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Abstract

0) Thanks to conference organizers and the Hungarian
mathematical community.

1) A survey of Beurling g-numbers.

2) Weak conditions for Chebyshev O-bounds

x

log x
� π(x)� x

log x

for g-numbers, where π(x) is the counting function of g-primes.

3) The conditions for these bounds are best-possible.
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g-Number Definitions

A g-prime system.

P : p1 ≤ p2 ≤ p3 . . . , p1 > 1, pi →∞.

(The pi are assumed to be real, not necessarily rational integers.)

A g-integer system. Semigroup generated by P.

N : 1 = n0 < n1 ≤ n2 ≤ n3 ≤ . . .

Call the pi g-primes and the ni g-integers.

Remarks. Unique prime factorization not assumed;
g-primes and g-integers may be repeated;
g-integers usually don’t have additive structure.

Central problems of g-number theory: Show that if g-integers are
distributed much like the rational integers, then g-primes must also
be so distributed; and conversely.
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Examples

Ex. P1 : 3, 5, 7, 11, . . .,

N1 : Odd numbers (Density = 1/2)

Ex. P2 : 3, 3, 5, 7, 11, 13, . . .

N2 : 1, 3, 3, 5, 7, 9, 9, 9, 11, 13, 15, 15, 17, . . .

(Density = 3/4)

Ex. P3 : 1.5, 5, 7, 11, 13, . . .

N3 : 1, 1.5, 2.25, 3.375, 5, 5.0625, 7, . . .

(Density = 1)
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Key Functions

π(x) = πP(x) := #{P ∩ [1, x ]}

N(x) = NP(x) := #{N ∩ [1, x ]}

Π(x) := π(x) + 1
2π(x1/2) + 1

3π(x1/3) + . . .

ζ(s) :=
∑

k≥0 nk
−s =

∏
k≥1 (1− pk

−s)−1, <s > 1

log ζ(s) =
∫∞
1 x−s dΠ(x), <s > 1

−ζ ′(s)/ζ(s) =
∫∞
1 x−s log x dΠ(x), <s > 1

ψ(x) :=
∫ x
1 log t dΠ(t) =

∑
p

αi
i ≤x log pi
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Beurling’s PNT

Beurling’s Theorem. Let P be a g-prime system satisfying

N(x)− Ax = O(x log−γ x) (B)

for some A > 0 and γ > 3/2. Then

π(x) ∼ x/ log x

for x →∞, i.e. the PNT holds for P.

Beurling’s result is “(B)-Optimal” in that there exists a g-prime
system for which

N(x)− Ax = O(x log−3/2 x)

and for which the PNT does not hold.
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Chebyshev – Type Inequalities

We seek conditions on NP(x) that ensure

x/ log x � π(x) � x/ log x . (C )

Chebyshev Bound Theorem (H. D.) If P is a g-prime system for
which N(x)− Ax = O(x log−γ x) for γ > 1, then (C ) holds.

Ex. (R. S. Hall) (C ) can fail for γ < 1. (∴ Th. is (B)–Optimal.)

We get greedy . . .

H. D. question: Does the condition∫∞
1 |N(x)− Ax | x−2 dx <∞ (L1)

guarantee the validity of (C )?

J.-P. Kahane: The (L1) conjecture is not true:

He gave an example of (L1) but both inequalities in (C ) fail.
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Conditions for Chebyshev Bounds with (L1)

Th. (J. Vindas, 2012). Suppose N is a system satisfying∫∞
1 |N(x)− Ax | x−2 dx <∞ (L1)

and N(x)− Ax = o(x/ log x). Then (C ) holds.

Th. (HD, 2012; JV, 2012). Suppose (L1) holds for N and

N(x)− Ax = O(x/ log x). (B1)

Then the upper Chebyshev bound holds. Also (HD, 2012), if the
O-constant is small enough, then the lower (C) bound holds too.

