FORWARD BROWNIAN MOTION

Krzysztof Burdzy
University of Washington

Collaborator and preprint

Joint work with Michael Scheutzow.

Math Arxiv:
http://arxiv.org/abs/1302.6958

Example

Concatenation of time-reversal of 3-dimensional Bessel process and independent Brownian motion.

A different look at the same example
Concatenation of independent pieces of Brownian motion.
(D. Williams (1974))

Forward Brownian motion

DEFINITION

We say that X is forward Brownian motion (FBM) if there exist random times $S_{k}, k \in \mathbb{Z}$, such that $\lim _{k \rightarrow-\infty} S_{k}=-\infty$ and for every k, $\left\{X\left(S_{k}+t\right)-X\left(S_{k}\right), t \geq 0\right\}$ is Brownian motion.

Forward Brownian motion

DEFINITION

We say that X is forward Brownian motion (FBM) if there exist random times $S_{k}, k \in \mathbb{Z}$, such that $\lim _{k \rightarrow-\infty} S_{k}=-\infty$ and for every k, $\left\{X\left(S_{k}+t\right)-X\left(S_{k}\right), t \geq 0\right\}$ is Brownian motion.

Related models: Bertoin \& Savov (2011), Kemeny, Snell \& Knapp (1976)

Decomposable FBM

We say that X is forward Brownian motion (FBM) if there exist random times $S_{k}, k \in \mathbb{Z}$, such that $\lim _{k \rightarrow-\infty} S_{k}=-\infty$ and for every k, $\left\{X\left(S_{k}+t\right)-X\left(S_{k}\right), t \geq 0\right\}$ is Brownian motion.

DEFINITION

We say that FBM X is decomposable if it is the concatenation of independent pieces B^{k} of Brownian paths truncated at stopping times T_{k}. If $\left(B^{k}, T_{k}\right)$ are i.i.d. than we call X strongly decomposable.

Decomposable FBM

We say that X is forward Brownian motion (FBM) if there exist random times $S_{k}, k \in \mathbb{Z}$, such that $\lim _{k \rightarrow-\infty} S_{k}=-\infty$ and for every k, $\left\{X\left(S_{k}+t\right)-X\left(S_{k}\right), t \geq 0\right\}$ is Brownian motion.

DEFINITION

We say that FBM X is decomposable if it is the concatenation of independent pieces B^{k} of Brownian paths truncated at stopping times T_{k}. If $\left(B^{k}, T_{k}\right)$ are i.i.d. than we call X strongly decomposable.

QUESTION

Is every FBM decomposable?

Path properties of FBM's

3-dimensional Bessel process goes to infinity at the rate \sqrt{t} (up to logarithmic factors on lower and upper side; Shiga and Watanabe (1973)).

Path properties of FBM's

3-dimensional Bessel process goes to infinity at the rate \sqrt{t} (up to logarithmic factors on lower and upper side; Shiga and Watanabe (1973)).

Can FBM go to infinity faster than that?

Maximal rate of growth

THEOREM

For each increasing function $f:[0, \infty) \rightarrow[0, \infty)$ there exists a strongly decomposable FBM X for which, a.s.,

$$
\limsup _{t \rightarrow-\infty}\left(X_{t}-f(-t)\right) \geq 0 \quad \text { and } \quad \liminf _{t \rightarrow-\infty}\left(X_{t}+f(-t)\right) \leq 0
$$

An eigenvalue problem

Let

$$
\mathcal{A}=\frac{1}{2}\left(\frac{d^{2}}{d x^{2}}-x \frac{d}{d x}\right)
$$

and $m(d x)=2 e^{-x^{2} / 2} d x$. For all $-\infty \leq c_{1}<c_{2} \leq \infty$ there is a complete orthonormal system in $L^{2}\left(\left[c_{1}, c_{2}\right], m\right)$ of eigenfunctions of the Sturm-Liouville problem

$$
\mathcal{A} \psi=\lambda \psi, \quad \psi\left(c_{i}\right)=0, i=1,2, \quad \text { if }\left|c_{i}\right|<\infty
$$

whose corresponding eigenvalues are simple and non-positive. Let $-\lambda_{0}\left(c_{1}, c_{2}\right)$ denote the largest eigenvalue.

