Infinite Sidon sequences

Javier Cilleruelo

ICMAT-Universidad Autónoma de Madrid

Erdos Centennial
Budapest, July 1-5, 2013

The origin of the problem

In 1932, Simon Sidon asked to Erdős about the slowest possible growth of an infinite sequence A of positive integers having the property that all the sums

$$
a+a^{\prime}, \quad a \leq a^{\prime}, \quad a, a^{\prime} \in A
$$

are distinct.

Erdős named them Sidon sequences and they became one of his favorite topics.

The Sidon sequence given by the greedy algorithm

Main problem: Construct (or prove the existence of) an infinite Sidon sequence A with counting function

$$
A(x)=|A \cap[1, x]|
$$

as large as possible.

Erdős considered the sequence given by the greedy algorithm:

- Starting with $a_{1}=1$, define a_{n+1} as the least positive integer we can add to the set $\left\{a_{1}, \ldots, a_{n}\right\}$ preserving the Sidon property.

$$
1,2,4,8,13,21,31,45,66,81,97,123,148,182,204, \ldots
$$

The Sidon sequence given by the greedy algorithm

The forbidden elements for a_{n+1} are those of the form

$$
a_{i}+a_{j}-a_{k}, \quad i, j, k \leq n .
$$

Since there are at most n^{3} of them, certainly we have that

$$
a_{n+1} \leq n^{3}+1
$$

which implies

$$
A(x) \gg x^{1 / 3} .
$$

An upper bound for the counting function of a Sidon sequence

The number of sums $a+a^{\prime}, a, a^{\prime} \in A$ with $a<a^{\prime} \leq x$ is $\binom{A(x)}{2}$, and all of them are distinct and less than $2 x$:

$$
\binom{A(x)}{2}<2 x \Longrightarrow A(x) \ll x^{1 / 2}
$$

Conjecture (Erdős): For each $\epsilon>0$ there is an infinite Sidon sequence A with

$$
A(x) \gg x^{1 / 2-\epsilon} .
$$

- Erdős proved that the conjecture is false for $\epsilon=0$.

The construction of Ajtai, Komlós and Szemerédi

The greedy Sidon sequence found by Erdős was the densest known during almost 50 years.

Theorem (Ajtai, Komlós and Szemerédi, 1981): There exists an infinite Sidon sequence with counting function

$$
A(x) \gg(x \log x)^{1 / 3} .
$$

They wrote: "The task of constructing a denser sequence has so far resisted all efforts, both constructive and random methods. Here we use a random construction for giving a sequence which is denser than the above trivial one".

The construction of Ruzsa

Theorem (Ruzsa, 1998): There exists an infinite Sidon sequence with counting function

$$
A(x)=x^{\sqrt{2}-1+o(1)} .
$$

The starting point of Ruzsa was the observation that the sequence of the prime numbers is a multiplicative Sidon sequence, or equivalently the sequence $(\log p)_{p \in P}$ is a Sidon sequence of real numbers.

The construction of Ruzsa

Ruzsa introduced a random parameter $\alpha \in[1,2]$ and constructed a sequence $A_{\alpha}=\left(a_{p}\right)_{p \in P}$, where each integer a_{p} is built using the binary digits of $\alpha \log p$.

Then he proved that for almost all $\alpha \in[1,2]$ it is possible to extract a dense Sidon sequence from A_{α}.

The constructions of Ruzsa and Ajtai, Komlós and Szemerédi are probabilistic. They are not explicit.

An explicit construction

It was a open problem to construct an explicit Sidon sequence with counting function $A(x) \gg x^{c}$ for some $c>1 / 3$.

We construct an explicit Sidon sequence as dense as Ruzsa's sequence:

