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Regularity

ε-regular pair

A bipartite graph between sets U and V is said to be ε-regular if
for every U ′ ⊆ U and V ′ ⊆ V with |U ′| ≥ ε|U| and |V ′| ≥ ε|V | the
density d(U ′,V ′) of edges between U ′ and V ′ satisfies

|d(U ′,V ′)− d(U,V )| ≤ ε.

ε-regular partition

A partition of a graph into t pieces V1,V2, . . . ,Vt is ε-regular if it
is an equipartition, that is, ||Vi | − |Vj || ≤ 1 for all 1 ≤ i , j ≤ t, and
all but at most εt2 pairs (Vi ,Vj) are ε-regular.
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Regularity

Szemerédi’s regularity lemma

For every ε > 0, there exists a T such that every graph has an
ε-regular partition V1,V2, . . . ,Vt into t ≤ T pieces.

Often the strength of the regularity lemma lies in the fact that it
can be combined with an appropriate counting lemma.
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Counting

X

Y Z

γ

α

β (X ,Y ), (Y ,Z ), (Z ,X )
each ε-regular.

All but ε|X | vertices in X have at least (γ − ε)|Y | neighbours in Y .

All but ε|X | vertices in X have at least (β − ε)|Z | neighbours in Z .

Therefore, all but 2ε|X | vertices in X have |NY (x)| ≥ (γ − ε)|Y |
and |NZ (x)| ≥ (β − ε)|Z |. Density at least α− ε between them.

Therefore, the number of triangles is at least

(1− 2ε)|X |(γ − ε)|Y |(β − ε)|Z |(α− ε) ≈ αβγ|X ||Y ||Z |.
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Counting

More generally, we have the following counting lemma.

Counting lemma

For every graph H on vertex set {1, 2, . . . , k} and every δ > 0
there exists an ε > 0 such that the following holds. Let G be a
graph whose vertex set is a disjoint union V1 ∪ V2 ∪ · · · ∪ Vk of
sets of size n where (Vi ,Vj) is ε-regular and has density dij for
each edge ij ∈ E (H). Then the number of k-tuples
(v1, . . . , vk) ∈ V1 × · · · × Vk such that vivj ∈ E (G ) whenever
ij ∈ E (H) is

nk

 ∏
ij∈E(H)

dij ± δ

 .
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Sparse regularity

(ε, p)-regular pair

A bipartite graph between sets U and V is said to be (ε, p)-regular
if for every U ′ ⊆ U and V ′ ⊆ V with |U ′| ≥ ε|U| and |V ′| ≥ ε|V |
the density d(U ′,V ′) of edges between U ′ and V ′ satisfies

|d(U ′,V ′)− d(U,V )| ≤ εp.

(ε, p)-regular partition

A partition of a graph into t pieces V1,V2, . . . ,Vt is (ε, p)-regular
if it is an equipartition, that is, ||Vi | − |Vj || ≤ 1 for all 1 ≤ i , j ≤ t,
and all but at most εt2 pairs (Vi ,Vj) are (ε, p)-regular.
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Sparse regularity

In order to prove a sparse regularity lemma, it is useful to know
that the graph satisfies a condition of the following form.

Upper-uniformity

Suppose that 0 < η, p ≤ 1 and D ≥ 1 are given. A graph G is
(η, p,D)-upper-uniform if for all disjoint vertex subsets U1 and U2

with |U1|, |U2| ≥ η|V (G )|, the density of edges between U1 and U2

is at most Dp.

Sparse regularity lemma - Kohayakawa, Rödl

For every ε,D > 0, there exist η > 0 and T such that every graph
G which is (η, p,D)-upper-uniform has an (ε, p)-regular partition
V1,V2, . . . ,Vt into t ≤ T pieces.

The upper-uniformity condition was recently removed by Scott.
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Counting

X

Y Z

γp

αp

βp (X ,Y ), (Y ,Z ), (Z ,X )
each (ε, p)-regular.

All but ε|X | vertices have at least (γ − ε)p|Y | neighbours in Y .

All but ε|X | vertices have at least (β − ε)p|Z | neighbours in Z .

Therefore, all but 2ε|X | vertices in X have |NY (x)| ≥ (γ − ε)p|Y |
and |NZ (x)| ≥ (β − ε)p|Z |.

But now we can say nothing about the density of edges between
NY (x) and NZ (x)!
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Counting

If p is too small, we cannot expect a counting lemma to hold.

