Erdős 100

Divergent square averages and related topics
Zoltán Buczolich

Eötvös University, Budapest
www.cs.elte.hu/~buczo
(partly joint work with I. Assani and D. Mauldin)

The Birkhoff Ergodic Theorem
Assume that (X, \mathcal{B}, μ) is a probability space, $T: X \rightarrow X$ is invertible and measure preserving $\left(\mu\left(T^{-1} A\right)=\mu(A), \forall A \in \mathcal{B}\right)$ and $f \in L^{1}(X, \mathcal{B}, \mu)$.
Then $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} f\left(T^{k} x\right)=\bar{f}(x)$ exists μ a.e.
$\bar{f}(T x)=\bar{f}(x)$ a.e.
This also implies $\frac{f\left(T^{N} x\right)}{N} \rightarrow 0 \mu$ a.e.

Weak $(1,1)$ inequality $\lambda>0$:
$\mu\left\{x: \sup _{N} \frac{1}{N} \sum_{k=1}^{N} f\left(T^{k} x\right)>\lambda\right\} \leq \frac{\int|f| d \mu}{\lambda}$.
$A \in \mathcal{B}$ is T-invariant if
$0=\mu\left(T^{-1} A \Delta A\right)=\mu\left(\left(T^{-1} A \backslash A\right) \cup\left(A \backslash T^{-1} A\right)\right)$.
T is ergodic when A is T-invariant $\Leftrightarrow \mu(A)=0$ or 1 .
If T is ergodic in the above thm. then

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} f\left(T^{k} x\right)=\int_{X} f d \mu .
$$

Recall:

Banach's principle: Let $1 \leq p<\infty$ and let T_{n} be a sequence of bounded linear operators on L^{p}.
If $\sup _{n}\left|T_{n} f\right|<\infty$ a.e. $\forall f \in L^{p}$ then the set of f for which $T_{n} f$ converges a.e. is closed in L^{p}.
e.g.: $\quad T_{n} f=(1 / n) \sum_{k=1}^{n} f\left(T^{k} x\right)$.
D.: An infinite set $A \subset \mathbb{N}$ is of zero Banach density
if $\lim _{k \rightarrow \infty} \sup _{n \in \mathbb{N}} \frac{\#(A \cap[n, n+k])}{k+1}=0$.

Results of Bourgain imply that if $f \in L^{p}(\mu)$, for some $p>1$, the ergodic means

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f\left(T^{n^{2}}(x)\right) \tag{1}
\end{equation*}
$$

converge almost everywhere. Bourgain also asked whether this result is true for $p=1$, that is for L^{1} functions.

Results of Bourgain imply that if $f \in L^{p}(\mu)$, for some $p>1$, the ergodic means

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f\left(T^{n^{2}}(x)\right) \tag{1}
\end{equation*}
$$

converge almost everywhere. Bourgain also asked whether this result is true for $p=1$, that is for L^{1} functions.
D.: A sequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ is L^{1}-universally bad if for all aperiodic ergodic dynamical systems there is some $f \in L^{1}$ such that $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} f\left(T^{n_{k}} x\right)$ fails to exist for all x in a set of positive measure.
D.: A sequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ is L^{1}-universally bad if for all aperiodic ergodic dynamical systems there is some $f \in L^{1}$ such that $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} f\left(T^{n_{k}} x\right)$ fails to exist for all x in a set of positive measure.

By the Conze principle and the Banach principle of Sawyer a sequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ is not L^{1}-universally bad if and only if there exists a constant $C<\infty$ such that for all systems (X, Σ, μ, T) and all $f \in L^{1}(\mu)$ we have the following weak $(1,1)$ inequality for all $t>0$
$\mu\left(\left\{x: \sup _{N \geq 1}\left|\frac{1}{N} \sum_{k=1}^{N} f\left(T^{n_{k} x}\right)\right|>t\right\}\right) \leq \frac{C}{t} \int|f| d \mu$.

