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The origin of the problem

In 1932, Simon Sidon asked to Erdős about the slowest
possible growth of an infinite sequence A of positive integers
having the property that all the sums

a + a′, a ≤ a′, a, a′ ∈ A

are distinct.

Erdős named them Sidon sequences and they became one of
his favorite topics.



The Sidon sequence given by the greedy algorithm

Main problem: Construct (or prove the existence of) an infi-
nite Sidon sequence A with counting function

A(x) = |A ∩ [1, x ]|

as large as possible.

Erdős considered the sequence given by the greedy algorithm:

I Starting with a1 = 1, define an+1 as the least positive
integer we can add to the set {a1, . . . , an} preserving the
Sidon property.

1, 2, 4, 8, 13, 21, 31, 45, 66, 81, 97, 123, 148, 182, 204, . . .



The Sidon sequence given by the greedy algorithm

The forbidden elements for an+1 are those of the form

ai + aj − ak , i , j , k ≤ n.

Since there are at most n3 of them, certainly we have that

an+1 ≤ n3 + 1,

which implies
A(x)� x1/3.



An upper bound for the counting function of a Sidon
sequence

The number of sums a + a′, a, a′ ∈ A with a < a′ ≤ x is(
A(x)
2

)
, and all of them are distinct and less than 2x :(

A(x)

2

)
< 2x =⇒ A(x)� x1/2.

Conjecture (Erdős): For each ε > 0 there is an infinite Sidon
sequence A with

A(x)� x1/2−ε.

I Erdős proved that the conjecture is false for ε = 0.



The construction of Ajtai, Komlós and Szemerédi

The greedy Sidon sequence found by Erdős was the densest
known during almost 50 years.

Theorem (Ajtai, Komlós and Szemerédi, 1981): There
exists an infinite Sidon sequence with counting function

A(x)� (x log x)1/3.

They wrote: “The task of constructing a denser sequence has
so far resisted all efforts, both constructive and random
methods. Here we use a random construction for giving a
sequence which is denser than the above trivial one”.



The construction of Ruzsa

Theorem (Ruzsa, 1998): There exists an infinite Sidon se-
quence with counting function

A(x) = x
√
2−1+o(1).

The starting point of Ruzsa was the observation that the
sequence of the prime numbers is a multiplicative Sidon
sequence, or equivalently the sequence (log p)p∈P is a Sidon
sequence of real numbers.



The construction of Ruzsa

Ruzsa introduced a random parameter α ∈ [1, 2] and
constructed a sequence Aα = (ap)p∈P , where each integer ap is
built using the binary digits of α log p.

Then he proved that for almost all α ∈ [1, 2] it is possible to
extract a dense Sidon sequence from Aα.

The constructions of Ruzsa and Ajtai, Komlós and Szemerédi
are probabilistic. They are not explicit.



An explicit construction

It was a open problem to construct an explicit Sidon sequence
with counting function A(x)� xc for some c > 1/3.

We construct an explicit Sidon sequence as dense as Ruzsa’s
sequence:

Theorem (C., 2012): There exists an infinite Sidon sequence
A, which can be explicitly constructed, with counting func-
tion

A(x) = x
√
2−1+o(1).



Generalized basis

Given a sequence of positive integers

q := 4q1, . . . , 4qj , . . . (the base),

any positive integer a can be written, in only a way, in the form

a = x1 + x2(4q1) + x3(4q1)(4q2) + · · ·+ xj(4q1) · · · (4qj−1) + · · ·

where the digits xj satisfy

0 ≤ xj < 4qj .

We represent the integer a in the form

a := . . . xj . . . x1.



Summing integers as vectors

If all the digits of a, a′ satisfy

qj < xj , x
′
j < 2qj ,

a = xk1 . . . . . . . x1

a′ = x ′k2 . . . x
′
1

we have

a + a′ = (xk1 + 0) . . . (xk2+1 + 0)(xk2 + x ′k2) . . . (x1 + x ′1).

Furthermore, the digits of a + a′ determine the lengths k1, k2

of a, a′, a ≤ a′.



The construction: the base and the set of indexes

1) We consider a fix generalized base

q := 4q1, . . . , 4qj , . . . ,

where the qj are primes satisfying

22j−1 < qj ≤ 22j .