Th. (WBZ, 2012). Suppose N is a system satisfying (L1) and∫ x
1 |N(u)− Au| u−1 log u du � x .

Then the upper Chebyshev bound holds. The lower Chebyshev
bound follows from an analogous integral condition.
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Outline of Chebyshev Estimate I

The starting point is the identity for σ = <s > 1,∫ ∞
1

x−s ψ(x)− x

x
dx =

−ζ ′

s ζ
(s)− 1

s − 1
=: g(s).

An average value of {ψ(y)− y}/y (as y →∞) is represented,
using the Wiener-Ikehara method, as

lim
ε→0+

1

2

∫ 2λ

−2λ

(
1− |t|

2λ

)
e ityg(1 + ε+ it) dt + oλ(1).

ζ(s) has pole-like behavior at s = 1. This insures that ζ(1 + it) 6= 0
if |t| is small enough. So we use a small λ.

(∴ no asymptotic for ψ(x)/x .)

Main task: show that g(1 + ε+ it) is tractable for small |t|
as ε→ 0+.
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Outline of Chebyshev Estimate II

For σ ≥ 1, write

f (s) :=
1

A

∫ ∞
1

x−s−1(N(x)− Ax) dx .

This is bounded by hypothesis. From last slide,

g(s) =
−ζ ′

s ζ
(s)− 1

s − 1
:= F1(s) + F2(s) + F3(s),

with F1(s), F2(s) easy to handle and

F3(s) =
itf ′(s)

(1 + it){1 + itf (s)}
+ o(1), σ → 1 + .
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Outline of Chebyshev Estimate III

Main term in average of {ψ(y)− y}/y is

lim
ε→0+

1

2

∫ 2λ

−2λ

(
1− |t|

2λ

)
e ity it f ′(1 + ε+ it)

(1 + it){1 + itf (1 + ε+ it)}
dt.

Use (B1) to control contribution of f ′, and write 1/{1 + itf (s)} as
an absolutely convergent series for |t| small. Then estimate the
resulting convolution integrals.

(This is the idea that underlies Wiener’s Division Theorem.)

For powers of t, estimate derivatives of Fejér kernel. Technical!
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Optimality of Conditions (L1) and (B1) for (C )∫∞
1 |N(x)− Ax | x−2 dx <∞ (L1)

N(x)− Ax = O(x/ log x). (B1)

Th. (HD-WBZ, 2012). Given any positive, increasing unbounded
function f (x) on [1, ∞) (no matter how slowly growing), there
exists a g-number system NB such that

(1) The counting function NB(x) of the g-integers satisfies (L1)
and

NB(x)− Ax = O(f (x)x/ log x). (Bf)

(2) The associated zeta function ζB(s) is analytic on the open half
plane {s : σ > 1}. Also, (s − 1) ζB(s) has a continuous extension
to the closed half plane {σ ≥ 1} and itζB(1 + it) 6= 0;

(3) Each of the Chebyshev bounds (C ) fails.
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Outline of PB Construction

Three preliminaries.

1. Form another unbounded function k(x) on [1, ∞) that is

- even more slowly growing than f (x),

- continuously differentiable,

- satisfies (log x)/k(x) ↑.

2. Form a very rapidly increasing sequence (An) for which∑
n≥1

log k(n)

k(An)
<∞.

3. Define A?n = An

√
k(n).
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Recipe for PB

1. Use rational primes on [2, An0), for sufficiently large n0.

2. An0 : a g-prime with multiplicity [{An 0 log k(n0)}/{2 log An 0}] .

3. On (An0 , A?n0
], no primes of PB .

4. On (A?n0
, An0+1), use the rational primes in this interval.

5. An0+1 and after: repeat the same pattern.

Pulse 0 dπ Pulse

An A?n An+1

Figure 1. dπB on one interval
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Failure of Chebyshev Bounds

1. πB(x) is too large on the sequence (An):

πB(An)

An/ log An
≥ [An log k(n)/(2 log An)]

An/ log An
∼ log k(n)

2
→∞.

