Local Global Tradeoffs in Metric Embeddings

Moses Charikar

Princeton University

Local vs Global Question

- Local: property of subsets
- Global: property of entire set

Does local structure imply global structure?

Erdős on Local Global

- Chromatic number not local concept
- Graphs with high chromatic number, but small subgraphs suggest otherwise

© George Paul Csicsery

1959

GRAPH THEORY AND PROBABILITY

P. ERDÖS

1962

ON CIRCUITS AND SUBGRAPHS OF CHROMATIC GRAPHS

P. Erdős

Erdős on Local Global

 Graphs with high girth and high chromatic number

A combinatorial classic — sparse graphs with high chromatic number, Jaroslav Nešetřil

• g: girth, k: chromatic number

$$\frac{\log n}{2\log k} \le g \le \frac{2\log n}{\log(k-2)} + 1$$

Question: Does
$$\lim_{n \to \infty} \frac{g_k(n)}{\log n}$$
 exist?

Erdős on Local Global

• For all k, k-chromatic graph, such that $\Omega(n)$ size subsets are 3-colorable

- What if subsets are 2-colorable?
- Conjecture: exists c_k such that
 no odd cycle of length <= c_k n^{1/k}

 graph is k+1 colorable
- [Kierstead, Szemeredi, Trotter '84]

Local Global Questions in Other Settings

- Embedding into l_2^d
- Characterization of tree metrics
- Helly's theorem
- Ramsey theory
- Graph minors work
 - minor exclusion is local property, what does it mean for entire graph?
- Property testing
 - infer properties of entire set from sample

Local Global Tradeoffs in Metric Embeddings

A Brief History of Optimization

 NP-completeness (early 70's): Many optimization problems hard to solve exactly

 PCP theorem (early 90's): optimization problems cannot be approximated beyond threshold Salesman

Forest City

Decorate

Spencer

Cherokee

Boone

Des Moines

Daverport

Sigourney

Red Oak

Traveling

threshold of approximability?

Approximation Algorithms

Hard optimization problems (min/max)

Relax and round paradigm

- "Relax" to obtain tractable problem
- "Round" solution to relaxation to solve original

How good is the fractional solution ?

integrality gap = max

value(integer soln)

value(fractional soln)

Sparsest Cut

$$min \frac{|E(S,T)|}{|S||T|}$$

Generalized Sparsest Cut

Weight functions α , β on edges

min
$$\frac{\alpha(S,T)}{\beta(S,T)}$$

Cut (semi)Metrics

Exact reformulation of Sparsest Cut

Relax to general metric

- Metric can be mapped to distribution over cut metrics with log(n) distortion [Bourgain '85]
- log(n) approximation for Sparsest Cut
 [Linial, London, Rabinovich '94] [Aumann, Rabani '94]

Metric Embeddings

[Bourgain '85] Metric d on n points can be mapped to ℓ_1 $d(x,y) \leq ||f(x) - f(y)||_1 \leq O(\log n) d(x,y)$

- Integrality gap of Sparsest Cut relaxation is exactly the distortion of embedding into ℓ_1
- Better approximation by constraining general metrics further?
- YES: $\sqrt{\log n}$ approximation via semidefinite programming

Lift and Project Hierarchies

- Systematic, iterative procedures to strengthen mathematical programming relaxations
- [Lovász, Schrijver '91] [Sherali Adams, '90] [Lasserre, 01]

- In k rounds, enforce constraints on all subsets of size k
 - solution in time n^{O(k)}
- Does local structure imply global structure?

Local Global Tradeoffs for Metrics

- [Arora, Bollobás, Lovász, Newman, Rabani, Rabinovich, Vempala, '06]
- Suppose every subset of k points in metric space embeddable into ℓ_1 with distortion D.
- Min distortion for embedding entire space into ℓ_1 ?

- Lower bound: $(\log n)^{\Omega(1/k)}$ for D=1
- Upper bound: O(D (n/k)²)

Local Global Tradeoffs for Metrics

• [C, Makarychev, Makarychev '07]

Lower Bounds

$$D = 1 \qquad \qquad \Omega \left(\frac{\log n}{\log k + \log \log n} \right)$$

$$D = 1 + \delta$$
 $\Omega\left(\frac{\log(n/k)}{\log(1/\delta)}\right)$

$$D \ge 3/2$$
 $\Omega(D \log(n/k))$

• Upper Bound $O(D \log(n/k))$

Large distortion even if subsets of size n^{o(1)} embed isometrically

Lower bound: Roadmap

- Constant degree expander
- High global distortion

- Subgraphs of expander are sparse
- Sparse graphs embed well

New metric

Expander with new metric

$$\rho(\text{u,v})$$
 = 1 - (1 - $\mu)^{d(\text{u,v})}$

• Every embedding of (G, ρ) into ℓ_1 requires distortion $(\log(n/k))$

 $\Omega\left(\frac{\log(n/k)}{\log(1/\delta)}\right)$

• Every subset of X of size k embeds into ℓ_1 with distortion $1+\delta$

Global distortion

- 3-regular expander G, girth $\Omega(\log n)$
- [LLR] Min distortion for embedding it into ℓ_1 is Ω (avg distance / length of edge)