Minimum asymptotic range

$$
\begin{aligned}
& -\infty \leq c_{1}<c_{2} \leq \infty \\
& \mathcal{R}:=\left\{(t, x): t<0, c_{1} \sqrt{|t|}<x<c_{2} \sqrt{|t|}\right\}
\end{aligned}
$$

Minimum asymptotic range (2)

$-\infty \leq c_{1}<c_{2} \leq \infty$
$\mathcal{R}=\left\{(t, x): t<0, c_{1} \sqrt{|t|}<x<c_{2} \sqrt{|t|}\right\}$

THEOREM

(i) If $\lambda_{0}\left(c_{1}, c_{2}\right)<1$ then there exists an FBM with trajectories that fit into \mathcal{R} asymptotically, as $t \rightarrow-\infty$.
(ii) If $\lambda_{0}\left(c_{1}, c_{2}\right)>1$ then there does not exist an FBM with trajectories that fit into \mathcal{R} asymptotically, as $t \rightarrow-\infty$.

Critical shapes

$\lambda_{0}\left(c_{1}, c_{2}\right)=1$ for the following pairs $\left(c_{1}, c_{2}\right)$.

$$
c_{1}=-1, c_{2}=1
$$

Critical shapes

$\lambda_{0}\left(c_{1}, c_{2}\right)=1$ for the following pairs $\left(c_{1}, c_{2}\right)$.

$$
c_{1}=-1, c_{2}=1 \quad c_{1}=0, c_{2} \approx 2.12411
$$

Critical shapes

$\lambda_{0}\left(c_{1}, c_{2}\right)=1$ for the following pairs $\left(c_{1}, c_{2}\right)$.

$$
c_{1}=1, c_{2}=\infty
$$

$$
c_{1}=-1, c_{2}=1 \quad c_{1}=0, c_{2} \approx 2.12411
$$

Critical shapes

$\lambda_{0}\left(c_{1}, c_{2}\right)=1$ for the following pairs $\left(c_{1}, c_{2}\right)$.

$$
c_{1}=1, c_{2}=\infty
$$

$$
c_{1}=-1, c_{2}=1 \quad c_{1}=0, c_{2} \approx 2.12411
$$

These critical shapes are the same as in the results on "slow points." Davis (1983), Greenwood and Perkins (1983), Perkins (1983).

Generic Brownian motion on the real line

DEFINITION

We will call $\left\{X_{t}, t \in \mathbb{R}\right\}$ two-sided Brownian motion (2BM) if there exists a random time S such that $\left\{X_{S+t}-X_{S}, t \geq 0\right\}$ and $\left\{X_{S-t}-X_{S}, t \geq 0\right\}$ are independent standard Brownian motions.

Which decomposable FBM's are 2BM's?

We say that FBM X is decomposable if it is the concatenation of independent pieces B^{k} of Brownian paths truncated at stopping times T_{k}. If $\left(B^{k}, T_{k}\right)$ are i.i.d. than we call X strongly decomposable.

Which decomposable FBM's are 2BM's?

We say that FBM X is decomposable if it is the concatenation of independent pieces B^{k} of Brownian paths truncated at stopping times T_{k}. If $\left(B^{k}, T_{k}\right)$ are i.i.d. than we call X strongly decomposable.

THEOREM

If X is strongly decomposable and $\mathbb{E} T_{k}<\infty$ then X is 2 BM .

Which decomposable FBM's are 2BM's? (ctnd.)

THEOREM
 If X is strongly decomposable and $\mathbb{E} T_{k}<\infty$ then X is 2 BM .

Which decomposable FBM's are 2BM's? (ctnd.)

THEOREM

If X is strongly decomposable and $\mathbb{E} T_{k}<\infty$ then X is 2 BM .

THEOREM

(i) For every $p<1$ there exists a strongly decomposable X with $\mathbb{E} T_{k}^{p}<\infty$ which is not 2 BM .

Which decomposable FBM's are 2BM's? (ctnd.)

