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Example

Concatenation of time-reversal of 3-dimensional Bessel process and
independent Brownian motion.
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A different look at the same example

Concatenation of independent pieces of Brownian motion.
(D. Williams (1974))
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Forward Brownian motion

DEFINITION

We say that X is forward Brownian motion (FBM) if there exist random
times Sk , k ∈ Z, such that limk→−∞ Sk = −∞ and for every k,
{X (Sk + t)− X (Sk), t ≥ 0} is Brownian motion.

Related models: Bertoin & Savov (2011), Kemeny, Snell & Knapp (1976)
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Decomposable FBM

We say that X is forward Brownian motion (FBM) if there exist random
times Sk , k ∈ Z, such that limk→−∞ Sk = −∞ and for every k,
{X (Sk + t)− X (Sk), t ≥ 0} is Brownian motion.

DEFINITION

We say that FBM X is decomposable
if it is the concatenation of
independent pieces Bk of Brownian
paths truncated at stopping times
Tk . If (Bk ,Tk) are i.i.d. than we call
X strongly decomposable.

QUESTION

Is every FBM decomposable?
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Path properties of FBM’s

3-dimensional Bessel process goes to infinity at the rate
√
t (up to

logarithmic factors on lower and upper side; Shiga and Watanabe (1973)).

Can FBM go to infinity faster than that?
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Maximal rate of growth

THEOREM

For each increasing function f : [0,∞)→ [0,∞) there exists a strongly
decomposable FBM X for which, a.s.,

lim sup
t→−∞

(Xt − f (−t)) ≥ 0 and lim inf
t→−∞

(Xt + f (−t)) ≤ 0.
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An eigenvalue problem

Let

A =
1

2

(
d2

dx2
− x

d

dx

)
,

and m(dx) = 2e−x
2/2dx . For all −∞ ≤ c1 < c2 ≤ ∞ there is a complete

orthonormal system in L2([c1, c2],m) of eigenfunctions of the
Sturm-Liouville problem

Aψ = λψ, ψ(ci ) = 0, i = 1, 2, if |ci | <∞,

whose corresponding eigenvalues are simple and non-positive. Let

−λ0(c1, c2) denote the largest eigenvalue.
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Minimum asymptotic range

−∞ ≤ c1 < c2 ≤ ∞
R := {(t, x) : t < 0, c1

√
|t| < x < c2

√
|t|}
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Minimum asymptotic range (2)

−∞ ≤ c1 < c2 ≤ ∞
R = {(t, x) : t < 0, c1

√
|t| < x < c2

√
|t|}

THEOREM

(i) If λ0(c1, c2) < 1 then there exists an FBM with trajectories that fit into
R asymptotically, as t → −∞.
(ii) If λ0(c1, c2) > 1 then there does not exist an FBM with trajectories
that fit into R asymptotically, as t → −∞.

Krzysztof Burdzy FORWARD BROWNIAN MOTION



Critical shapes

λ0(c1, c2) = 1 for the following pairs (c1, c2).

c1 = −1, c2 = 1

c1 = 0, c2 ≈ 2.12411
c1 = 1, c2 =∞

These critical shapes are the same as in the results on “slow points.”
Davis (1983), Greenwood and Perkins (1983), Perkins (1983).
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Generic Brownian motion on the real line

DEFINITION

We will call {Xt , t ∈ R} two-sided Brownian motion (2BM) if there exists
a random time S such that {XS+t − XS , t ≥ 0} and {XS−t − XS , t ≥ 0}
are independent standard Brownian motions.
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Which decomposable FBM’s are 2BM’s?

We say that FBM X is decomposable if it is the concatenation of
independent pieces Bk of Brownian paths truncated at stopping times Tk .
If (Bk ,Tk) are i.i.d. than we call X strongly decomposable.

THEOREM

If X is strongly decomposable and ETk <∞ then X is 2BM.
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Which decomposable FBM’s are 2BM’s? (ctnd.)

THEOREM

If X is strongly decomposable and ETk <∞ then X is 2BM.

THEOREM

(i) For every p < 1 there exists a strongly decomposable X with ET p
k <∞

which is not 2BM.
(ii) For any p ∈ (0,∞), there exists a decomposable FBM X satisfying
supk ET

p
k <∞ which is not a 2BM.

OPEN PROBLEM

Is true that if X is decomposable and supk |Tk | ≤ 1, a.s., then X is a
2BM?
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FBM and BBM

DEFINITION

We say that X is backward Brownian motion if {X−t ,−∞ < t <∞} is
forward Brownian motion.

QUESTION

If a process is FBM and BBM, is it necessarily a 2BM?

THEOREM

No.
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Is every FBM decomposable?

THEOREM

There is an FBM X that is not decomposable.

The above theorem is a corollary of the following result.

THEOREM

There exists an FBM X such that there is no random time T such that
{XT+t − XT , t ≥ 0} and {XT−t − XT , t ≥ 0} are independent and
{XT+t − XT , t ≥ 0} is standard Brownian motion.
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Skew Brownian motion

Given a standard Brownian motion B and −1 ≤ β ≤ 1, the equation

Zt = Bt + βLZt , t ≥ 0,

has a unique strong solution. Here LZ is the symmetric local time of Z at
0. The process Z is called skew Brownian motion.

M. Barlow, H. Kaspi and A. Mandelbaum
Krzysztof Burdzy FORWARD BROWNIAN MOTION



Skew Brownian motion-based FBM

Zt = Bt + βLZt

For t ≥ 0, EX−t = 2β
√

2t/π.
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FBM with big oscillations
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Hitting of moving boundaries

−∞ ≤ c1 < c2 ≤ ∞, R = {(t, x) : t < 0, c1
√
|t| < x < c2

√
|t|}

B - Brownian motion, B1 = 0, T = inf{t ≥ 1 : (t,Bt) /∈ R}

P(T ≥ t) ≈ t−λ0(c1,c2)

Breiman (1965), Novikov (1981), Uchiyama (1980)
Davis (1983), Greenwood and Perkins (1983), Perkins (1983)
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Stationary point process and its Palm version

THEOREM

If X is strongly decomposable and ETk <∞ then X is 2BM.

Let Λ be an ergodic simple point process on R and let Λ∗ be its Palm
version. One can find a random x such that translating Λ∗ by x yields a
configuration whose law is that of Λ.
Thorisson (1996); Slivnyak (1962), Zähle (1980); Kallenberg (2002)
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