On the $K \nsucceq R$ conjecture in random graphs

D. Conlon, W. T. Gowers, W. Samotij and M. Schacht

July 5, 2013

Regularity

D. Conlon, W. T. Gowers, W. Samotij and M. Schacht

On the $K Ł R$ conjecture in random graphs

Regularity

ϵ-regular pair

A bipartite graph between sets U and V is said to be ϵ-regular if for every $U^{\prime} \subseteq U$ and $V^{\prime} \subseteq V$ with $\left|U^{\prime}\right| \geq \epsilon|U|$ and $\left|V^{\prime}\right| \geq \epsilon|V|$ the density $d\left(U^{\prime}, V^{\prime}\right)$ of edges between U^{\prime} and V^{\prime} satisfies

$$
\left|d\left(U^{\prime}, V^{\prime}\right)-d(U, V)\right| \leq \epsilon .
$$

Regularity

ϵ-regular pair

A bipartite graph between sets U and V is said to be ϵ-regular if for every $U^{\prime} \subseteq U$ and $V^{\prime} \subseteq V$ with $\left|U^{\prime}\right| \geq \epsilon|U|$ and $\left|V^{\prime}\right| \geq \epsilon|V|$ the density $d\left(U^{\prime}, V^{\prime}\right)$ of edges between U^{\prime} and V^{\prime} satisfies

$$
\left|d\left(U^{\prime}, V^{\prime}\right)-d(U, V)\right| \leq \epsilon
$$

ϵ-regular partition

A partition of a graph into t pieces $V_{1}, V_{2}, \ldots, V_{t}$ is ϵ-regular if it is an equipartition, that is, $\| V_{i}\left|-\left|V_{j}\right|\right| \leq 1$ for all $1 \leq i, j \leq t$, and all but at most ϵt^{2} pairs $\left(V_{i}, V_{j}\right)$ are ϵ-regular.

Regularity

D. Conlon, W. T. Gowers, W. Samotij and M. Schacht

On the $K Ł R$ conjecture in random graphs

Regularity

Szemerédi's regularity lemma

For every $\epsilon>0$, there exists a T such that every graph has an ϵ-regular partition $V_{1}, V_{2}, \ldots, V_{t}$ into $t \leq T$ pieces.

Regularity

Szemerédi's regularity lemma

For every $\epsilon>0$, there exists a T such that every graph has an ϵ-regular partition $V_{1}, V_{2}, \ldots, V_{t}$ into $t \leq T$ pieces.

Often the strength of the regularity lemma lies in the fact that it can be combined with an appropriate counting lemma.

Counting

D. Conlon, W. T. Gowers, W. Samotij and M. Schacht

On the $K Ł R$ conjecture in random graphs

Counting

$$
\begin{gathered}
(X, Y),(Y, Z),(Z, X) \\
\text { each } \epsilon \text {-regular. }
\end{gathered}
$$

Counting

$$
\begin{aligned}
& (X, Y),(Y, Z),(Z, X) \\
& \text { each } \epsilon \text {-regular. }
\end{aligned}
$$

All but $\epsilon|X|$ vertices in X have at least $(\gamma-\epsilon)|Y|$ neighbours in Y.

Counting

$$
\begin{gathered}
(X, Y),(Y, Z),(Z, X) \\
\text { each } \epsilon \text {-regular. }
\end{gathered}
$$

All but $\epsilon|X|$ vertices in X have at least $(\gamma-\epsilon)|Y|$ neighbours in Y.
All but $\epsilon|X|$ vertices in X have at least $(\beta-\epsilon)|Z|$ neighbours in Z.

Counting

$$
(X, Y),(Y, Z),(Z, X)
$$

$$
\text { each } \epsilon \text {-regular. }
$$

All but $\epsilon|X|$ vertices in X have at least $(\gamma-\epsilon)|Y|$ neighbours in Y.
All but $\epsilon|X|$ vertices in X have at least $(\beta-\epsilon)|Z|$ neighbours in Z.
Therefore, all but $2 \epsilon|X|$ vertices in X have $\left|N_{Y}(x)\right| \geq(\gamma-\epsilon)|Y|$ and $\left|N_{Z}(x)\right| \geq(\beta-\epsilon)|Z|$.