THEOREM

If X is strongly decomposable and $\mathbb{E} T_{k}<\infty$ then X is 2 BM .

THEOREM

(i) For every $p<1$ there exists a strongly decomposable X with $\mathbb{E} T_{k}^{p}<\infty$ which is not 2 BM .
(ii) For any $p \in(0, \infty)$, there exists a decomposable FBM X satisfying $\sup _{k} \mathbb{E} T_{k}^{p}<\infty$ which is not a 2 BM .

Which decomposable FBM's are 2BM's? (ctnd.)

THEOREM

If X is strongly decomposable and $\mathbb{E} T_{k}<\infty$ then X is 2 BM .

THEOREM

(i) For every $p<1$ there exists a strongly decomposable X with $\mathbb{E} T_{k}^{p}<\infty$ which is not 2 BM .
(ii) For any $p \in(0, \infty)$, there exists a decomposable FBM X satisfying $\sup _{k} \mathbb{E} T_{k}^{p}<\infty$ which is not a 2 BM .

OPEN PROBLEM

Is true that if X is decomposable and $\sup _{k}\left|T_{k}\right| \leq 1$, a.s., then X is a 2BM?

DEFINITION

We say that X is backward Brownian motion if $\left\{X_{-t},-\infty<t<\infty\right\}$ is forward Brownian motion.

FBM and BBM

DEFINITION

We say that X is backward Brownian motion if $\left\{X_{-t},-\infty<t<\infty\right\}$ is forward Brownian motion.

QUESTION

If a process is FBM and BBM , is it necessarily a 2 BM ?

FBM and BBM

DEFINITION

We say that X is backward Brownian motion if $\left\{X_{-t},-\infty<t<\infty\right\}$ is forward Brownian motion.

QUESTION

If a process is FBM and BBM , is it necessarily a 2 BM ?

THEOREM

No.

Is every FBM decomposable?

THEOREM

There is an FBM X that is not decomposable.

Is every FBM decomposable?

THEOREM

There is an FBM X that is not decomposable.
The above theorem is a corollary of the following result.

THEOREM

There exists an FBM X such that there is no random time T such that $\left\{X_{T+t}-X_{T}, t \geq 0\right\}$ and $\left\{X_{T-t}-X_{T}, t \geq 0\right\}$ are independent and $\left\{X_{T+t}-X_{T}, t \geq 0\right\}$ is standard Brownian motion.

Skew Brownian motion

Given a standard Brownian motion B and $-1 \leq \beta \leq 1$, the equation

$$
Z_{t}=B_{t}+\beta L_{t}^{Z}, \quad t \geq 0
$$

has a unique strong solution. Here L^{Z} is the symmetric local time of Z at 0 . The process Z is called skew Brownian motion.

M. Barlow, H. Kaspi and A. Mandelbaum

Skew Brownian motion-based FBM

$Z_{t}=B_{t}+\beta L_{t}^{Z}$
For $t \geq 0, \mathbb{E} X_{-t}=2 \beta \sqrt{2 t / \pi}$.

Hitting of moving boundaries

$-\infty \leq c_{1}<c_{2} \leq \infty, \quad \mathcal{R}=\left\{(t, x): t<0, c_{1} \sqrt{|t|}<x<c_{2} \sqrt{|t|}\right\}$

B - Brownian motion, $B_{1}=0, T=\inf \left\{t \geq 1:\left(t, B_{t}\right) \notin \mathcal{R}\right\}$

$$
P(T \geq t) \approx t^{-\lambda_{0}\left(c_{1}, c_{2}\right)}
$$

Breiman (1965), Novikov (1981), Uchiyama (1980)
Davis (1983), Greenwood and Perkins (1983), Perkins (1983)

Stationary point process and its Palm version

THEOREM

If X is strongly decomposable and $\mathbb{E} T_{k}<\infty$ then X is 2 BM .

Let Λ be an ergodic simple point process on \mathbb{R} and let Λ^{*} be its Palm version. One can find a random x such that translating Λ^{*} by x yields a configuration whose law is that of Λ.
Thorisson (1996); Slivnyak (1962), Zähle (1980); Kallenberg (2002)