New metric

$$\rho(u,v) = 1 - (1 - \mu)^{d(u,v)}$$

Distortion

$$\frac{\Omega(1)}{1 - (1 - \mu)} = \Omega\left(\frac{\log(n/k)}{\log(1/\delta)}\right)$$

Embedding Subgraphs

- Trees embed isometrically into ℓ_1
- Embedding easy if subgraphs are acyclic
 - Too strong: subgraph size bounded by girth
- Exploit sparsity of subgraphs

Multicuts

- Construct a distribution on partitions
 Goal: Pr(u,v separated) ≈ ρ(u,v) = 1 (1 μ)^{d(u,v)}
- High level idea: remove every edge with probability µ
- The shortest path between u and v survives with probability (1 - μ)^{d(u,v)}
- If the shortest path was the only path between u and v, then u,v separated with prob.

$$\rho(u,v) = 1 - (1 - \mu)^{d(u,v)}$$

l - path decomposable expanders

- H is l path decomposable if every 2-connected subgraph contains a path (each vertex has degree 2) of length l
- [Arora, Bollobás, Lovász, Tourlakis, '06] 3-regular expander G, girth $\Omega(\log n)$, every subgraph H of size at most k is $\Omega(\log(n/k))$ path decomposable
- Probabilistic method:
 Expanders with sparse subgraphs
 Sparsity + girth => path decomposable

Multicuts

• H is l - path decomposable, L = l/9, $\mu \le 1/L$

- Distribution on multicuts:
 - $-d(u,v) \le L$, $Pr(u,v \text{ separated}) = 1 (1 \mu)^{d(u,v)}$
 - -d(u,v) > L, $Pr(u,v \text{ separated}) \ge 1 (1 \mu)^L$

Distortion

$$\frac{1}{1 - (1 - \mu)^L} = 1 + O(e^{-\mu L})$$

Distribution on multicuts

H has cut vertex c

• Sample multicuts independently in S_i Pr[u,v not separated] = Pr[u,c not separ] * Pr[v,c not separ] = $(1-\mu)^{d(u,c)} (1-\mu)^{d(v,c)} = (1-\mu)^{d(u,v)}$

Long paths

- $d(u,v) \le L$, $Pr(u,v \text{ separated}) = 1-(1-\mu)^{d(u,v)}$
- d(u,v) > L, $Pr(u,v \text{ separated}) \ge 1-(1-\mu)^{L}$
- The end points are always separated!
- Can be done for path of length 3L

- Cut edges "independently" with probability μ
- Decisions for Q₁ and Q₃ not independent

Distribution on multicuts

H has a path of length l = 9L

- Divide path into 3 parts P₁, P₂, P₃
- Sample multicuts independently in H, P₁, P₂, P₃
- Computation same as before

Isometric local embeddings

- Every subset of size k embeds isometrically into ℓ_1
- Entire metric requires distortion

$$\Omega\left(\frac{\log n}{\log k + \log\log n}\right)$$

- Main idea:
 - make distortion very close to 1; $\delta = c/k.\log(n)$
 - add a uniform metric: $\rho'(u,v) = \rho(u,v) + \mu$
 - Near isometric embedding can be corrected to embed new distance exactly

Applications

- Sherali-Adams Hierarchy: Integrality gap for many problems after n^δ rounds.
- Construct local distributions on solutions
- Key challenge: distributions for subsets must be consistent on intersection
- (Modular) Solution: Use lower bound construction with sqrt(distance): embeddable into ℓ_2
 - $-\ell_2$ embedding uniquely defined by pairwise distances
 - distribution on solutions from ℓ_2 embedding

Conclusion and Questions

• Every subset of size k isometrically embeddable into l_1 : global distortion?

$$O(\log(n/k))$$
 versus $\Omega\left(\frac{\log n}{\log k + \log\log n}\right)$

- Negative type metrics: $d(u,v) = ||x_u x_v||_2^2$ [Khot, Saket '09] [Raghavendra, Steurer '09]
- 1. isometric embedding of $2^{O(\log \log n)^{\delta}}$ size sets
- 2. Global distortion $\Omega(\log \log n)^{\gamma}$