Counting

$$
(X, Y),(Y, Z),(Z, X)
$$

$$
\text { each } \epsilon \text {-regular. }
$$

All but $\epsilon|X|$ vertices in X have at least $(\gamma-\epsilon)|Y|$ neighbours in Y.
All but $\epsilon|X|$ vertices in X have at least $(\beta-\epsilon)|Z|$ neighbours in Z.
Therefore, all but $2 \epsilon|X|$ vertices in X have $\left|N_{Y}(x)\right| \geq(\gamma-\epsilon)|Y|$ and $\left|N_{Z}(x)\right| \geq(\beta-\epsilon)|Z|$. Density at least $\alpha-\epsilon$ between them.

Counting

$$
(X, Y),(Y, Z),(Z, X)
$$

each ϵ-regular.

All but $\epsilon|X|$ vertices in X have at least $(\gamma-\epsilon)|Y|$ neighbours in Y.
All but $\epsilon|X|$ vertices in X have at least $(\beta-\epsilon)|Z|$ neighbours in Z.
Therefore, all but $2 \epsilon|X|$ vertices in X have $\left|N_{Y}(x)\right| \geq(\gamma-\epsilon)|Y|$ and $\left|N_{Z}(x)\right| \geq(\beta-\epsilon)|Z|$. Density at least $\alpha-\epsilon$ between them.

Therefore, the number of triangles is at least

$$
(1-2 \epsilon)|X|(\gamma-\epsilon)|Y|(\beta-\epsilon)|Z|(\alpha-\epsilon) \approx \alpha \beta \gamma|X||Y||Z|
$$

Counting

D. Conlon, W. T. Gowers, W. Samotij and M. Schacht

On the $K Ł R$ conjecture in random graphs

Counting

More generally, we have the following counting lemma.

Counting

More generally, we have the following counting lemma.

Counting lemma

For every graph H on vertex set $\{1,2, \ldots, k\}$ and every $\delta>0$ there exists an $\epsilon>0$ such that the following holds.

Counting

More generally, we have the following counting lemma.

Counting lemma

For every graph H on vertex set $\{1,2, \ldots, k\}$ and every $\delta>0$ there exists an $\epsilon>0$ such that the following holds. Let G be a graph whose vertex set is a disjoint union $V_{1} \cup V_{2} \cup \cdots \cup V_{k}$ of sets of size n where (V_{i}, V_{j}) is ϵ-regular and has density $d_{i j}$ for each edge $i j \in E(H)$.

Counting

More generally, we have the following counting lemma.

Counting lemma

For every graph H on vertex set $\{1,2, \ldots, k\}$ and every $\delta>0$ there exists an $\epsilon>0$ such that the following holds. Let G be a graph whose vertex set is a disjoint union $V_{1} \cup V_{2} \cup \cdots \cup V_{k}$ of sets of size n where $\left(V_{i}, V_{j}\right)$ is ϵ-regular and has density $d_{i j}$ for each edge $i j \in E(H)$. Then the number of k-tuples $\left(v_{1}, \ldots, v_{k}\right) \in V_{1} \times \cdots \times V_{k}$ such that $v_{i} v_{j} \in E(G)$ whenever $i j \in E(H)$ is

$$
n^{k}\left(\prod_{i j \in E(H)} d_{i j} \pm \delta\right)
$$

Sparse regularity

D. Conlon, W. T. Gowers, W. Samotij and M. Schacht

On the $K Ł R$ conjecture in random graphs

Sparse regularity

(ϵ, p)-regular pair

A bipartite graph between sets U and V is said to be (ϵ, p)-regular if for every $U^{\prime} \subseteq U$ and $V^{\prime} \subseteq V$ with $\left|U^{\prime}\right| \geq \epsilon|U|$ and $\left|V^{\prime}\right| \geq \epsilon|V|$ the density $d\left(U^{\prime}, V^{\prime}\right)$ of edges between U^{\prime} and V^{\prime} satisfies

$$
\left|d\left(U^{\prime}, V^{\prime}\right)-d(U, V)\right| \leq \epsilon p
$$

Sparse regularity

(ϵ, p)-regular pair

A bipartite graph between sets U and V is said to be (ϵ, p)-regular if for every $U^{\prime} \subseteq U$ and $V^{\prime} \subseteq V$ with $\left|U^{\prime}\right| \geq \epsilon|U|$ and $\left|V^{\prime}\right| \geq \epsilon|V|$ the density $d\left(U^{\prime}, V^{\prime}\right)$ of edges between U^{\prime} and V^{\prime} satisfies

$$
\left|d\left(U^{\prime}, V^{\prime}\right)-d(U, V)\right| \leq \epsilon p .
$$

