Infinite Sidon sequences

Javier Cilleruelo

ICMAT-Universidad Autónoma de Madrid

Erdos Centennial Budapest, July 1-5, 2013 In 1932, Simon Sidon asked to Erdős about the slowest possible growth of an infinite sequence A of positive integers having the property that all the sums

$$a + a', \quad a \le a', \quad a, a' \in A$$

are distinct.

Erdős named them Sidon sequences and they became one of his favorite topics.

The Sidon sequence given by the greedy algorithm

Main problem: Construct (or prove the existence of) an infinite Sidon sequence *A* with counting function

$$A(x) = |A \cap [1, x]|$$

as large as possible.

Erdős considered the sequence given by the greedy algorithm:

Starting with a₁ = 1, define a_{n+1} as the least positive integer we can add to the set {a₁, ..., a_n} preserving the Sidon property.

 $1, 2, 4, 8, 13, 21, 31, 45, 66, 81, 97, 123, 148, 182, 204, \ldots$

The Sidon sequence given by the greedy algorithm

The forbidden elements for a_{n+1} are those of the form

$$a_i + a_j - a_k, \quad i, j, k \leq n.$$

Since there are at most n^3 of them, certainly we have that

$$a_{n+1} \le n^3 + 1,$$

which implies

$$A(x)\gg x^{1/3}.$$

An upper bound for the counting function of a Sidon sequence

The number of sums a + a', $a, a' \in A$ with $a < a' \le x$ is $\binom{A(x)}{2}$, and all of them are distinct and less than 2x:

$$\binom{A(x)}{2} < 2x \implies A(x) \ll x^{1/2}.$$

Conjecture (Erdős): For each $\epsilon > 0$ there is an infinite Sidon sequence A with

$$A(x) \gg x^{1/2-\epsilon}.$$

• Erdős proved that the conjecture is false for $\epsilon = 0$.

The construction of Ajtai, Komlós and Szemerédi

The greedy Sidon sequence found by Erdős was the densest known during almost 50 years.

Theorem (Ajtai, Komlós and Szemerédi, 1981): There exists an infinite Sidon sequence with counting function

 $A(x) \gg (x \log x)^{1/3}.$

They wrote: "The task of constructing a denser sequence has so far resisted all efforts, both constructive and random methods. Here we use a random construction for giving a sequence which is denser than the above trivial one".

The construction of Ruzsa

Theorem (Ruzsa, 1998): There exists an infinite Sidon sequence with counting function

$$A(x) = x^{\sqrt{2}-1+o(1)}.$$

The starting point of Ruzsa was the observation that the sequence of the prime numbers is a multiplicative Sidon sequence, or equivalently the sequence $(\log p)_{p \in P}$ is a Sidon sequence of real numbers.

Ruzsa introduced a random parameter $\alpha \in [1, 2]$ and constructed a sequence $A_{\alpha} = (a_p)_{p \in P}$, where each integer a_p is built using the binary digits of $\alpha \log p$.

Then he proved that for almost all $\alpha \in [1, 2]$ it is possible to extract a dense Sidon sequence from A_{α} .

The constructions of Ruzsa and Ajtai, Komlós and Szemerédi are probabilistic. They are not explicit.

An explicit construction

It was a open problem to construct an explicit Sidon sequence with counting function $A(x) \gg x^c$ for some c > 1/3.

We construct an explicit Sidon sequence as dense as Ruzsa's sequence:

Theorem (C., 2012): There exists an infinite Sidon sequence *A*, **which can be explicitly constructed**, with counting function

$$A(x) = x^{\sqrt{2}-1+o(1)}.$$

Generalized basis

Given a sequence of positive integers

$$\overline{q} := 4q_1, \ldots, 4q_j, \ldots$$
 (the base),

any positive integer *a* can be written, in only a way, in the form $a = x_1 + x_2(4q_1) + x_3(4q_1)(4q_2) + \cdots + x_j(4q_1) \cdots (4q_{j-1}) + \cdots$ where the digits x_j satisfy

 $0\leq x_j<4q_j.$

We represent the integer a in the form

$$a := \ldots x_j \ldots x_1.$$

Summing integers as vectors

If all the digits of a, a' satisfy

$$q_j < x_j, x_j' < 2q_j,$$

$$a = x_{k_1} \dots x_1$$

$$a' = x'_{k_2} \dots x'_1$$

we have

$$a + a' = (x_{k_1} + 0) \dots (x_{k_2+1} + 0)(x_{k_2} + x'_{k_2}) \dots (x_1 + x'_1).$$

Furthermore, the digits of a + a' determine the lengths k_1, k_2 of $a, a', a \le a'$.