Theorem (C., 2012): There exists an infinite Sidon sequence A, which can be explicitly constructed, with counting function

$$
A(x)=x^{\sqrt{2}-1+o(1)}
$$

Generalized basis

Given a sequence of positive integers

$$
\bar{q}:=4 q_{1}, \ldots, 4 q_{j}, \ldots \quad \text { (the base) }
$$

any positive integer a can be written, in only a way, in the form

$$
a=x_{1}+x_{2}\left(4 q_{1}\right)+x_{3}\left(4 q_{1}\right)\left(4 q_{2}\right)+\cdots+x_{j}\left(4 q_{1}\right) \cdots\left(4 q_{j-1}\right)+\cdots
$$

where the digits x_{j} satisfy

$$
0 \leq x_{j}<4 q_{j}
$$

We represent the integer a in the form

$$
a:=\ldots x_{j} \ldots x_{1} .
$$

Summing integers as vectors

If all the digits of a, a^{\prime} satisfy

$$
\begin{array}{rlr}
q_{j} & <x_{j}, x_{j}^{\prime}<2 q_{j} \\
a & = & x_{k_{1}} \ldots \ldots x_{1} \\
a^{\prime} & = & x_{k_{2}}^{\prime} \ldots x_{1}^{\prime}
\end{array}
$$

we have

$$
a+a^{\prime}=\left(x_{k_{1}}+0\right) \ldots\left(x_{k_{2}+1}+0\right)\left(x_{k_{2}}+x_{k_{2}}^{\prime}\right) \ldots\left(x_{1}+x_{1}^{\prime}\right) .
$$

Furthermore, the digits of $a+a^{\prime}$ determine the lengths k_{1}, k_{2} of $a, a^{\prime}, a \leq a^{\prime}$.

The construction: the base and the set of indexes

1) We consider a fix generalized base

$$
\bar{q}:=4 q_{1}, \ldots, 4 q_{j}, \ldots,
$$

where the q_{j} are primes satisfying

$$
2^{2 j-1}<q_{j} \leq 2^{2 j} .
$$

2) We use the set of the primes P as the indices

$$
A=\left(a_{p}\right)_{p \in P}
$$

and represent the elements a_{p} in the base \bar{q} as:

$$
a_{p}=\ldots x_{j}(p) \ldots x_{1}(p) .
$$

The construction: the growth
3) Fix $c, 0<c<1 / 2$ and make a partition of the set of the primes (the set of indices):

$$
P=\bigcup_{k} P_{k}, \quad P_{k}=\left\{p: 2^{c(k-1)^{2}}<p \leq 2^{c k^{2}}\right\} .
$$

Proposition: Assume that the elements a_{p} with $p \in P_{k}$ have exactly k digits in the base \bar{q},

$$
a_{p}=x_{k}(p) \ldots x_{1}(p) .
$$

Then we have

$$
A_{q, c}(x)=x^{c+o(1)} .
$$

The construction: the digits

4) For $p \in P_{k}$ we define the digits of

$$
a_{p}:=x_{k}(p) \ldots x_{1}(p)
$$

as follows: the digit $x_{j}(p)$ is given by the solution of

$$
g_{j}^{x_{j}(p)} \equiv p \quad\left(\bmod q_{j}\right), \quad q_{j}<x_{j}(p)<2 q_{j}
$$

where g_{j} is a given generator of $\mathbb{F}_{q_{j}}^{*}$.
(The digit $x_{j}(p)$ is the discrete logarithm of p modulo q_{j} and it is unique modulo $q_{j}-1$.)

- We will prove that if there is a repeated sum

$$
a_{p_{1}}+a_{p_{2}}=a_{p_{1}^{\prime}}+a_{p_{2}^{\prime}}
$$

then the primes involved, $p_{1}, p_{2}, p_{1}^{\prime}, p_{2}^{\prime}$, must satisfy some relations.

- We will prove that these relations cannot hold if

$$
c \leq \text { some value } c_{0}
$$

Lemma 1: If $a_{p_{1}}+a_{p_{2}}=a_{p_{1}^{\prime}}+a_{p_{2}^{\prime}}$ then there exist $k_{2} \leq k_{1}$ such that

$$
p_{1}, p_{1}^{\prime} \in P_{k_{1}}, \quad p_{2}, p_{2}^{\prime} \in P_{k_{2}}
$$

$$
\begin{array}{rr}
a_{p_{1}}= & x_{k_{1}}\left(p_{1}\right) \cdots x_{k_{2}}\left(p_{1}\right) \cdots x_{1}\left(p_{1}\right) \\
a_{p_{2}}= & x_{k_{2}}\left(p_{2}\right) \cdots x_{1}\left(p_{2}\right) \\
a_{p_{1}^{\prime}}= & x_{k_{1}}\left(p_{1}^{\prime}\right) \cdots x_{k_{2}}\left(p_{1}^{\prime}\right) \cdots x_{1}\left(p_{1}^{\prime}\right) \\
a_{p_{2}^{\prime}}=r & x_{k_{2}}\left(p_{2}^{\prime}\right) \cdots x_{1}\left(p_{2}^{\prime}\right)
\end{array}
$$