(ϵ, p)-regular partition

A partition of a graph into t pieces $V_{1}, V_{2}, \ldots, V_{t}$ is (ϵ, p)-regular if it is an equipartition, that is, $\left|\left|V_{i}\right|-\left|V_{j}\right|\right| \leq 1$ for all $1 \leq i, j \leq t$, and all but at most ϵt^{2} pairs $\left(V_{i}, V_{j}\right)$ are (ϵ, p)-regular.

Sparse regularity

D. Conlon, W. T. Gowers, W. Samotij and M. Schacht

On the $K Ł R$ conjecture in random graphs

Sparse regularity

In order to prove a sparse regularity lemma, it is useful to know that the graph satisfies a condition of the following form.

Sparse regularity

In order to prove a sparse regularity lemma, it is useful to know that the graph satisfies a condition of the following form.

Upper-uniformity

Suppose that $0<\eta, p \leq 1$ and $D \geq 1$ are given.

Sparse regularity

In order to prove a sparse regularity lemma, it is useful to know that the graph satisfies a condition of the following form.

Upper-uniformity

Suppose that $0<\eta, p \leq 1$ and $D \geq 1$ are given. A graph G is (η, p, D)-upper-uniform if for all disjoint vertex subsets U_{1} and U_{2} with $\left|U_{1}\right|,\left|U_{2}\right| \geq \eta|V(G)|$, the density of edges between U_{1} and U_{2} is at most $D p$.

Sparse regularity

In order to prove a sparse regularity lemma, it is useful to know that the graph satisfies a condition of the following form.

Upper-uniformity

Suppose that $0<\eta, p \leq 1$ and $D \geq 1$ are given. A graph G is (η, p, D)-upper-uniform if for all disjoint vertex subsets U_{1} and U_{2} with $\left|U_{1}\right|,\left|U_{2}\right| \geq \eta|V(G)|$, the density of edges between U_{1} and U_{2} is at most $D p$.

Sparse regularity lemma - Kohayakawa, Rödl

For every $\epsilon, D>0$, there exist $\eta>0$ and T such that every graph G which is (η, p, D)-upper-uniform has an (ϵ, p)-regular partition $V_{1}, V_{2}, \ldots, V_{t}$ into $t \leq T$ pieces.

Sparse regularity

In order to prove a sparse regularity lemma, it is useful to know that the graph satisfies a condition of the following form.

Upper-uniformity

Suppose that $0<\eta, p \leq 1$ and $D \geq 1$ are given. A graph G is (η, p, D)-upper-uniform if for all disjoint vertex subsets U_{1} and U_{2} with $\left|U_{1}\right|,\left|U_{2}\right| \geq \eta|V(G)|$, the density of edges between U_{1} and U_{2} is at most $D p$.

Sparse regularity lemma - Kohayakawa, Rödl

For every $\epsilon, D>0$, there exist $\eta>0$ and T such that every graph G which is (η, p, D)-upper-uniform has an (ϵ, p)-regular partition $V_{1}, V_{2}, \ldots, V_{t}$ into $t \leq T$ pieces.

The upper-uniformity condition was recently removed by Scott.

Counting

D. Conlon, W. T. Gowers, W. Samotij and M. Schacht

On the $K Ł R$ conjecture in random graphs

Counting

$$
\begin{gathered}
(X, Y),(Y, Z),(Z, X) \\
\text { each }(\epsilon, p) \text {-regular. }
\end{gathered}
$$

Counting

$(X, Y),(Y, Z),(Z, X)$
each (ϵ, p)-regular.

All but $\epsilon|X|$ vertices have at least $(\gamma-\epsilon) p|Y|$ neighbours in Y.

Counting

$(X, Y),(Y, Z),(Z, X)$
each (ϵ, p)-regular.

All but $\epsilon|X|$ vertices have at least $(\gamma-\epsilon) p|Y|$ neighbours in Y.
All but $\epsilon|X|$ vertices have at least $(\beta-\epsilon) p|Z|$ neighbours in Z.