By the Conze principle and the Banach principle of Sawyer a sequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ is not L^{1}-universally bad if and only if there exists a constant $C<\infty$ such that for all systems (X, Σ, μ, T) and all $f \in L^{1}(\mu)$ we have the following weak $(1,1)$ inequality for all $t>0$
$\mu\left(\left\{x: \sup _{N \geq 1}\left|\frac{1}{N} \sum_{k=1}^{N} f\left(T^{n_{k}} x\right)\right|>t\right\}\right) \leq \frac{C}{t} \int|f| d \mu$.
T.: (Z.B. \& D. Mauldin) The sequence $\left\{k^{2}\right\}_{k=1}^{\infty}$ is
L^{1}-universally bad.
This theorem is proved by showing that there is no constant C such that the above weak $(1,1)$ inequality holds.
T.: (Z.B. \& D. Mauldin) The sequence $\left\{k^{2}\right\}_{k=1}^{\infty}$ is
L^{1}-universally bad.
This theorem is proved by showing that there is no constant C such that the above weak $(1,1)$ inequality holds.
The Div. squares result was generalized by P. LaVictoire: T.: The sequence of powers $\left(k^{m}\right)$ is L^{1}-universally bad for $m \in \mathbb{N}$.
Some of the tools work only for sequences $c_{m} n^{m}+c_{0}$ but not for other polynomials. (Other sequences were also considered by P. LaVictoire.)
T.: (Z.B.) For any polynomial $p(n)$ of degree two with integer coefficients the sequence $p(n)$ is universally L^{1}-bad.

The Div. squares result was generalized by P. LaVictoire: T.: The sequence of powers $\left(k^{m}\right)$ is L^{1}-universally bad for $m \in \mathbb{N}$.
Some of the tools work only for sequences $c_{m} n^{m}+c_{0}$ but not for other polynomials. (Other sequences were also considered by P. LaVictoire.)
T.: (Z.B.) For any polynomial $p(n)$ of degree two with integer coefficients the sequence $p(n)$ is universally L^{1}-bad.

I learned from M. Keane that it was not known (in 2003) whether there exists a sequence $\left(n_{k}\right)$ such that $n_{k+1}-n_{k} \rightarrow \infty$ and for any $f \in L^{1}(\mu)$
(*) $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} f\left(T^{n_{k}} x\right)$ conv. μ a.e.
A sequence satisfying $n_{k+1}-n_{k} \rightarrow \infty$ is of zero Banach density.

I learned from M. Keane that it was not known (in 2003) whether there exists a sequence $\left(n_{k}\right)$ such that $n_{k+1}-n_{k} \rightarrow \infty$ and for any $f \in L^{1}(\mu)$
(*) $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} f\left(T^{n_{k}} x\right)$ conv. μ a.e.
A sequence satisfying $n_{k+1}-n_{k} \rightarrow \infty$ is of zero Banach density. J. Rosenblatt and M. Wierdl had the following conjecture: (\dagger) Conjecture.: Suppose that the sequence $\left(n_{k}\right)$ has zero Banach d. and let (X, Σ, μ, T) be an aperiodic dynamical system. Then for some $f \in L^{1}(\mu)$ the averages (*) do not conv. a.e.
T.: (Z.B.) There exist universally L^{1}-good sequences $\left(n_{k}\right)$ for which $n_{k+1}-n_{k} \rightarrow \infty$.
J. Rosenblatt and M. Wierdl had the following conjecture: (\dagger) Conjecture.: Suppose that the sequence $\left(n_{k}\right)$ has zero Banach d. and let (X, Σ, μ, T) be an aperiodic dynamical system. Then for some $f \in L^{1}(\mu)$ the averages $\left({ }^{*}\right)$ do not conv. a.e.
T.: (Z.B.) There exist universally L^{1}-good sequences $\left(n_{k}\right)$ for which $n_{k+1}-n_{k} \rightarrow \infty$.
A sequence is universally L^{1}-good if $\left({ }^{*}\right)$ conv. μ a.e. for any ergodic dyn. sys. (X, Σ, μ, T) and $f \in L^{1}(\mu)$.
\Rightarrow Conjecture (\dagger) is false. This also provides an explanation why it was so difficult to obtain the result that $n_{k}=k^{2}$ is L^{1}-universally bad.
T.: R. Urban and J. Zienkiewicz:

If $1<\alpha<1.001$ then $\left\lfloor k^{\alpha}\right\rfloor$ is universally L^{1} good.

A sequence is universally L^{1}-good if $\left(^{*}\right)$ conv. μ a.e. for any ergodic dyn. sys. (X, Σ, μ, T) and $f \in L^{1}(\mu)$.
\Rightarrow Conjecture (\dagger) is false. This also provides an explanation why it was so difficult to obtain the result that $n_{k}=k^{2}$ is L^{1}-universally bad.
T.: R. Urban and J. Zienkiewicz:

If $1<\alpha<1.001$ then $\left\lfloor k^{\alpha}\right\rfloor$ is universally L^{1} good.

