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The Birkhoff Ergodic Theorem
Assume that (X ,B, µ) is a probability space, T : X → X is
invertible and measure preserving (µ(T−1A) = µ(A), ∀A ∈ B)
and f ∈ L1(X ,B, µ).

Then lim
N→∞

1

N

N∑
k=1

f (T kx) = f (x) exists µ a.e.

f (Tx) = f (x) a.e.

This also implies f (TNx)
N → 0 µ a.e.

Weak (1, 1) inequality λ > 0:

µ{x : supN
1
N

∑N
k=1 f (T kx) > λ} ≤

R
|f |dµ
λ .

A ∈ B is T -invariant if
0 = µ(T−1A∆A) = µ((T−1A \ A) ∪ (A \ T−1A)).
T is ergodic when A is T -invariant ⇔ µ(A) = 0 or 1.
If T is ergodic in the above thm. then

lim
N→∞

1

N

N∑
k=1

f (T kx) =

∫
X

fdµ.

Recall:
Banach’s principle: Let 1 ≤ p <∞ and let Tn be a sequence of
bounded linear operators on Lp.
If supn |Tnf | <∞ a.e. ∀f ∈ Lp

then the set of f for which Tnf converges a.e. is closed in Lp.

e.g.: Tnf = (1/n)
∑n

k=1 f (T kx).

D.: An infinite set A ⊂ N is of zero Banach density

if lim
k→∞

sup
n∈N

#(A ∩ [n, n + k])

k + 1
= 0.
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Results of Bourgain imply that if f ∈ Lp(µ), for some p > 1,
the ergodic means

lim
N→∞

1

N

N∑
n=1

f (T n2
(x)) (1)

converge almost everywhere. Bourgain also asked whether this
result is true for p = 1, that is for L1 functions.

D.: A sequence {nk}∞k=1 is L1-universally bad if for all aperiodic
ergodic dynamical systems there is some f ∈ L1 such that

lim
N→∞

1

N

N∑
k=1

f (T nk x) fails to exist for all x in a set of positive

measure.
By the Conze principle and the Banach principle of Sawyer a

sequence {nk}∞k=1 is not L1-universally bad if and only if there
exists a constant C <∞ such that for all systems (X ,Σ, µ,T )
and all f ∈ L1(µ) we have the following weak (1, 1) inequality
for all t > 0

µ

({
x : sup

N≥1

∣∣∣∣∣ 1

N

N∑
k=1

f (T nk x)

∣∣∣∣∣ > t

})
≤ C

t

∫
|f |dµ.

T.: (Z.B. & D. Mauldin) The sequence {k2}∞k=1 is
L1-universally bad.
This theorem is proved by showing that there is no constant C
such that the above weak (1, 1) inequality holds.
The Div. squares result was generalized by P. LaVictoire:
T.: The sequence of powers (km) is L1-universally bad for
m ∈ N.
Some of the tools work only for sequences cmnm + c0 but not
for other polynomials. (Other sequences were also considered
by P. LaVictoire.)
T.: (Z.B.) For any polynomial p(n) of degree two with integer
coefficients the sequence p(n) is universally L1-bad.
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I learned from M. Keane that it was not known (in 2003)
whether there exists a sequence (nk) such that nk+1 − nk →∞
and for any f ∈ L1(µ)

(*) limN→∞
1
N

∑N
k=1 f (T nk x) conv. µ a.e.

A sequence satisfying nk+1− nk →∞ is of zero Banach density.