Counting

$(X, Y),(Y, Z),(Z, X)$
each (ϵ, p)-regular.

All but $\epsilon|X|$ vertices have at least $(\gamma-\epsilon) p|Y|$ neighbours in Y.
All but $\epsilon|X|$ vertices have at least $(\beta-\epsilon) p|Z|$ neighbours in Z.
Therefore, all but $2 \epsilon|X|$ vertices in X have $\left|N_{Y}(x)\right| \geq(\gamma-\epsilon) p|Y|$ and $\left|N_{Z}(x)\right| \geq(\beta-\epsilon) p|Z|$.

Counting

$(X, Y),(Y, Z),(Z, X)$
each (ϵ, p)-regular.

All but $\epsilon|X|$ vertices have at least $(\gamma-\epsilon) p|Y|$ neighbours in Y.
All but $\epsilon|X|$ vertices have at least $(\beta-\epsilon) p|Z|$ neighbours in Z.
Therefore, all but $2 \epsilon|X|$ vertices in X have $\left|N_{Y}(x)\right| \geq(\gamma-\epsilon) p|Y|$ and $\left|N_{Z}(x)\right| \geq(\beta-\epsilon) p|Z|$.

But now we can say nothing about the density of edges between $N_{Y}(x)$ and $N_{Z}(x)$!

Counting

D. Conlon, W. T. Gowers, W. Samotij and M. Schacht

On the $K Ł R$ conjecture in random graphs

Counting

If p is too small, we cannot expect a counting lemma to hold.

Counting

If p is too small, we cannot expect a counting lemma to hold.
Consider the graph G formed by taking three independent sets of size n and placing a random bipartite graph, where each edge is chosen independently with probability p, between each pair of vertex sets.

Counting

If p is too small, we cannot expect a counting lemma to hold.
Consider the graph G formed by taking three independent sets of size n and placing a random bipartite graph, where each edge is chosen independently with probability p, between each pair of vertex sets.

With high probability, G has close to $p n^{2}$ edges and $p^{3} n^{3}$ triangles.

Counting

If p is too small, we cannot expect a counting lemma to hold.
Consider the graph G formed by taking three independent sets of size n and placing a random bipartite graph, where each edge is chosen independently with probability p, between each pair of vertex sets.

With high probability, G has close to $p n^{2}$ edges and $p^{3} n^{3}$ triangles. For $p \ll n^{-1 / 2}$, we have $p^{3} n^{3} \ll p n^{2}$, so we can remove all triangles by removing a very small proportion of edges.

Counting

If p is too small, we cannot expect a counting lemma to hold.
Consider the graph G formed by taking three independent sets of size n and placing a random bipartite graph, where each edge is chosen independently with probability p, between each pair of vertex sets.

With high probability, G has close to $p n^{2}$ edges and $p^{3} n^{3}$ triangles. For $p \ll n^{-1 / 2}$, we have $p^{3} n^{3} \ll p n^{2}$, so we can remove all triangles by removing a very small proportion of edges.

The resulting graph G^{\prime} will still be such that the graph between each pair of vertex sets is (ϵ, p)-regular but it contains no triangles.

Counting

D. Conlon, W. T. Gowers, W. Samotij and M. Schacht

On the $K Ł R$ conjecture in random graphs

Counting

What if $p \gg n^{-1 / 2}$?

Counting

What if $p \gg n^{-1 / 2}$?
Unfortunately, for any $p=o(1)$, we may blow up small examples to produce graphs which are (ϵ, p)-regular but do not contain any triangles.

Counting

What if $p \gg n^{-1 / 2}$?

Unfortunately, for any $p=o(1)$, we may blow up small examples to produce graphs which are (ϵ, p)-regular but do not contain any triangles.

However...

Counting

What if $p \gg n^{-1 / 2}$?
Unfortunately, for any $p=o(1)$, we may blow up small examples to produce graphs which are (ϵ, p)-regular but do not contain any triangles.

However...

Theorem - Kohayakawa, Łuczak, Rödl

For $p \gg n^{-1 / 2}$, there are very few graphs on vertex set $X \cup Y \cup Z$ with $|X|=|Y|=|Z|=n$ such that the graph between each pair of vertex sets is (ϵ, p)-regular and the graph contains no triangles.