Consider the graph G formed by taking three independent sets of
size n and placing a random bipartite graph, where each edge is
chosen independently with probability p, between each pair of
vertex sets.

With high probability, G has close to pn2 edges and p3n3 triangles.
For p � n−1/2, we have p3n3 � pn2, so we can remove all
triangles by removing a very small proportion of edges.

The resulting graph G ′ will still be such that the graph between
each pair of vertex sets is (ε, p)-regular but it contains no triangles.
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each pair of vertex sets is (ε, p)-regular but it contains no triangles.
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Counting

What if p � n−1/2?

Unfortunately, for any p = o(1), we may blow up small examples
to produce graphs which are (ε, p)-regular but do not contain any
triangles.

However...

Theorem - Kohayakawa,  Luczak, Rödl

For p � n−1/2, there are very few graphs on vertex set X ∪ Y ∪ Z
with |X | = |Y | = |Z | = n such that the graph between each pair
of vertex sets is (ε, p)-regular and the graph contains no triangles.

So few that the random graph GN,p with N = O(n) is unlikely to
contain any such bad example as a subgraph.
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For p � n−1/2, there are very few graphs on vertex set X ∪ Y ∪ Z
with |X | = |Y | = |Z | = n such that the graph between each pair
of vertex sets is (ε, p)-regular and the graph contains no triangles.

So few that the random graph GN,p with N = O(n) is unlikely to
contain any such bad example as a subgraph.

D. Conlon, W. T. Gowers, W. Samotij and M. Schacht On the K LR conjecture in random graphs



The K LR conjecture

Kohayakawa,  Luczak and Rödl conjectured that a similar
phenomenon should hold for all graphs H.

K LR conjecture

For every graph H on vertex set {1, 2, . . . , k} and p � n−1/m2(H),
there are very few graphs on vertex set V1 ∪ V2 ∪ · · · ∪ Vk with
|V1| = |V2| = · · · = |Vk | = n such that the graph between each
pair of vertex sets Vi and Vj with ij ∈ E (H) is (ε, p)-regular and
the graph contains no copies of H.

Here

m2(H) = max

{
e(H ′)− 1

v(H ′)− 2
: H ′ ⊆ H, v(H ′) ≥ 3

}
and p = n−1/m2(H) is roughly where every edge of the random
graph Gn,p is contained in a copy of H.
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The K LR conjecture

The conjecture was proved for

K3 - Kohayakawa,  Luczak and Rödl
K4 - Gerke, Prömel, Schickinger, Steger and Taraz
K5 - Gerke, Schickinger and Steger
Cycles - Gerke, Kohayakawa, Rödl and Steger; Behrisch

Balanced graphs - Balogh, Morris and Samotij
All graphs - Saxton and Thomason
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Balanced graphs - Balogh, Morris and Samotij
All graphs - Saxton and Thomason

D. Conlon, W. T. Gowers, W. Samotij and M. Schacht On the K LR conjecture in random graphs



Counting

The K LR conjecture may be used to show that with high
probability GN,p has the property that any subgraph defined on a
large subset V1 ∪ V2 ∪ · · · ∪ Vk and such that (Vi ,Vj) is
(ε, p)-regular for all ij ∈ E (H) contains a single copy of H.

What if instead one wishes to know that every such subgraph
contains many copies of H?
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Main result

A counting lemma to use with the sparse regularity lemma. For
example, for triangles,

X

Y Z

γp

αp

βp (X ,Y ), (Y ,Z ), (Z ,X )
each (ε, p)-regular.

it may be used to show that in any subgraph of Gn,p consisting of
three large vertex sets X ,Y and Z with an (ε, p)-regular graph
between each pair of vertex sets, there are approximately
αβγp3|X ||Y ||Z | triangles.
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Main result

More generally, we have

an exact counting lemma for all strictly balanced graphs H;

a lower count for all graphs H.

Proofs use two different methods, developed independently by
C.-Gowers and by Schacht for proving combinatorial theorems
relative to random sets.
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Applications

Reproves

Ramsey’s theorem in random graphs - Rödl-Ruciński

Turán’s theorem in random graphs - C.-Gowers, Schacht

Stability theorem in random graphs - C.-Gowers, Samotij

New results

Removal lemma in random graphs

Hajnal-Szemerédi theorem in random graphs

More...
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Thank you for your attention!