Lemma 2: If $a_{p_{1}}+a_{p_{2}}=a_{p_{1}^{\prime}}+a_{p_{2}^{\prime}}, p_{1}, p_{1}^{\prime} \in P_{k_{1}}, p_{2}, p_{2}^{\prime} \in P_{k_{2}}$ then

$$
p_{1} p_{2} \equiv p_{1}^{\prime} p_{2}^{\prime} \quad\left(\bmod q_{1} \cdots q_{k_{2}}\right) .
$$

$$
\begin{aligned}
a_{p_{1}} & =x_{k_{1}}\left(p_{1}\right) \cdots x_{k_{2}}\left(p_{1}\right) \cdots x_{1}\left(p_{1}\right) \\
a_{p_{2}} & =r \\
a_{p_{1}^{\prime}} & =x_{k_{1}}\left(p_{1}^{\prime}\right) \cdots x_{k_{2}}\left(p_{2}\right) \cdots x_{1}^{\prime}\left(p_{2}^{\prime}\right) \cdots x_{1}\left(p_{1}^{\prime}\right) \\
a_{p_{2}^{\prime}} & x_{k_{2}}\left(p_{2}^{\prime}\right) \cdots x_{1}\left(p_{2}^{\prime}\right)
\end{aligned}
$$

For $1 \leq j \leq k_{2}$ we have

$$
\begin{aligned}
x_{j}\left(p_{1}\right)+x_{j}\left(p_{2}\right) & =x_{j}\left(p_{1}^{\prime}\right)+x_{j}\left(p_{2}^{\prime}\right) \\
g_{j}^{x_{j}\left(p_{1}\right)+x_{j}\left(p_{2}\right)} & \equiv g_{j}^{x_{j}\left(p_{1}^{\prime}\right)+x_{j}\left(p_{2}^{\prime}\right)}\left(\bmod q_{j}\right) \\
p_{1} p_{2} & \equiv p_{1}^{\prime} p_{2}^{\prime}\left(\bmod q_{j}\right)
\end{aligned}
$$

Lemma 3: If $a_{p_{1}}+a_{p_{2}}=a_{p_{1}^{\prime}}+a_{p_{2}^{\prime}}, p_{1}, p_{1}^{\prime} \in P_{k_{1}}, p_{2}, p_{2}^{\prime} \in P_{k_{2}}$ then

$$
p_{1} \equiv p_{1}^{\prime} \quad\left(\bmod q_{k_{2}+1} \cdots q_{k_{1}}\right) .
$$

$$
\begin{aligned}
a_{p_{1}} & =x_{k_{1}}\left(p_{1}\right) \cdots x_{k_{2}}\left(p_{1}\right) \cdots x_{1}\left(p_{1}\right) \\
a_{p_{2}} & =r \\
a_{p_{1}^{\prime}} & =x_{k_{1}}\left(p_{1}^{\prime}\right) \cdots x_{k_{2}}\left(p_{2}\right) \cdots x_{1}\left(p_{2}^{\prime}\right) \cdots x_{1}\left(p_{1}^{\prime}\right) \\
a_{p_{2}^{\prime}} & x_{k_{2}}\left(p_{2}^{\prime}\right) \cdots x_{1}\left(p_{2}^{\prime}\right)
\end{aligned}
$$

For $k_{2}+1 \leq j \leq k_{1}$ we have

$$
\begin{aligned}
x_{j}\left(p_{1}\right) & =x_{j}\left(p_{1}^{\prime}\right) \\
g_{j}^{x_{j}\left(p_{1}\right)} & \equiv g_{j}^{x_{j}\left(p_{1}^{\prime}\right)}\left(\bmod q_{j}\right) \\
p_{1} & \equiv p_{1}^{\prime}\left(\bmod q_{j}\right)
\end{aligned}
$$

