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1. INTRODUCTION

Let D be the open unit disk of the complex
plane. Its boundary, the unit circle of the complex
plane, is denoted by 0D. Let

ICp o=

{pn :pn(z) — Zakzk, ap € (C, \ak\ = 1} .
k=0

The class IC,, is often called the collection of all

(complex) unimodular polynomials of degree n.
Let

L, = {pn cpn(2) = Zakzk, ar € {—1, 1}} .

k=0

The class £,, is often called the collection of all
Littlewood polynomials of degree n. By Parseval’s
formula,

27
/ P, ()2 dt = 2m(n + 1)
0

for all P, € IC,,.



Therefore

min |P,(2)| < vn+ 1 < max |P,(2)|
z€0D z€0D

for all P, € K,,. An old problem (or rather an old
theme) is the following.

Problem 1.1 (Littlewood’s Flatness Prob-
lem). Ezamine that how close a unimodular poly-
nomial Py, € IC,, or P,, € L,, can come to satisfying

(1.1) P(2)|=vn+tl, z€dD.

Obviously (1.1) is impossible if n > 1. So one
must look for less than (1.1), but then there are
various ways of seeking such an “approximate sit-
uation”. One way is the following.
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In his paper [Lil] Littlewood had suggested
that, conceivably, there might exist a sequence
(P,) of polynomials P, € K, (possibly even
P, € L,) such that

(n+1)"2P, (")

converges to 1 uniformly in ¢ € R. We shall call

such sequences of unimodular polynomials “ultra-
flat”.

Definition 1.2. Given a positive number e, we
say that a polynomial P,, € IKC,, is e-flat if

(I—-e)vn+1<|P,(2)|<(1+e)vn+1,
z€dD.

Definition 1.3. Given a sequence (&,,) of posi-
tive numbers tending to 0, we say that a sequence
(Py) of unimodular polynomials P, € IKC,, is (ey)-
ultraflat if

(I—e))vVn+1<|P(2)|<(1+e,)Vn+1,
z€0D.



The existence of an ultraflat sequence of uni-
modular polynomials seemed very unlikely, in view
of a 1957 conjecture of P. Erdos (Problem 22 in
[Er]) asserting that there is an absolute constant
e > 0 (independent of n) such that

(1.2) max |P,(2)| > (1+¢e)vn+1,

z€0D

for all P, € IC,, with n > 1. Yet, refining a method
of Kérner, Kahane (1985) proved that there ex-
ists a sequence (P,,) with P, € K,, which is (&,)-
ultraflat, where

en =0 (n_l/”\/@) .

Thus the Erdos conjecture (1.2) was disproved for
the classes IC,,. For the more restricted class L,
the analogous Erdds conjecture is unsettled to this
date. It is a common belief that the analogous
Erdds conjecture for L£,, is true, and consequently
there is no sequence of ultraflat unimodular poly-
nomials P,, € L,,.
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Based on certain properties satisfied by the ul-
raflat sequences of unimodular polynomials con-
structed by Kahane, in 1992 Saffari formulated a
few conjectures on the behavior of all possible ul-
traflat sequences of unimodular polynomials.

Most of these conjectures, including Saffari’s
“phase problem” and Saffari’s “near orthogonality

conjecture”, were proved in [E-Olal, [E-01b], and
[E-03).

A recent paper of Bombieri and Bourgain [BB]
is devoted to the construction of ultraflat sequences
of unimodular polynomials. In particular, one ob-
tains a much improved estimate for the error term.
A major part of this paper deals also with the long-
standing problem of the effective construction of
ultraflat sequences of unimodular polynomials.
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A weaker version of Erdos’s conjecture states
that there is an absolute constant € > 0 (indepen-
dent of n) such that

max |P,(z)| > vn+1+e€

z€0D

for every P, € L, with n > 1.

It is conjectured that there are sequences of flat
Littlewood polynomials P,, € L,, satisfying

civn+1<|P,(2)] <covn+1

for all z € C on the unit circle with absolute con-
stants ¢; > 0 and ¢y > 0.