2) We use the set of the primes P as the indices

A = (ap)p∈P

and represent the elements ap in the base q as:

ap = . . . xj(p) . . . x1(p).



The construction: the growth

3) Fix c , 0 < c < 1/2 and make a partition of the set of the
primes (the set of indices):

P =
⋃
k

Pk , Pk = {p : 2c(k−1)2 < p ≤ 2ck2}.

Proposition: Assume that the elements ap with p ∈ Pk have
exactly k digits in the base q,

ap = xk(p) . . . x1(p).

Then we have
Aq,c(x) = xc+o(1).



The construction: the digits

4) For p ∈ Pk we define the digits of

ap := xk(p) . . . x1(p)

as follows: the digit xj(p) is given by the solution of

g
xj (p)
j ≡ p (mod qj), qj < xj(p) < 2qj ,

where gj is a given generator of F∗qj .

(The digit xj(p) is the discrete logarithm of p modulo qj and it
is unique modulo qj − 1.)



I We will prove that if there is a repeated sum

ap1 + ap2 = ap′1 + ap′2

then the primes involved, p1, p2, p
′
1, p
′
2, must satisfy some

relations.

I We will prove that these relations cannot hold if

c ≤ some value c0.



Lemma 1: If ap1 + ap2 = ap′1 + ap′2 then there exist k2 ≤ k1

such that
p1, p

′
1 ∈ Pk1 , p2, p

′
2 ∈ Pk2 .

ap1 = xk1(p1) · · · xk2(p1) · · · x1(p1)

ap2 = xk2(p2) · · · x1(p2)

ap′1 = xk1(p′1) · · · xk2(p′1) · · · x1(p′1)

ap′2 = xk2(p′2) · · · x1(p′2)



Lemma 2: If ap1 + ap2 = ap′1 + ap′2 , p1, p
′
1 ∈ Pk1 , p2, p

′
2 ∈ Pk2

then
p1p2 ≡ p′1p′2 (mod q1 · · · qk2).

ap1 = xk1(p1) · · · xk2(p1) · · · x1(p1)

ap2 = xk2(p2) · · · x1(p2)

ap′1 = xk1(p′1) · · · xk2(p′1) · · · x1(p′1)

ap′2 = xk2(p′2) · · · x1(p′2)

For 1 ≤ j ≤ k2 we have

xj(p1) + xj(p2) = xj(p′1) + xj(p′2)

g
xj (p1)+xj (p2)
j ≡ g

xj (p
′
1)+xj (p

′
2)

j (mod qj)

p1p2 ≡ p′1p′2 (mod qj)



Lemma 3: If ap1 + ap2 = ap′1 + ap′2 , p1, p
′
1 ∈ Pk1 , p2, p

′
2 ∈ Pk2

then
p1 ≡ p′1 (mod qk2+1 · · · qk1).

ap1 = xk1(p1) · · · xk2(p1) · · · x1(p1)

ap2 = xk2(p2) · · · x1(p2)

ap′1 = xk1(p′1) · · · xk2(p′1) · · · x1(p′1)

ap′2 = xk2(p′2) · · · x1(p′2)

For k2 + 1 ≤ j ≤ k1 we have

xj(p1) = xj(p′1)

g
xj (p1)
j ≡ g

xj (p
′
1)

j (mod qj)

p1 ≡ p′1 (mod qj)



If ap1 + ap2 = ap′1 + ap′2

i) p1, p
′
1 ∈ Pk1 = {p : 2c(k1−1)2 < p ≤ 2ck2

1} (Lemma 1)
p2, p

′
2 ∈ Pk2 = {p : 2c(k2−1)2 < p ≤ 2ck2

2}

ii) p1p2 ≡ p′1p′2 (mod q1 · · · qk2) (Lemma 2)

iii) p1 ≡ p′1 (mod qk2+1 · · · qk1) (Lemma 3)

iv) 22j−1 < qj ≤ 22j (by construction)

i) ii) iv)

↓ ↓ ↓
2ck2

1+ck2
2 ≥ |p1p2 − p′1p′2| ≥ q1 · · · qk2 > 21+3+···+(2k2−1) = 2k2

2

=⇒ k2
2 <

c

1− c
k2
1 .