J. Rosenblatt and M. Wierdl had the following conjecture:
(†) Conjecture.: Suppose that the sequence (nk) has zero
Banach d. and let (X ,Σ, µ,T ) be an aperiodic dynamical
system. Then for some f ∈ L1(µ) the averages (*) do not conv.
a.e.
T.: (Z.B.) There exist universally L1-good sequences (nk) for
which nk+1 − nk →∞.
A sequence is universally L1-good if (*) conv. µ a.e. for any
ergodic dyn. sys. (X ,Σ, µ,T ) and f ∈ L1(µ).
⇒ Conjecture (†) is false. This also provides an explanation
why it was so difficult to obtain the result that nk = k2 is
L1-universally bad.
T.: R. Urban and J. Zienkiewicz:
If 1 < α < 1.001 then bkαc is universally L1 good.
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An L1 Counting Problem in Ergodic Theory

(X ,B, µ) probability measure space T an invertible meas.
preserving transformation f ∈ L1

+(µ).

Since f (T nx)
n → 0 a.e. Nn(f )(x) = #

{
k :

f (T kx)

k
>

1

n

}
is

finite a.e..
Counting Problem I. Given f ∈ L1

+(µ) do we have

supn
Nn(f )(x)

n <∞, µ a.e.?

Assani [1997a, 1997b]: the maximal operator supn
Nn(f )(x)

n is

used to study the pointwise convergence of Nn(f )(x)
n .

If f ∈ Lp
+ for p > 1, or f ∈ L log L and the transformation T is

ergodic, then Nn(f )(x)
n converges a.e to

∫
fdµ.

If T is not ergodic, then the limit is the conditional expectation
of the function f with respect to the σ field of the invariant sets
for T .
Hence, the limit is the same as the limit of the ergodic averages
1
N

∑N
n=1 f (T nx).

It is natural to ask whether Nn(f )(x)
n also converges a.e., when

f ∈ L1(µ).
The counting problem was afterwards discussed by R. Jones, J.
Rosenblatt and M. Wierdl [1999].
Counting Problem I. Given f ∈ L1

+(µ) do we have

supn
Nn(f )(x)

n <∞, µ a.e.?
By using a generalized version of the Stein-Sawyer result
(Assani [1997]) one can state the following equivalent problem.
Counting Problem II. Does there exist a finite positive
constant C such that for all measure preserving systems and all
λ > 0

µ
{

x : supn
Nn(f )(x)

n > λ
}
≤ C

λ ‖f ‖1?

T.: (I. Assani, Z. B. & D. Mauldin ) In any nonatomic,
invertible ergodic system (X ,B, µ,T ) there exists f ∈ L1

+ such

that supn
Nn(f )(x)

n =∞ almost everywhere.
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Averages along the squares on the torus
On T2 consider the erg. tr. T (x , y) = (x + α, y + 2x + α) with
α 6∈ Q.
Suppose f ∈ L1(T) and f̃ (x , y) = f (y).
Then
(f̃ ◦ T n)(x , y) = f̃ (x + nα, y + 2nx + n2α) = f (y + 2nx + n2α)

By the Erg. Th. applied to f̃ for Leb. a.e. (x , y)

1

N

N∑
n=1

(f̃ ◦ T n)(x , y) =
1

N

N∑
n=1

f (y + 2nx + n2α)→
∫

T2

f̃ =

∫
T

f .

By the Div. Sq. Averages paper of Z.B. and D. Mauldin
∃ f ∈ L1(T) such that for x = 0 the averages

1

N

N∑
n=1

f (y + n · 0 + n2α) do not conv. a.e.

Question of J-P. Conze during the problem session of a Chapel
Hill Ergodic Theory workshop:
What are the values x for which the averages

1

N

N∑
n=1

f (y + nx + n2α) diverge for a. e. y?

D.: Given α ∈ T and f ∈ L1(T) let

Dα,f =
{

x ∈ T : lim
N→∞

1

N

N∑
n=1

f (y + nx + n2α) d. n. e. for a.e. y
}
.

The Hausdorff dimension of a set A will be denoted by dimH A.
T.:For any irrational α there exists f ∈ L1(T) such that
dimH Dα,f = 1.
The above theorem shows that though Dα,f for a fixed α is of
zero Lebesgue measure it can be of Hausdorff dimension one.
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