Counting

What if $p \gg n^{-1 / 2}$?
Unfortunately, for any $p=o(1)$, we may blow up small examples to produce graphs which are (ϵ, p)-regular but do not contain any triangles.

However...

Theorem - Kohayakawa, Łuczak, Rödl

For $p \gg n^{-1 / 2}$, there are very few graphs on vertex set $X \cup Y \cup Z$ with $|X|=|Y|=|Z|=n$ such that the graph between each pair of vertex sets is (ϵ, p)-regular and the graph contains no triangles.

So few that the random graph $G_{N, p}$ with $N=O(n)$ is unlikely to contain any such bad example as a subgraph.
D. Conlon, W. T. Gowers, W. Samotij and M. Schacht

On the $K \notin R$ conjecture in random graphs

Kohayakawa, Łuczak and Rödl conjectured that a similar phenomenon should hold for all graphs H.

The KŁR conjecture

Kohayakawa, Łuczak and Rödl conjectured that a similar phenomenon should hold for all graphs H.

KŁR conjecture

For every graph H on vertex set $\{1,2, \ldots, k\}$ and $p \gg n^{-1 / m_{2}(H)}$, there are very few graphs on vertex set $V_{1} \cup V_{2} \cup \cdots \cup V_{k}$ with $\left|V_{1}\right|=\left|V_{2}\right|=\cdots=\left|V_{k}\right|=n$ such that the graph between each pair of vertex sets V_{i} and V_{j} with ij $\in E(H)$ is (ϵ, p)-regular and the graph contains no copies of H.

The KŁR conjecture

Kohayakawa, Łuczak and Rödl conjectured that a similar phenomenon should hold for all graphs H.

KŁR conjecture

For every graph H on vertex set $\{1,2, \ldots, k\}$ and $p \gg n^{-1 / m_{2}(H)}$, there are very few graphs on vertex set $V_{1} \cup V_{2} \cup \cdots \cup V_{k}$ with $\left|V_{1}\right|=\left|V_{2}\right|=\cdots=\left|V_{k}\right|=n$ such that the graph between each pair of vertex sets V_{i} and V_{j} with ij $\in E(H)$ is (ϵ, p)-regular and the graph contains no copies of H.

Here

$$
m_{2}(H)=\max \left\{\frac{e\left(H^{\prime}\right)-1}{v\left(H^{\prime}\right)-2}: H^{\prime} \subseteq H, v\left(H^{\prime}\right) \geq 3\right\}
$$

and $p=n^{-1 / m_{2}(H)}$ is roughly where every edge of the random graph $G_{n, p}$ is contained in a copy of H.
D. Conlon, W. T. Gowers, W. Samotij and M. Schacht

On the $K \notin R$ conjecture in random graphs

The conjecture was proved for

The conjecture was proved for
K_{3} - Kohayakawa, Łuczak and Rödl

The conjecture was proved for
K_{3} - Kohayakawa, Łuczak and Rödl K_{4} - Gerke, Prömel, Schickinger, Steger and Taraz

The conjecture was proved for
K_{3} - Kohayakawa, Łuczak and Rödl
K_{4} - Gerke, Prömel, Schickinger, Steger and Taraz
K_{5} - Gerke, Schickinger and Steger

The conjecture was proved for
K_{3} - Kohayakawa, Łuczak and Rödl
K_{4} - Gerke, Prömel, Schickinger, Steger and Taraz
K_{5} - Gerke, Schickinger and Steger
Cycles - Gerke, Kohayakawa, Rödl and Steger; Behrisch

The conjecture was proved for
K_{3} - Kohayakawa, Łuczak and Rödl
K_{4} - Gerke, Prömel, Schickinger, Steger and Taraz
K_{5} - Gerke, Schickinger and Steger
Cycles - Gerke, Kohayakawa, Rödl and Steger; Behrisch

Balanced graphs - Balogh, Morris and Samotij

The conjecture was proved for
K_{3} - Kohayakawa, Łuczak and Rödl
K_{4} - Gerke, Prömel, Schickinger, Steger and Taraz
K_{5} - Gerke, Schickinger and Steger
Cycles - Gerke, Kohayakawa, Rödl and Steger; Behrisch

Balanced graphs - Balogh, Morris and Samotij
All graphs - Saxton and Thomason

Counting

D. Conlon, W. T. Gowers, W. Samotij and M. Schacht

On the $K Ł R$ conjecture in random graphs

Counting

The KŁR conjecture may be used to show that with high probability $G_{N, p}$ has the property that any subgraph defined on a large subset $V_{1} \cup V_{2} \cup \cdots \cup V_{k}$ and such that $\left(V_{i}, V_{j}\right)$ is (ϵ, p)-regular for all $i j \in E(H)$ contains a single copy of H.

