorem 4.2 is extended to subarcs of the unit circle.

Theorem 4.5. There exists an absolute constant $c_{1}>0$ such that

$$
M_{0}\left(f_{p},[\alpha, \beta]\right) \geq c_{1} p^{1 / 2}
$$

for all prime numbers p and for all $\alpha, \beta \in \mathbb{R}$ such that $(\log p)^{3 / 2} p^{-1 / 2} \leq \beta-\alpha \leq 2 \pi$.

In [E-12] we gave an upper bound for the average value of $\left|f_{p}(z)\right|^{q}$ over any subarc I of the unit circle, valid for all sufficiently large primes p and all exponents $q>0$.

Theorem 4.6. There exists a constant $c_{2}(q, \varepsilon)$ depending only on $q>0$ and $\varepsilon>0$ such that

$$
M_{q}\left(f_{p},[\alpha, \beta]\right) \leq c_{2}(q, \varepsilon) p^{1 / 2}
$$

for all prime numbers p and for all $\alpha, \beta \in \mathbb{R}$ such that $\beta-\alpha \geq 2 p^{-1 / 2+\varepsilon}$.

We remark that a combination of Theorems 4.5 and 4.6 shows that there is an absolute constant $c_{1}>0$ and a constant $c_{2}(q, \varepsilon)>0$ depending only on $q>0$ and $\varepsilon>0$ such that

$$
c_{1} p^{1 / 2} \leq M_{q}\left(f_{p},[\alpha, \beta]\right) \leq c_{2}(q, \varepsilon) p^{1 / 2}
$$

for all prime numbers p and for all $\alpha, \beta \in \mathbb{R}$ such that $\beta-\alpha \geq 2 p^{-1 / 2+\varepsilon} \geq(\log p)^{3 / 2} p^{-1 / 2}$.

Conrey, Granville, Poonen, and Soundararajan (2000) showed that f_{p} has asymptotically κp zeros on the unit circle, where

$$
0.500668<\kappa<0.500813
$$