However, the lower bound part of this conjec-
ture, by itself, seems hard, and no sequence is
known that satisfies just the lower bound. A se-
quence of Littlewood polynomials satisfying just
the upper bound is given by the Rudin-Shapiro
polynomials. They appear in Harold Shapiro’s
1951 thesis at MIT and are sometimes called just
Shapiro polynomials.
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They also arise independently in Golay’s paper
(Go-51|. They are remarkably simple to construct
and are a rich source of counterexamples to pos-
sible conjectures. The Rudin-Shapiro polynomials
are defined recursively as follows:

Po(Z) p— 1, Qo(Z) p— 1,
and
Ppi1(2) == Pp(z) + ZQnQn(Z) ;
Qni1(2) = Pu(2) — 2% Qu(2)

forn =0,1,2,.... Note that both P,, and @),, are
polynomials of degree N — 1 with N := 2" hav-
ing each of their coefficients in {—1,1}. It is well
known and easy to check by using the parallelo-
gram law that

[Pros1(2) 7 + [Qur1(2)[* = 2(1Pa(2)[* + |Qn(2)]*)
for every z € 0D. Hence
[Pa(2)|* +1@Qn(2)|* =2""" =2N, z€0D,

and

|P.(2)| < V2N, z€dD.
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Let a < 8 be real numbers. The Mahler mea-

sure My (P, |, B]) is defined for bounded measur-
able functions P defined on |«, 5] as

p |
My(P, [or B]) = exp< i 1og|P<ezt)|dt> .

It is well known that

Mo(P, e, 8)) = lim M,(P[ov B]).

where, for ¢ > 0,
1 B g 1/q
My(P o 8) = | 5= [ [P at)

It is a simple consequence of the Jensen formula
that

Mo(P) := My(P, [0,27]) = |c| | | max{1, 2|}
k=1
for every polynomial of the form

P(z):cH(z—zk), ¢,z € C.
k=1
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P. Borwein’s book [B-02] presents a few more
basic results on the Rudin-Shapiro polynomials.
Various other properties of them are discussed in

[BLM-76]. Obviously
My(P,,[0,27]) = VN, N :=2"

by the Parseval formula. In 1969 Littlewood [Li-
68] evaluated My(P,,[0,27]) and found that

My(Py, [0,27]) ~ (4N?/3)1V/%, N = 2™,

Rudin-Shapiro like polynomials in L, on the unit
circle of the complex pane are studied in [BM-
00]. In 1980 Saffari [Sa-01] conjectured that with
N := 2" we have

VIN
@2+ 1)1

Mq(an[()?Qﬂ-]) ™~ q>0
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P. Borwein and Lockhart [BL-01] investigated
the asymptotic behavior of the mean value of nor-
malized L, norms of Littlewood polynomials for
arbitrary p > 0. Using the Lindeberg Central
Limit Theorem and dominated convergence, they
proved that

M, (f,[0,2x]))? p
nh—>r{>lo 2”+1 np/2 =1 (1 * 5) '

feln

The paper [CM-11] establishes beautiful results on
the average value of the Mahler measure and L,
norms of unimodular polynomials in £,,.
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2 MAHLER MEASURE AND MOMENTS
OF THE RUDIN-SHAPIRO POLYNOMIALS

Our first theorem states that the Mahler mea-
sure and the maximum norm of the Rudin-Shapiro
polynomials on the unit circle of the complex plane
have the same size.

Theorem 2.1. Let P,, and QQ,, be the n-th Rudin-
Shapiro polynomials defined in Section 1. There is
an absolute constant ¢ > 0 such that

My(Py, [0,27]) = My(Qn, [0,27]) > e1V' N,

where

N :=2" =deg(P,) +1=deg(Q,) +1.
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To formulate our next theorem we define

~ ~

P =2"(tD/2p  and Q, = 2_(”+1)/2Qn.
By using the above normalization, we have

Pa(2)]? +1Qn(2)P =1,  z€0D.

For ¢ > 0 let

~ ~

Iy(Pn) :=(My(Pn, [0, 27]))*
1 27

= 1P, (e")|? dr .
27T 0

The following result is a simple consequence of
Theorem 2.1.

Theorem 2.2. There exists a constant L. < oo
independent of n such that

~

=, I.(P,
> k(k )<L, n=01,....
k=1
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Theorem 2.3. There exists an absolute constant
co > 0 such that

My(Py, o, B]) > caV'N

for allm € N with N := 2", and for all o, 5 € R
such that

127 (log N)3/2
<
N — N1/2

<pB—-—a<2r.

It looks plausible that Theorem 2.3 holds when
127 /N < 8 — a < 27, but we do not seem to be
able to handle the case

127 /N < B—a < (log N)3/2N~1/2

at the moment.
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3. LEMMAS

A key to the proof of Theorem 2.1 is the fol-
lowing observation which is a straightforward con-
sequence of the definition of the Rudin Shapiro
polynomials P,, and @),,.