If $a_{p_{1}}+a_{p_{2}}=a_{p_{1}^{\prime}}+a_{p_{2}^{\prime}}$

i) $p_{1}, p_{1}^{\prime} \in P_{k_{1}}=\left\{p: 2^{c\left(k_{1}-1\right)^{2}}<p \leq 2^{c k_{1}^{2}}\right\}$

$$
p_{2}, p_{2}^{\prime} \in P_{k_{2}}=\left\{p: 2^{c\left(k_{2}-1\right)^{2}}<p \leq 2^{c k_{2}^{2}}\right\}
$$

ii) $p_{1} p_{2} \equiv p_{1}^{\prime} p_{2}^{\prime}\left(\bmod q_{1} \cdots q_{k_{2}}\right)$
(Lemma 2)
iii) $p_{1} \equiv p_{1}^{\prime}\left(\bmod q_{k_{2}+1} \cdots q_{k_{1}}\right)$
(Lemma 3)

$$
\text { iv) } 2^{2 j-1}<q_{j} \leq 2^{2 j}
$$

(by construction)
$2^{c k_{1}^{2}+c k_{2}^{2}} \geq\left|p_{1} p_{2}-p_{1}^{\prime} p_{2}^{\prime}\right| \geq q_{1} \cdots q_{k_{2}}>2^{1+3+\cdots+\left(2 k_{2}-1\right)}=2^{k_{2}^{2}}$

$$
\Longrightarrow \quad k_{2}^{2}<\frac{c}{1-c} k_{1}^{2} .
$$

If $a_{p_{1}}+a_{p_{2}}=a_{p_{1}^{\prime}}+a_{p_{2}^{\prime}}$

$$
\begin{aligned}
& \text { i) } p_{1}, p_{1}^{\prime} \in P_{k_{1}}=\left\{p: 2^{c\left(k_{1}-1\right)^{2}}<p \leq 2^{c k_{1}^{2}}\right\} \\
& p_{2}, p_{2}^{\prime} \in P_{k_{2}}=\left\{p: 2^{c\left(k_{2}-1\right)^{2}}<p \leq 2^{c k_{2}^{2}}\right\} \\
& \text { ii) } p_{1} p_{2} \equiv p_{1}^{\prime} p_{2}^{\prime}\left(\bmod q_{1} \cdots q_{k_{2}}\right) \\
& \text { iii) } p_{1} \equiv p_{1}^{\prime}\left(\bmod q_{k_{2}+1} \cdots q_{k_{1}}\right) \\
& \text { (Lemma 1) } \\
& \text { (Lemma 2) } \\
& \text { (Lemma 3) } \\
& \text { iv) } 2^{2 j-1}<q_{j} \leq 2^{2 j} \\
& \text { (by construction) } \\
& \text { i) } \\
& \text { iii) } \\
& \text { iv) } \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& 2^{c k_{1}^{2}} \geq\left|p_{1}-p_{1}^{\prime}\right| \geq q_{k_{2}+1} \cdots q_{k_{1}}>2^{\left(2 k_{2}+1\right)+\cdots\left(2 k_{1}-1\right)}=2^{k_{1}^{2}-k_{2}^{2}} \\
& \Longrightarrow \quad(1-c) k_{1}^{2}<k_{2}^{2} .
\end{aligned}
$$

An explicit infinite Sidon sequence

$$
\begin{aligned}
(1-c) k_{1}^{2}<k_{2}^{2}<\frac{c}{1-c} k_{1}^{2} & \Longrightarrow 1-c<\frac{c}{1-c} \\
& \Longrightarrow c>\frac{3-\sqrt{5}}{2}=0.381966 .
\end{aligned}
$$

Corollary (C., 2012): The sequence $A_{\bar{q}, c}$ is a Sidon sequence for $c=\frac{3-\sqrt{5}}{2}=0.3819 .$. with counting function

$$
A_{\bar{q}, c}(x)=x^{\frac{3-\sqrt{5}}{2}+o(1)} .
$$

An explicit infinite Sidon sequence

If $c>\frac{3-\sqrt{5}}{2}$ then $A_{\bar{q}, c}$ is not a Sidon sequence. Some repeated sums $a_{p_{1}}+a_{p_{2}}=a_{p_{1}^{\prime}}+a_{p_{2}^{\prime}}$ may appear.