Counting

The $K Ł R$ conjecture may be used to show that with high probability $G_{N, p}$ has the property that any subgraph defined on a large subset $V_{1} \cup V_{2} \cup \cdots \cup V_{k}$ and such that $\left(V_{i}, V_{j}\right)$ is (ϵ, p)-regular for all ij $\in E(H)$ contains a single copy of H.

What if instead one wishes to know that every such subgraph contains many copies of H ?

Main result

D. Conlon, W. T. Gowers, W. Samotij and M. Schacht

On the $K Ł R$ conjecture in random graphs

Main result

A counting lemma to use with the sparse regularity lemma. For example, for triangles,

Main result

A counting lemma to use with the sparse regularity lemma. For example, for triangles,

$$
\begin{gathered}
(X, Y),(Y, Z),(Z, X) \\
\text { each }(\epsilon, p) \text {-regular. }
\end{gathered}
$$

Main result

A counting lemma to use with the sparse regularity lemma. For example, for triangles,

$$
\begin{gathered}
(X, Y),(Y, Z),(Z, X) \\
\text { each }(\epsilon, p) \text {-regular. }
\end{gathered}
$$

it may be used to show that in any subgraph of $G_{n, p}$ consisting of three large vertex sets X, Y and Z with an (ϵ, p)-regular graph between each pair of vertex sets, there are approximately $\alpha \beta \gamma p^{3}|X||Y||Z|$ triangles.

Main result

D. Conlon, W. T. Gowers, W. Samotij and M. Schacht

On the $K Ł R$ conjecture in random graphs

Main result

More generally, we have

Main result

More generally, we have an exact counting lemma for all strictly balanced graphs H;

Main result

More generally, we have an exact counting lemma for all strictly balanced graphs H;
a lower count for all graphs H.

Main result

More generally, we have an exact counting lemma for all strictly balanced graphs H;
a lower count for all graphs H.
Proofs use two different methods, developed independently by C.-Gowers and by Schacht for proving combinatorial theorems relative to random sets.

Applications

D. Conlon, W. T. Gowers, W. Samotij and M. Schacht

On the $K Ł R$ conjecture in random graphs

Applications

Reproves
D. Conlon, W. T. Gowers, W. Samotij and M. Schacht

On the $K \notin R$ conjecture in random graphs

Applications

Reproves

- Ramsey's theorem in random graphs - Rödl-Ruciński

Applications

Reproves

- Ramsey's theorem in random graphs - Rödl-Ruciński
- Turán's theorem in random graphs - C.-Gowers, Schacht

Applications

Reproves

- Ramsey's theorem in random graphs - Rödl-Ruciński
- Turán's theorem in random graphs - C.-Gowers, Schacht
- Stability theorem in random graphs - C.-Gowers, Samotij

Applications

Reproves

- Ramsey's theorem in random graphs - Rödl-Ruciński
- Turán's theorem in random graphs - C.-Gowers, Schacht
- Stability theorem in random graphs - C.-Gowers, Samotij

New results

Applications

Reproves

- Ramsey's theorem in random graphs - Rödl-Ruciński
- Turán's theorem in random graphs - C.-Gowers, Schacht
- Stability theorem in random graphs - C.-Gowers, Samotij

New results

- Removal lemma in random graphs

Applications

Reproves

- Ramsey's theorem in random graphs - Rödl-Ruciński
- Turán's theorem in random graphs - C.-Gowers, Schacht
- Stability theorem in random graphs - C.-Gowers, Samotij

New results

- Removal lemma in random graphs
- Hajnal-Szemerédi theorem in random graphs

Applications

Reproves

- Ramsey's theorem in random graphs - Rödl-Ruciński
- Turán's theorem in random graphs - C.-Gowers, Schacht
- Stability theorem in random graphs - C.-Gowers, Samotij

New results

- Removal lemma in random graphs
- Hajnal-Szemerédi theorem in random graphs
- More...

Thank you for your attention!