Lemma 3.1. Letn > 2, N :=2", and
zj::eitj, tji=——, Jj=0,1,... ,N—1.

We have

Pn(Zj) = 2Pn_2(Zj), ] = 2u,
Pr(z5) = (

foru=20,1,... ,N/2—1.
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Combining this with a “Riesz Lemma type”
polynomial inequality we obtain the following.

Lemma 3.2. Let P, and (),, be the n-th Rudin-
Shapiro polynomials. Let N := 2", ~ := sin®(7/8),
and

zj::eitj, tji=——, Jj=0,1,... ,N—1.
We have

max{| P (%) [, [Pa(2j41)]"} = 29N

forall j =2u, u=0,1,... ,N/2 —1.
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Another key to the proof of Theorem 2.1 is a sieve-
type lower bound for the Mahler measure of poly-
nomials proved in |[EL-07]. Let Px be the set of
all polynomials of degree at most N with real co-
efficients.

Lemma 3.3. Assume that N,m > 1,
O0<7m <<+ <7y <27,

TO = Tm — 2T, Tm41 =T + 27.

Let
O :=max{m — 70,72 — T, -+ sTm — Trm—1} -

For every A > 0 there 1s a B > 0 depending only
on A such that

m

> A log|P(e)

j=1
27 .

g/ log |[P(¢)| dr + B
0

for all P € Py and 6 < AN—1L.
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4. THE MAHLER MEASURE OF
THE FEKETE POLYNOMIALS

Finding polynomials with suitably restricted
coefficients and maximal Mahler measure has in-
terested many authors.

Beller and Newman [BN-73] constructed uni-
modular polynomials of degree n whose Mahler
measure is at least /n — ¢/logn. For a prime
number p the p-th Fekete polynomial is defined as

ol2) —Zi (5)

k—
where

. (1, if 22 =k (modp) foran = #0,

(—) =< 0, if p divides k,
p

| —1, otherwise

is the usual Legendre symbol.Note that g¢,(z) :=
fp(2)/z is a Littlewood polynomial, and has the
same Mahler measure as f,.
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In [Mo-80] Montgomery proved the following
fundamental result.

Theorem 4.1. There are absolute constants c; >
0 and co > 0 such that

c1v/ploglogp < max |f,(2)] < c2y/plogp.

In [EL-07] we proved the following result.

Theorem 4.2. For every € > 0 there is a con-
stant c. such that

Mol 0.2) = (5 —¢) v

for all primes p > c..

One of the key lemmas in the proof of the above
theorem formulates a remarkable property of the

Fekete polynomials. A simple proof of it is given
in [B-02, pp. 37-38|.
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Lemma 4.3 (Gauss). We have

fp(zg))zgp(}_?)pl/Qv ]:1,2,---,}7_1,

and f,(1) =0, where

(27?2')
Zpi=exp | —
g p

is the first p-th root of unity, and ¢, € {1, £i}.

The choice of €, is more subtle. This is also a
result of Gauss, see [Hua-82].

Lemma 4.4 (Gauss). In Lemma 4.3 we have

{1, if p=1 (mod4)
E,, =
g i, if p=3 (mod4).
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In [E-11] Theorem 4.2 is extended to subarcs
of the unit circle.

Theorem 4.5. There exists an absolute constant
c1 > 0 such that

Mo(fp, [, B]) > e1p*/?

for all prime numbers p and for all o, 5 € R such
that (logp)3/?p~1/2 < B —a < 27,

In [E-12] we gave an upper bound for the aver-
age value of |f,(2)|? over any subarc I of the unit
circle, valid for all sufficiently large primes p and
all exponents ¢ > 0.

Theorem 4.6. There exists a constant co(q,¢€)
depending only on g > 0 and € > 0 such that

MQ(fp7 [Oé, 5]) < CQ(Q? E)pl/Q )

for all prime numbers p and for all o, 5 € R such
that 8 —a > 2p~1/2te,
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We remark that a combination of Theorems 4.5
and 4.6 shows that there is an absolute constant
c1 > 0 and a constant c3(q, ) > 0 depending only
on ¢ > 0 and € > 0 such that

Clp1/2 < Mq(fpa [&7 6]) < 02(%5)])1/2

for all prime numbers p and for all «, 8 € R such
that 8 — a > 2p~ /%€ > (log p)3/2p~1/2.

Conrey, Granville, Poonen, and Soundararajan
(2000) showed that f, has asymptotically xkp zeros
on the unit circle, where

0.500668 < x < 0.500813.



