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The origin of the problem

In 1932, Simon Sidon asked to Erd6s about the slowest
possible growth of an infinite sequence A of positive integers
having the property that all the sums

at+ad, a<ad, adcA

are distinct.

Erdés named them Sidon sequences and they became one of
his favorite topics.



The Sidon sequence given by the greedy algorithm

Main problem: Construct (or prove the existence of) an infi-
nite Sidon sequence A with counting function

A(x) = |AN[1,x]|

as large as possible.

Erdos considered the sequence given by the greedy algorithm:

» Starting with a; = 1, define a,,; as the least positive
integer we can add to the set {ai,...,a,} preserving the
Sidon property.

1,2,4,8,13,21, 31, 45,66, 81,97, 123,148, 182, 204, . ..



The Sidon sequence given by the greedy algorithm

The forbidden elements for a,,; are those of the form
a,-+aj—ak, I.,j,kén.
Since there are at most n® of them, certainly we have that
3
dpt1 <n + 17

which implies
A(x) > x1/3.



An upper bound for the counting function of a Sidon
sequence

The number of sums a+ 4, a,a € Awitha<ad <xis
(A(2x))' and all of them are distinct and less than 2x:

(A(QX)) <2x = Ax) < K2

Conjecture (Erdds): For each € > 0 there is an infinite Sidon

sequence A with
A(x) > x1?e.

» Erdos proved that the conjecture is false for € = 0.



The construction of Ajtai, Komlds and Szemerédi

The greedy Sidon sequence found by Erdés was the densest
known during almost 50 years.

Theorem (Ajtai, Komlés and Szemerédi, 1981): There
exists an infinite Sidon sequence with counting function

A(x) > (x log x)Y/3.

They wrote: “The task of constructing a denser sequence has
so far resisted all efforts, both constructive and random
methods. Here we use a random construction for giving a
sequence which is denser than the above trivial one”.



The construction of Ruzsa

Theorem (Ruzsa, 1998): There exists an infinite Sidon se-
quence with counting function

A(x) = )

The starting point of Ruzsa was the observation that the
sequence of the prime numbers is a multiplicative Sidon
sequence, or equivalently the sequence (log p),cp is a Sidon
sequence of real numbers.



The construction of Ruzsa

Ruzsa introduced a random parameter « € [1,2] and
constructed a sequence A, = (ap),cp, Where each integer a, is
built using the binary digits of a log p.

Then he proved that for almost all « € [1,2] it is possible to
extract a dense Sidon sequence from A,.

The constructions of Ruzsa and Ajtai, Komlés and Szemerédi
are probabilistic. They are not explicit.



An explicit construction

It was a open problem to construct an explicit Sidon sequence
with counting function A(x) > x¢ for some ¢ > 1/3.

We construct an explicit Sidon sequence as dense as Ruzsa's
sequence:

Theorem (C., 2012): There exists an infinite Sidon sequence
A, which can be explicitly constructed, with counting func-
tion

A(x) = xV21+o),




Generalized basis

Given a sequence of positive integers
q:=4q,...,4q;,... (the base),
any positive integer a can be written, in only a way, in the form
a=x1+x(4q1) + x3(4q1)(4q2) + - - - + x;(4q1) - - (4qj—1) + - -~
where the digits x; satisfy
0 < Xx; <4gq;.
We represent the integer a in the form

a:=...Xj...x.



Summing integers as vectors

If all the digits of a, @’ satisfy

qj < %, % < 2q;,

we have

a+a = (X +0). .. (X1 +0)(xe +xp,) - - - (X1 + x1).

Furthermore, the digits of a + @’ determine the lengths ki, k>
of a,a’, a< 4.



The construction: the base and the set of indexes

1) We consider a fix generalized base

q:=4q,...,4q,...,
where the g; are primes satisfying

271 < g < 29,

2) We use the set of the primes P as the indices

A= (ap)pep

and represent the elements a, in the base q as:

ap=...xi(p)...x(p).



The construction: the growth

3) Fix ¢, 0 < ¢ < 1/2 and make a partition of the set of the
primes (the set of indices):

P = U Py, P,={p: 2ctk=1)? - p < 2Ck2}.
k

Proposition: Assume that the elements a, with p € P, have
exactly k digits in the base q,

ap, = xk(p) - .. x1(p)-

Then we have
Ag.c(x) = x<to(),




The construction: the digits

4) For p € Py we define the digits of
ap == xk(p) ... x1(p)
as follows: the digit x;(p) is given by the solution of

g”=p (modq), g <x(p)<2q,

: : .
where g;j is a given generator of qu.

(The digit x;(p) is the discrete logarithm of p modulo g; and it
is unique modulo g; — 1.)



» We will prove that if there is a repeated sum
ap, +ap, = ap + ap

then the primes involved, py, p2, pi, p5, must satisfy some
relations.

» We will prove that these relations cannot hold if

¢ < some value ¢.