An L^{1} Counting Problem in Ergodic Theory

An L^{1} Counting Problem in Ergodic Theory
(X, \mathcal{B}, μ) probability measure space T an invertible meas. preserving transformation $f \in L_{+}^{1}(\mu)$.
Since $\frac{f\left(T^{n} x\right)}{n} \rightarrow 0$ a.e. $\mathbf{N}_{n}(f)(x)=\#\left\{k: \frac{f\left(T^{k} x\right)}{k}>\frac{1}{n}\right\}$ is finite a.e..
(X, \mathcal{B}, μ) probability measure space T an invertible meas. preserving transformation $f \in L_{+}^{1}(\mu)$.
Since $\frac{f\left(T^{n} x\right)}{n} \rightarrow 0$ a.e. $\mathbf{N}_{n}(f)(x)=\#\left\{k: \frac{f\left(T^{k} x\right)}{k}>\frac{1}{n}\right\}$ is finite a.e..
Counting Problem I. Given $f \in L_{+}^{1}(\mu)$ do we have $\sup _{n} \frac{\mathrm{~N}_{n}(f)(x)}{n}<\infty$, μ a.e.?

Counting Problem I. Given $f \in L_{+}^{1}(\mu)$ do we have $\sup _{n} \frac{\mathbf{N}_{n}(f)(x)}{n}<\infty$, μ a.e.?
Assani [1997a, 1997b]: the maximal operator $\sup _{n} \frac{\mathbf{N}_{n}(f)(x)}{n}$ is used to study the pointwise convergence of $\frac{N_{n}(f)(x)}{n}$.

Assani [1997a, 1997b]: the maximal operator $\sup _{n} \frac{\mathbf{N}_{n}(f)(x)}{n}$ is used to study the pointwise convergence of $\frac{\mathrm{N}_{n}(f)(x)}{n}$. If $f \in L_{+}^{p}$ for $p>1$, or $f \in L \log L$ and the transformation T is ergodic, then $\frac{\mathbf{N}_{n}(f)(x)}{n}$ converges a.e to $\int f d \mu$. If T is not ergodic, then the limit is the conditional expectation of the function f with respect to the σ field of the invariant sets for T.

If $f \in L_{+}^{p}$ for $p>1$, or $f \in L \log L$ and the transformation T is ergodic, then $\frac{\mathbf{N}_{n}(f)(x)}{n}$ converges a.e to $\int f d \mu$.
If T is not ergodic, then the limit is the conditional expectation of the function f with respect to the σ field of the invariant sets for T.
Hence, the limit is the same as the limit of the ergodic averages $\frac{1}{N} \sum_{n=1}^{N} f\left(T^{n} x\right)$.
It is natural to ask whether $\frac{\mathbf{N}_{n}(f)(x)}{n}$ also converges a.e., when $f \in L^{1}(\mu)$.
The counting problem was afterwards discussed by R. Jones, J. Rosenblatt and M. Wierdl [1999].

Hence, the limit is the same as the limit of the ergodic averages $\frac{1}{N} \sum_{n=1}^{N} f\left(T^{n} x\right)$.
It is natural to ask whether $\frac{\mathbf{N}_{n}(f)(x)}{n}$ also converges a.e., when $f \in L^{1}(\mu)$.
The counting problem was afterwards discussed by R. Jones, J.
Rosenblatt and M. Wierdl [1999].
Counting Problem I. Given $f \in L_{+}^{1}(\mu)$ do we have $\sup _{n} \frac{\mathbf{N}_{n}(f)(x)}{n}<\infty$, μ a.e.?

Counting Problem I. Given $f \in L_{+}^{1}(\mu)$ do we have $\sup _{n} \frac{\mathrm{~N}_{n}(f)(x)}{n}<\infty$, μ a.e.?
By using a generalized version of the Stein-Sawyer result (Assani [1997]) one can state the following equivalent problem. Counting Problem II. Does there exist a finite positive constant C such that for all measure preserving systems and all $\lambda>0$
$\mu\left\{x: \sup _{n} \frac{\mathrm{~N}_{n}(f)(x)}{n}>\lambda\right\} \leq \frac{c}{\lambda}\|f\|_{1}$?

By using a generalized version of the Stein-Sawyer result (Assani [1997]) one can state the following equivalent problem. Counting Problem II. Does there exist a finite positive constant C such that for all measure preserving systems and all $\lambda>0$
$\mu\left\{x: \sup _{n} \frac{\mathbf{N}_{n}(f)(x)}{n}>\lambda\right\} \leq \frac{c}{\lambda}\|f\|_{1} ?$
T.: (I. Assani, Z. B. \& D. Mauldin) In any nonatomic, invertible ergodic system (X, \mathcal{B}, μ, T) there exists $f \in L_{+}^{1}$ such that $\sup _{n} \frac{\mathbf{N}_{n}(f)(x)}{n}=\infty$ almost everywhere.
T.: (I. Assani, Z. B. \& D. Mauldin) In any nonatomic, invertible ergodic system (X, \mathcal{B}, μ, T) there exists $f \in L_{+}^{1}$ such that $\sup _{n} \frac{\mathbf{N}_{n}(f)(x)}{n}=\infty$ almost everywhere.

