Local Global Tradeoffs
in Metric Embeddings

Moses Charikar

Princeton University



Local vs Global Question

* Local: property of subsets
* Global: property of entire set




Erdos on Local Global

* Chromatic number not local concept

* Graphs with high chromatic
number, but small subgraphs
suggest otherwise
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Erdos on Local Global

* Graphs with high girth and high chromatic
number

A combinatorial classic — sparse graphs with high
chromatic number, Jaroslav Nesetril

e g:girth, k: chromatic number
logn <g< 2logn
2log k log(k — 2)

: A :
Question: Does lim J ( ) exist ?
n—oo logmn




Erdos on Local Global

For all k, k-chromatic graph,
such that Q(n) size subsets are 3-colorable

What if subsets are 2-colorable?

Conjecture: exists c, such that

no odd cycle of

length <= ¢, n/k mm) craph is k+1 colorable
= Sk

[Kierstead, Szemeredi, Trotter ‘84]



Local Global Questions in Other Settings
* Embedding into ,°

e Characterization of tree metrics

* Helly’s theorem

 Ramsey theory

* Graph minors work

— minor exclusion is local property,
what does it mean for entire graph ?

* Property testing
— infer properties of entire set from sample



Local Global Tradeoffs
in Metric Embeddings



A Brief History of Optimization

NP-completeness (early 70’s):
Many optimization problems hard
to solve exactly

Traveling
Salesman

approximately optimal solution?

PCP theorem (early 90’s):
optimization problems cannot be
approximated beyond threshold

threshold of approximability?



Approximation Algorithms

* Hard optimization problems (min/max)
Relax and round paradigm

— “Relax” to obtain tractable problem
— “Round” solution to relaxation to solve original

* How good is the fractional solution ?

, . value(integer soln)
integrality gap = max ——————
value(fractional soln)



Sparsest Cut

.
E(S,T)]
SIIT]

min




Cut (semi)Metrics

S 1 T

e Exact reformulation of Sparsest Cut



Relax to general metric

S 1 T Linear Programming

 Metric can be mapped to distribution over cut
metrics with log(n) distortion [Bourgain ‘85]

* log(n) approximation for Sparsest Cut
[Linial, London, Rabinovich ‘94] [Aumann, Rabani ‘94]



Metric Embeddings

[Bourgain ‘85]
Metric d on n points can be mapped to ¢,

d(z,y) < ||f(z) — f(y)||1 < O(ogn)d(x,y)

* Integrality gap of Sparsest Cut relaxation
is exactly the distortion of embedding into ¢4

e Better approximation by constraining general
metrics further?

* YES: \/logn approximation via semidefinite
programming




Lift and Project Hierarchies

Systematic, iterative procedures to strengthen
mathematical programming relaxations

Lovasz, Schrijver 91]
Sherali Adams, ‘90]
Lasserre, 01]

In k rounds, enforce constraints on all subsets
of size k

— solution in time n°K)
Does local structure imply global structure?



Local Global Tradeoffs for Metrics

[Arora, Bollobas, Lovasz, Newman, Rabani,
Rabinovich, Vempala, ‘06]

Suppose every subset of k points in metric
space embeddable into £ with distortion D.

Min distortion for embedding entire space
into £17?

Lower bound: (log n)k for D=1
Upper bound: O(D (n/k)?)



Local Global Tradeoffs for Metrics

* Lower BO”“d e

\

e [C, Makarychev, Makarychev '07]

D > 3/2 Q(Dlog(n/k))

* Upper Bound O(Dlog(n/k))



Lower bound: Roadmap

Constant degree expander
High global distortion

Subgraphs of expander are sparse
Sparse graphs embed well



New metric

* Expander with new metric
p(uv) =1 - (1 - wev

* Every embedding of (G, p) into 7, requires

distortion (112?(7;7;)))

* Every subset of X of size k embeds into 7/, with
distortion 1+ 0




Global distortion

3-regular expander G, girth Q(log n)
[LLR] Min distortion for embedding it into 7, is
Q(avg distance / length of edge)

New metric

Distortion

pay) = 1- (1 - i

1—(1—

p) ::g2<:

log(n/k)

log(1/6)

)



Embedding Subgraphs

* Trees embed isometrically into 7,

* Embedding easy if subgraphs are acyclic
— Too strong: subgraph size bounded by girth

* Exploit sparsity of subgraphs



Multicuts

Construct a distribution on partitions
Goal: Pr(u,v separated) = p(u,v) =1 - (1 - n)dv)

High level idea: remove every edge with
probability u

The shortest path between u and v survives with
probability (1 - p)dwV)

If the shortest path was the only path between u
and v, then u,v separated with prob.

p(u,V) = 1 - (L - )



[ - path decomposable expanders

* His /- path decomposable if
every 2-connected subgraph contains a path
(each vertex has degree 2) of length /

* [Arora, Bollobas, Lovasz, Tourlakis ,’06]
3-regular expander G, girth Q(log n), every
subgraph H of size at most k is
Q(log(n/k)) - path decomposable

* Probabilistic method:
Expanders with sparse subgraphs
Sparsity + girth => path decomposable



Multicuts
* His /- path decomposable, L=1/9, u=<1/L

 Distortion

1
1 —(1—p)

—uL
= =1+0(e"")



Distribution on multicuts
e H has cut vertex c

* Sample multicuts independently in S,
Pr[u,v not separated] = Pr[u,c not separ] * Pr[v,c not separ]
= (1-p)de) (1- p)atec = (1- p)dlev)



Long paths

d(u,v) = L, Pr(u,v separated) = 1-(1-u)duv)
d(u,v) > L, Pr(u,v separated) = 1-(1-u)"
The end points are always separated!

Can be done for path of length 3L

D — > < > < ———
L L L

o o o ©)
Q, Q, Q,

Cut edges “independently” with probability u
Decisions for Q, and Q; not independent



Distribution on multicuts

H has a path of length [=9L

P,

P

Divide path into 3 parts P,, P,, P,
Sample multicuts independently in H, P, P,, P,
Computation same as before



Isometric local embeddings

* Every subset of size k embeds isometrically into 7,
* Entire metric requires distortion

0 logn
log k + loglogn

* Main idea:
— make distortion very closeto 1; 6 =c/k.log(n)
— add a uniform metric: p’(u,v) = p(u,v) + u

— Near isometric embedding can be corrected to
embed new distance exactly



Applications

Sherali-Adams Hierarchy: Integrality gap for
many problems after n® rounds.

Construct local distributions on solutions

Key challenge: distributions for subsets must be
consistent on intersection

(Modular) Solution: Use lower bound

construction with sgrt(distance): embeddable
into 7,

— ¢, embedding uniquely defined by pairwise distances
— distribution on solutions from /7, embedding



Conclusion and Questions

* Every subset of size k isometrically embeddable
into [, :global distortion ?

logn
O(l k
(log(n/k)) versus <logk + log logn>

* Negative type metrics: d(u,v) = | |x, —x,| | ,2
[Khot, Saket ‘09] [Raghavendra, Steurer "09]

20(10g log n)°

1. isometric embedding of Size sets

2. Global distortion §2(loglogn)”