2. πB(x) is too small on the sequence (A?n) := (An

√
k(n)):

πB(A?n)

A?n/ log(A?n)
≤ π(An) + An log k(n)/(2 log An)

A?n/ log (A?n)

� log k(n)

k(n)1/2
→ 0.
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Still to Do

It remains to show NB satisfies the conditions

∫ ∞
1
|N(x)− Ax | x−2 dx <∞ (L1)

N(x)− Ax = O(x f (x)/ log x). (Bf )

24



Exponential Representation of dN

For any g-number system, dN and dΠ are related by

dN = δ1 + dΠ +
1

2!
dΠ ∗ dΠ +

1

3!
dΠ ∗ dΠ ∗ dΠ + · · · =: exp dΠ

where δ1 = Dirac measure at 1, * = multiplicative convolution,
and convergence is uniform on compact sets. (This formula is
valid also for rational primes and integers.)

The exp function on measures does what we expect of an
exponential, with ∗ as the multiplication:

exp(dα + dβ) = exp(dα) ∗ exp(dβ).
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Formula for NB(x)

Using exponentials, write

dNB = exp dΠB = (exp dΠ) ∗ (exp{dΠB − dΠ}).

Here dΠ is the weighted counting measure of rational primes,
and dN is the counting measure of rational integers.

NB(x) =

∫∫
st≤x

dN(s) (exp{dΠB − dΠ})(t)

=

∫
t≤x

∫
s≤x/t

. . . =

∫ x

1−

[x
t

]
exp d(ΠB − Π)(t)

=

∫ x

1−

(x

t
+ O(1)

)
exp d(ΠB − Π)(t).
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Estimates for NB(x)

NB(x) =

∫ x

1−

x

t
exp d(ΠB − Π)(t) + O(1)

∫ x

1−
exp dΠ0(t),

where dΠ0 is the variation measure of dΠB − dΠ.

The last term is � N0(x)� x k(x)/ log x , where N0(x)
is the g-number counting function generated by Π0.

The main term in NB(x) formula is M(x)− E (x), where

M(x) = x

∫ ∞
1−

t−1 exp d(ΠB − Π)(t) = A x

and

E (x) = x

∫ ∞
x

t−1 exp d(ΠB − Π)(t).

To do: Show A <∞, and bound N0(x) and E (x).
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Key Inequality I

∫ ∞
1

x−1 log x

k(x)
dπ0(x) <∞, (?)

where dπ0 is the total variation measure of dπB − dπ.

Thus, the counting measure of PB and that of the rational primes
are so close that the Dirichlet series of log{ζB(s)/ζ(s)} is
absolutely convergent on the closed half-plane {s : σ ≥ 1}.

(Note that if (?) held with a bounded function k(x), then
(d/ds) log{ζB(s)/ζ(s)} also would be an absolutely convergent
Mellin integral, and life would be much simpler.)
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An Application of Key Inequality I

Since dπ0 is the biggest contributor to dΠ0, we also have∫ ∞
1

x−1 log x

k(x)
dΠ0(x) <∞.

The counting function of N0, the g-number system generated by
dπ0, is dN0 = exp dΠ0.

An easy calculation then gives∫ ∞
1

x−1 log x

k(x)
dN0(x) <∞.
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Key Inequality II

For large x ,∣∣∣ ∫ ∞
x

t−1d(πB − π)(t)
∣∣∣

≤

{
log k(n)/ log An, if An < x ≤ A?n;

1
4(log k(n + 1)/ log An+1)2, if A?n < x ≤ An+1.

Remark. In Key Inequality I, dπ0 is total variation measure;
here we have (+) contributions at “pulse points” and (-)
contributions on intervals where dπB = 0.
The integral inequality asserts that they largely cancel out.

Using the key relations, we show that

(1) NB satisfies (Bf )

(2) ζB is well behaved for <s ≥ 1. �
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