Averages along the squares on the torus
On \mathbb{T}^{2} consider the erg. tr. $T(x, y)=(x+\alpha, y+2 x+\alpha)$ with $\alpha \notin \mathbb{Q}$.
Suppose $f \in L^{1}(\mathbb{T})$ and $\tilde{f}(x, y)=f(y)$.
Then
$\left(\widetilde{f} \circ T^{n}\right)(x, y)=\widetilde{f}\left(x+n \alpha, y+2 n x+n^{2} \alpha\right)=f\left(y+2 n x+n^{2} \alpha\right)$

Averages along the squares on the torus
On \mathbb{T}^{2} consider the erg. tr. $T(x, y)=(x+\alpha, y+2 x+\alpha)$ with $\alpha \notin \mathbb{Q}$.
Suppose $f \in L^{1}(\mathbb{T})$ and $\widetilde{f}(x, y)=f(y)$.
Then
$\left(\widetilde{f} \circ T^{n}\right)(x, y)=\widetilde{f}\left(x+n \alpha, y+2 n x+n^{2} \alpha\right)=f\left(y+2 n x+n^{2} \alpha\right)$
By the Erg. Th. applied to f for Leb. a.e. (x, y)

$$
\frac{1}{N} \sum_{n=1}^{N}\left(\tilde{f} \circ T^{n}\right)(x, y)=\frac{1}{N} \sum_{n=1}^{N} f\left(y+2 n x+n^{2} \alpha\right) \rightarrow \int_{\mathbb{T}^{2}} \tilde{f}=\int_{\mathbb{T}} f .
$$

By the Erg. Th. applied to \tilde{f} for Leb. a.e. (x, y)

$$
\frac{1}{N} \sum_{n=1}^{N}\left(\tilde{f} \circ T^{n}\right)(x, y)=\frac{1}{N} \sum_{n=1}^{N} f\left(y+2 n x+n^{2} \alpha\right) \rightarrow \int_{\mathbb{T}^{2}} \widetilde{f}=\int_{\mathbb{T}} f .
$$

By the Div. Sq. Averages paper of Z.B. and D. Mauldin
$\exists f \in L^{1}(\mathbb{T})$ such that for $x=0$ the averages
$\frac{1}{N} \sum_{n=1}^{N} f\left(y+n \cdot 0+n^{2} \alpha\right)$ do not conv. a.e.

By the Div. Sq. Averages paper of Z.B. and D. Mauldin $\exists f \in L^{1}(\mathbb{T})$ such that for $x=0$ the averages
$\frac{1}{N} \sum_{n=1}^{N} f\left(y+n \cdot 0+n^{2} \alpha\right)$ do not conv. a.e.
Question of J-P. Conze during the problem session of a Chapel Hill Ergodic Theory workshop:
What are the values x for which the averages
$\frac{1}{N} \sum_{n=1}^{N} f\left(y+n x+n^{2} \alpha\right)$ diverge for a. e. y ?

Question of J-P. Conze during the problem session of a Chapel Hill Ergodic Theory workshop:
What are the values x for which the averages
$\frac{1}{N} \sum_{n=1}^{N} f\left(y+n x+n^{2} \alpha\right)$ diverge for a. e. y ?
D.: Given $\alpha \in \mathbb{T}$ and $f \in L^{1}(\mathbb{T})$ let

$$
D_{\alpha, f}=\left\{x \in \mathbb{T}: \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f\left(y+n x+n^{2} \alpha\right) \text { d. n. e. for a.e. } y\right\} \text {. }
$$

D.: Given $\alpha \in \mathbb{T}$ and $f \in L^{1}(\mathbb{T})$ let

$$
D_{\alpha, f}=\left\{x \in \mathbb{T}: \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f\left(y+n x+n^{2} \alpha\right) \text { d. n. e. for a.e. } y\right\} \text {. }
$$

The Hausdorff dimension of a set A will be denoted by $\operatorname{dim}_{H} A$. T.:For any irrational α there exists $f \in L^{1}(\mathbb{T})$ such that $\operatorname{dim}_{H} D_{\alpha, f}=1$.
The above theorem shows that though $D_{\alpha, f}$ for a fixed α is of zero Lebesgue measure it can be of Hausdorff dimension one.

The Hausdorff dimension of a set A will be denoted by $\operatorname{dim}_{H} A$. \mathbf{T}.: For any irrational α there exists $f \in L^{1}(\mathbb{T})$ such that $\operatorname{dim}_{H} D_{\alpha, f}=1$.
The above theorem shows that though $D_{\alpha, f}$ for a fixed α is of zero Lebesgue measure it can be of Hausdorff dimension one.