We remove the bad $a_{p_{1}}$ involved in these sums to obtain a Sidon sequence.

If $c \leq \sqrt{2}-1$, the removed elements are not too many.
Theorem (C., 2012): For $c=\sqrt{2}-1$ the sequence $A_{\bar{q}, c}$ contains a Sidon sequence A, which can be explicitly constructed, with

$$
A(x)=x^{\sqrt{2}-1+o(1)} .
$$

If $a_{p_{1}}+a_{p_{2}}=a_{p_{1}^{\prime}}+a_{p_{2}^{\prime}}$

$$
p_{1}\left(p_{2}-p_{2}^{\prime}\right)=\frac{p_{1} p_{2}-p_{1}^{\prime} p_{2}^{\prime}}{Q_{1}} \cdot Q_{1}+\frac{\left(p_{1}^{\prime}-p_{1}\right) p_{2}^{\prime}}{Q_{2}} \cdot Q_{2},
$$

where $Q_{1}=q_{1} \cdots q_{k_{2}}, \quad Q_{2}=q_{k_{2}+1} \cdots q_{k_{1}}$.
$p_{1}\left(p_{2}-p_{2}^{\prime}\right) \in\left\{s_{1} \cdot Q_{1}+s_{2} \cdot Q_{2}:\left|s_{1}\right|<\frac{2^{c\left(k k_{1}^{2}+k_{2}^{2}\right)}}{Q_{1}},\left|s_{2}\right| \leq \frac{2^{c\left(k_{1}^{2}+k_{2}^{2}\right)}}{Q_{2}}\right\}$
for some $k_{2}, \quad k_{2}^{2}<\frac{c}{1-c} k_{1}^{2}$.
We remove from each $P_{k_{1}}$ all the primes $p_{1} \in P_{k_{1}}$ dividing some integer of these sets.

It can be checked easily that the number of bad p_{1} we have to remove is $o\left(\left|P_{k_{1}}\right|\right)$ for $c=\sqrt{2}-1$.

B_{h} sequences

They are those sequences A such that all the sums of h elements of A are distinct. The greedy algorithm for B_{h} sequences gives one with

$$
A(x) \gg x^{1 /(2 h-1)} .
$$

Our approach also extends to B_{h} sequences:
Teorema (C., 2012) For each $h \geq 3$, there exists a B_{h} sequence A with

$$
A(x) \gg x^{\sqrt{(h-1)^{2}+1}-(h-1)+o(1)} .
$$

The cases $h=3$ and $h=4$ had been proved previously (C. and R, Tesoro, 2012) using a variant of Ruzsa's method, but that proof does not generalize to $h>4$.

B_{h} sequences

For $h \geq 3$, our construction is not explicit. The problem is that we are not able to estimate the number of bad p_{1} we have to remove from each $P_{k_{1}}$ for a given basis \bar{q}.

We overcome this difficulty considering the probabilistic space of all basis

$$
\bar{q}=h^{2} q_{1}, \ldots, h^{2} q_{j}, \ldots \quad \text { with } \quad 2^{2 j-1}<q_{j} \leq 2^{2 j}
$$

and proving that for almost all basis \bar{q} the number of bad p_{1} in each $P_{k_{1}}$ is $o\left(\left|P_{k_{1}}\right|\right)$.

The finite Sidon set that motivated our construction

Let q be a prime and g a generator of \mathbb{F}_{q}^{*} and let $\log _{g} p$ be the discrete logarithm of p modulo q, which is unique modulo $q-1$.

Theorem (C., 2012): The set

$$
\mathcal{A}=\left\{\log _{g} p: p \text { prime }, p \leq \sqrt{q}\right\}
$$

is a Sidon set in \mathbb{Z}_{q-1} of size $\pi(\sqrt{q}) \sim \frac{\sqrt{q}}{\log \sqrt{q}}$.

$$
\begin{aligned}
\log _{g} p_{1}+\log _{g} p_{2} & \equiv \log _{g} p_{1}^{\prime}+\log _{g} p_{2}^{\prime}(\bmod q-1) \\
p_{1} p_{2} & \equiv p_{1}^{\prime} p_{2}^{\prime} \\
p_{1} p_{2} & =p_{1}^{\prime} p_{2}^{\prime}
\end{aligned}
$$