If ap1 + ap2 = ap′1 + ap′2

i) p1, p
′
1 ∈ Pk1 = {p : 2c(k1−1)2 < p ≤ 2ck2

1} (Lemma 1)
p2, p

′
2 ∈ Pk2 = {p : 2c(k2−1)2 < p ≤ 2ck2

2}

ii) p1p2 ≡ p′1p′2 (mod q1 · · · qk2) (Lemma 2)

iii) p1 ≡ p′1 (mod qk2+1 · · · qk1) (Lemma 3)

iv) 22j−1 < qj ≤ 22j (by construction)

i) iii) iv)

↓ ↓ ↓
2ck2

1 ≥ |p1 − p′1| ≥ qk2+1 · · · qk1 > 2(2k2+1)+···(2k1−1) = 2k2
1−k2

2

=⇒ (1− c)k2
1 < k2

2 .



An explicit infinite Sidon sequence

(1− c)k2
1 < k2

2 <
c

1− c
k2
1 =⇒ 1− c <

c

1− c

=⇒ c >
3−
√

5

2
= 0.381966..

Corollary (C., 2012): The sequence Aq,c is a Sidon sequence

for c = 3−
√
5

2
= 0.3819.. with counting function

Aq,c(x) = x
3−
√
5

2
+o(1).



An explicit infinite Sidon sequence

If c > 3−
√
5

2
then Aq,c is not a Sidon sequence. Some repeated

sums ap1 + ap2 = ap′1 + ap′2 may appear.

We remove the bad ap1 involved in these sums to obtain a
Sidon sequence.

If c ≤
√

2− 1, the removed elements are not too many.

Theorem (C., 2012): For c =
√

2 − 1 the sequence Aq,c

contains a Sidon sequence A, which can be explicitly con-
structed, with

A(x) = x
√
2−1+o(1).



If ap1 + ap2 = ap′1 + ap′2

p1(p2 − p′2) =
p1p2 − p′1p′2

Q1
· Q1 +

(p′1 − p1)p′2
Q2

· Q2,

where Q1 = q1 · · · qk2 , Q2 = qk2+1 · · · qk1 .

p1(p2−p′2) ∈
{

s1 · Q1 + s2 · Q2 : |s1| < 2c(k
2
1+k22 )

Q1
, |s2| ≤ 2c(k

2
1+k22 )

Q2

}
for some k2, k2

2 <
c

1−c k2
1 .

We remove from each Pk1 all the primes p1 ∈ Pk1 dividing
some integer of these sets.

It can be checked easily that the number of bad p1 we have to
remove is o (|Pk1|) for c =

√
2− 1.



Bh sequences
They are those sequences A such that all the sums of h
elements of A are distinct. The greedy algorithm for Bh

sequences gives one with

A(x)� x1/(2h−1).

Our approach also extends to Bh sequences:

Teorema (C., 2012) For each h ≥ 3, there exists a Bh

sequence A with

A(x)� x
√

(h−1)2+1−(h−1)+o(1).

The cases h = 3 and h = 4 had been proved previously (C.
and R, Tesoro, 2012) using a variant of Ruzsa’s method, but
that proof does not generalize to h > 4.



Bh sequences

For h ≥ 3, our construction is not explicit. The problem is
that we are not able to estimate the number of bad p1 we
have to remove from each Pk1 for a given basis q.

We overcome this difficulty considering the probabilistic space
of all basis

q = h2q1, . . . , h
2qj , . . . with 22j−1 < qj ≤ 22j

and proving that for almost all basis q the number of bad p1 in
each Pk1 is o(|Pk1|).



The finite Sidon set that motivated our construction

Let q be a prime and g a generator of F∗q and let logg p be the
discrete logarithm of p modulo q, which is unique modulo
q − 1.

Theorem (C., 2012): The set

A = {logg p : p prime , p ≤ √q}

is a Sidon set in Zq−1 of size π(
√

q) ∼
√
q

log
√
q

.

logg p1 + logg p2 ≡ logg p′1 + logg p′2 (mod q − 1)

p1p2 ≡ p′1p′2 (mod q)

p1p2 = p′1p′2