The construction: the base and the set of indexes

1) We consider a fix generalized base

$$\overline{q} := 4q_1, \ldots, 4q_j, \ldots,$$

where the q_j are primes satisfying

$$2^{2j-1} < q_j \le 2^{2j}.$$

2) We use the set of the primes P as the indices

$$A=(a_p)_{p\in P}$$

and represent the elements a_p in the base \overline{q} as:

$$a_p = \ldots x_j(p) \ldots x_1(p).$$

The construction: the growth

Fix c, 0 < c < 1/2 and make a partition of the set of the primes (the set of indices):

$$P = \bigcup_{k} P_{k}, \qquad P_{k} = \{p: 2^{c(k-1)^{2}}$$

Proposition: Assume that the elements a_p with $p \in P_k$ have exactly k digits in the base \overline{q} ,

$$a_p = x_k(p) \dots x_1(p).$$

Then we have

$$A_{\overline{q},c}(x) = x^{c+o(1)}.$$

The construction: the digits

4) For $p \in P_k$ we define the digits of

$$a_p := x_k(p) \dots x_1(p)$$

as follows: the digit $x_j(p)$ is given by the solution of

$$g_j^{x_j(p)} \equiv p \pmod{q_j}, \qquad q_j < x_j(p) < 2q_j,$$

where g_j is a given generator of $\mathbb{F}_{q_i}^*$.

(The digit $x_j(p)$ is the discrete logarithm of p modulo q_j and it is unique modulo $q_j - 1$.)

We will prove that if there is a repeated sum

$$a_{p_1} + a_{p_2} = a_{p_1'} + a_{p_2'}$$

then the primes involved, p_1, p_2, p'_1, p'_2 , must satisfy some relations.

▶ We will prove that these relations cannot hold if

 $c \leq$ some value c_0 .

Lemma 1: If $a_{p_1} + a_{p_2} = a_{p_1'} + a_{p_2'}$ then there exist $k_2 \le k_1$ such that

$$p_1, p_1' \in P_{k_1}, \quad p_2, p_2' \in P_{k_2}.$$

$$\begin{array}{rcl} a_{p_1} & = & x_{k_1}(p_1) \cdots x_{k_2}(p_1) \cdots x_1(p_1) \\ a_{p_2} & = & x_{k_2}(p_2) \cdots x_1(p_2) \\ a_{p_1'} & = & x_{k_1}(p_1') \cdots x_{k_2}(p_1') \cdots x_1(p_1') \\ a_{p_2'} & = & x_{k_2}(p_2') \cdots x_1(p_2') \end{array}$$

Lemma 2: If $a_{p_1} + a_{p_2} = a_{p_1'} + a_{p_2'}$, $p_1, p_1' \in P_{k_1}$, $p_2, p_2' \in P_{k_2}$ then

$$p_1p_2 \equiv p'_1p'_2 \pmod{q_1\cdots q_{k_2}}.$$

$$\begin{array}{rcl} a_{p_1} & = & x_{k_1}(p_1) \cdots x_{k_2}(p_1) \cdots x_1(p_1) \\ a_{p_2} & = & x_{k_2}(p_2) \cdots x_1(p_2) \\ a_{p_1'} & = & x_{k_1}(p_1') \cdots x_{k_2}(p_1') \cdots x_1(p_1') \\ a_{p_2'} & = & x_{k_2}(p_2') \cdots x_1(p_2') \end{array}$$

For $1 \leq j \leq k_2$ we have

$$egin{array}{rll} x_j(p_1)+x_j(p_2)&=&x_j(p_1')+x_j(p_2')\ g_j^{x_j(p_1)+x_j(p_2)}&\equiv&g_j^{x_j(p_1')+x_j(p_2')}\ ({
m mod}\ q_j)\ p_1p_2&\equiv&p_1'p_2'\ ({
m mod}\ q_j) \end{array}$$

Lemma 3: If $a_{p_1} + a_{p_2} = a_{p_1'} + a_{p_2'}, \ p_1, p_1' \in P_{k_1}, \ p_2, p_2' \in P_{k_2}$ then

$$p_1 \equiv p_1' \pmod{q_{k_2+1}\cdots q_{k_1}}.$$

$$\begin{array}{rcl} a_{p_1} & = & x_{k_1}(p_1) \cdots x_{k_2}(p_1) \cdots x_1(p_1) \\ a_{p_2} & = & x_{k_2}(p_2) \cdots x_1(p_2) \\ a_{p_1'} & = & x_{k_1}(p_1') \cdots x_{k_2}(p_1') \cdots x_1(p_1') \\ a_{p_2'} & = & x_{k_2}(p_2') \cdots x_1(p_2') \end{array}$$

For $k_2 + 1 \leq j \leq k_1$ we have

$$egin{array}{rll} x_j(p_1) &=& x_j(p_1') \ g_j^{x_j(p_1)} &\equiv& g_j^{x_j(p_1')} \pmod{q_j} \ p_1 &\equiv& p_1' \pmod{q_j} \end{array}$$