Lemma 1: If a,, + ap, = ap + ap then there exist ky < k;
such that
p17p;_€Pk17 p27p£€Pk2'

ap = Xi(P1): - Xig(p1) - x(p1)
ap, = Xk, (P2) -+ x1(p2)
a = X (pP1): - xie(py) - xa(ph)
apy, = XkQ(Pé)' 'Xl(Pé)



Lemma 2: If a,, + ap, = ap + a3y, p1,p; € Py, P2, P € P
then
— / )
pip2 = pipo  (mod qi -+ - qu,).

ap, = Xkl(pl) o 'sz(pl) ’ 'Xl(pl)
ap, = Xip(P2) - - x1(p2)
25 = (el xa(ph) (o)
/ /
ap, = Xk2(p2)' -X1(P2)

For 1 < j < ky, we have

xi(p1) + x(p2) = x;(pL) + x;(p3)
gjg(Pl)Jer(Pz) = gjg(Pl)+Xj(P2) (mod qj)

pip2 = piph (mod g;)



Lemma 3: If a,, + ap, = ap + a3, p1,p; € Py, P2,p5 € P
then
p1 = Pi (mod Giy11 - - - Gy )-

an = Xi(P1) - Xie(p1) - -xa(p1)
dp, = Xk, (P2) -+ x1(p2)
ap = Xk (P1)xi(P) - x(pr)
/ /
ap, = Xk, (P3) - - xa(p2)
For ko, +1 < j < k; we have
x(p) = x(p1)
g:in(Pl) — gjg(Pl) (mod qj)

pi = p; (mod g))



It ap, + ap, = ap; + ap,

) p1,p, € P, = {p: 2¢0a=D” < p < 20k} (Lemma 1)
p2,ph € Py = {p: 2¢Ue"1 < p < 2k}

i) pip2 = pipy (mod g1 - qu,) (Lemma 2)
i) pr=p; (mod Guys1- - qiy) (Lemma 3)
iv) 2971 < q; < 2% (by construction)

i) i) iv)
4 \ 1
>

2 2 — 2
cki+ck; |P1P2 _ Pipéf > qr- -G, > 2143+ +(2ke—1) _ ok

c
1—c¢

— k< K.



It ap, + ap, = ap; + ap,

) p,p, € P, = {p: 2¢0a=D* < p < 20k} (Lemma 1)
p2,ph € Py = {p: 2¢Ue~1 < p < 2k}

ii) pip2 = pips (mod g1 -+ qx,) (Lemma 2)
i) pr=p; (mod Guys1- - qiy) (Lemma 3)
iv) 2971 < q; < 2% (by construction)

i) i iv)
\ \ 1
>

2 !Pl _ pﬂ > Qo1 Qry > 2(2k2+1)+...(2k1—1) _ 2k127k22

2Ck1

— (11— )k < k.



An explicit infinite Sidon sequence

1— )k < k2 < —— K2 1—c<—"
( C)1<2<1—C1 = <1

3—v5
2

c> = 0.381966..

Corollary (C., 2012): The sequence Az is a Sidon sequence

for c = 3=Y5 —

> 0.3819.. with counting function

Ag.c(x) = x*37 o),




An explicit infinite Sidon sequence

If ¢ > %ﬁ then Ag . is not a Sidon sequence. Some repeated
sums a,, + ap, = ap; + ap, May appear.

We remove the bad a,, involved in these sums to obtain a
Sidon sequence.

If ¢ < /2 — 1, the removed elements are not too many.

Theorem (C., 2012): For ¢ = /2 — 1 the sequence A .
contains a Sidon sequence A, which can be explicitly con-

structed, with
A(x) = xV2 1o,




It ap, + ap, = ap; + ap,

p1P2 — PP p1 — P1)p;
pl(p2_p£):M.Ql+@.Qz’
Q @

where Q1 = q1- G,y Q2 = Quot1 -+ Gy -

c(k2+K2) c(kF+k3)
p1(p2—ps) € {51 Qi+ Qs <? 61212 sl <2 51?22 }

2 c_ 42
for some ky, k3 < 5-ki.

We remove from each Py, all the primes p; € Py, dividing
some integer of these sets.

It can be checked easily that the number of bad p; we have to
remove is o (|Py,|) for c = v/2 — 1.



B, sequences

They are those sequences A such that all the sums of h
elements of A are distinct. The greedy algorithm for By,
sequences gives one with

A(x) > x1/(@h-1),

Our approach also extends to By, sequences:

Teorema (C., 2012) For each h > 3, there exists a By
sequence A with

A(X) > X\/(h71)2+17(h71)+o(1).

The cases h = 3 and h = 4 had been proved previously (C.
and R, Tesoro, 2012) using a variant of Ruzsa's method, but
that proof does not generalize to h > 4.



B, sequences

For h > 3, our construction is not explicit. The problem is
that we are not able to estimate the number of bad p; we
have to remove from each Py, for a given basis q.

We overcome this difficulty considering the probabilistic space
of all basis

q= thh, ey h2qj', . with 22—t < gj < 22

and proving that for almost all basis g the number of bad p; in
each Py, is o(|Py]).



The finite Sidon set that motivated our construction

Let g be a prime and g a generator of I and let log, p be the
discrete logarithm of p modulo g, which is unique modulo

qg—1
Theorem (C., 2012): The set
A= {log,p: pprime, p<.,/q}

is a Sidon set in Zq_; of size 7(,/q) ~ Io;/:q/ﬁ'

log, p1 + log, p» = log, p} + log, py (mod g — 1)
pip2 = piph (mod q)
pip2 = pips