If $a_{p_1} + a_{p_2} = a_{p_1'} + a_{p_2'}$

$$\begin{array}{ll} \text{i)} & p_1, p_1' \in P_{k_1} = \{p: \ 2^{c(k_1-1)^2}$$

$$\begin{array}{cccc} i) & & ii) & iv) \\ \downarrow & & \downarrow & \downarrow \\ 2^{ck_1^2 + ck_2^2} & \geq & |p_1p_2 - p_1'p_2'| \geq q_1 \cdots q_{k_2} > 2^{1+3+\dots+(2k_2-1)} = 2^{k_2^2} \\ & \Longrightarrow & k_2^2 < \frac{c}{1-c} k_1^2. \end{array}$$

If $a_{p_1} + a_{p_2} = a_{p_1'} + a_{p_2'}$

$$\begin{array}{ll} \text{i)} & p_1, p_1' \in P_{k_1} = \{p: \ 2^{c(k_1-1)^2}$$

An explicit infinite Sidon sequence

$$(1-c)k_1^2 < k_2^2 < \frac{c}{1-c}k_1^2 \implies 1-c < \frac{c}{1-c} \implies c > \frac{3-\sqrt{5}}{2} = 0.381966..$$

Corollary (C., 2012): The sequence $A_{\overline{q},c}$ is a Sidon sequence for $c = \frac{3-\sqrt{5}}{2} = 0.3819..$ with counting function

$$A_{\overline{q},c}(x) = x^{\frac{3-\sqrt{5}}{2}+o(1)}$$

An explicit infinite Sidon sequence

If $c > \frac{3-\sqrt{5}}{2}$ then $A_{\overline{q},c}$ is not a Sidon sequence. Some repeated sums $a_{p_1} + a_{p_2} = a_{p'_1} + a_{p'_2}$ may appear.

We remove the bad a_{p_1} involved in these sums to obtain a Sidon sequence.

If $c \leq \sqrt{2} - 1$, the removed elements are not too many.

Theorem (C., 2012): For $c = \sqrt{2} - 1$ the sequence $A_{\overline{q},c}$ contains a Sidon sequence A, which can be explicitly constructed, with

$$A(x) = x^{\sqrt{2}-1+o(1)}.$$

If $a_{p_1} + a_{p_2} = a_{p_1'} + a_{p_2'}$

$$p_1(p_2 - p'_2) = \frac{p_1 p_2 - p'_1 p'_2}{Q_1} \cdot Q_1 + \frac{(p'_1 - p_1)p'_2}{Q_2} \cdot Q_2,$$

where $Q_1 = q_1 \cdots q_{k_2}, \quad Q_2 = q_{k_2+1} \cdots q_{k_1}.$
$$p_1(p_2 - p'_2) \in \left\{ s_1 \cdot Q_1 + s_2 \cdot Q_2 : |s_1| < \frac{2^{c(k_1^2 + k_2^2)}}{Q_1}, |s_2| \le \frac{2^{c(k_1^2 + k_2^2)}}{Q_2} \right\}$$

for some $k_2, \quad k_2^2 < \frac{c}{1-c} k_1^2.$

We remove from each P_{k_1} all the primes $p_1 \in P_{k_1}$ dividing some integer of these sets.

It can be checked easily that the number of bad p_1 we have to remove is $o(|P_{k_1}|)$ for $c = \sqrt{2} - 1$.

B_h sequences

They are those sequences A such that all the sums of h elements of A are distinct. The greedy algorithm for B_h sequences gives one with

 $A(x) \gg x^{1/(2h-1)}.$

Our approach also extends to B_h sequences:

Teorema (C., 2012) For each $h \ge 3$, there exists a B_h sequence A with

$$A(x) \gg x^{\sqrt{(h-1)^2+1}-(h-1)+o(1)}.$$

The cases h = 3 and h = 4 had been proved previously (C. and R, Tesoro, 2012) using a variant of Ruzsa's method, but that proof does not generalize to h > 4.

B_h sequences

For $h \ge 3$, our construction is not explicit. The problem is that we are not able to estimate the number of bad p_1 we have to remove from each P_{k_1} for a given basis \overline{q} .

We overcome this difficulty considering the probabilistic space of all basis

$$\overline{q} = h^2 q_1, \ldots, h^2 q_j, \ldots$$
 with $2^{2j-1} < q_j \le 2^{2j}$

and proving that for almost all basis \overline{q} the number of bad p_1 in each P_{k_1} is $o(|P_{k_1}|)$.

The finite Sidon set that motivated our construction

Let q be a prime and g a generator of \mathbb{F}_q^* and let $\log_g p$ be the discrete logarithm of p modulo q, which is unique modulo q - 1.

Theorem (C., 2012): The set

$$\mathcal{A} = \{\log_g p : p \text{ prime }, p \leq \sqrt{q}\}$$

is a Sidon set in \mathbb{Z}_{q-1} of size $\pi(\sqrt{q}) \sim \frac{\sqrt{q}}{\log \sqrt{q}}$.