Erdős 100

Divergent square averages and related topics Zoltán Buczolich

Eötvös University, Budapest www.cs.elte.hu/~buczo

(partly joint work with I. Assani and D. Mauldin)

The Birkhoff Ergodic Theorem

Assume that (X, \mathcal{B}, μ) is a probability space, $T : X \to X$ is invertible and measure preserving $(\mu(T^{-1}A) = \mu(A), \forall A \in \mathcal{B})$ and $f \in L^1(X, \mathcal{B}, \mu)$.

Then
$$\lim_{N\to\infty} \frac{1}{N} \sum_{k=1}^{N} f(T^k x) = \overline{f}(x)$$
 exists μ a.e.

 $\overline{f}(Tx) = \overline{f}(x)$ a.e. This also implies $\frac{f(T^Nx)}{N} \to 0 \ \mu$ a.e. Weak (1,1) inequality $\lambda > 0$: $\mu\{x : \sup_N \frac{1}{N} \sum_{k=1}^N f(T^k x) > \lambda\} \le \frac{\int |f| d\mu}{\lambda}.$ $A \in \mathcal{B}$ is *T*-invariant if $0 = \mu(T^{-1}A \Delta A) = \mu((T^{-1}A \setminus A) \cup (A \setminus T^{-1}A)).$ *T* is ergodic when *A* is *T*-invariant $\Leftrightarrow \mu(A) = 0$ or 1. If *T* is ergodic in the above thm. then

$$\lim_{N\to\infty}\frac{1}{N}\sum_{k=1}^N f(T^k x) = \int_X f d\mu.$$

Recall:

Banach's principle: Let $1 \le p < \infty$ and let T_n be a sequence of bounded linear operators on L^p . If $\sup_n |T_n f| < \infty$ a.e. $\forall f \in L^p$

then the set of f for which $T_n f$ converges a.e. is closed in L^p .

e.g.:
$$T_n f = (1/n) \sum_{k=1}^n f(T^k x).$$

D.: An infinite set $A \subset \mathbb{N}$ is of zero Banach density

if $\lim_{k\to\infty} \sup_{n\in\mathbb{N}} \frac{\#(A\cap [n, n+k])}{k+1} = 0.$

Results of Bourgain imply that if $f \in L^p(\mu)$, for some p > 1, the ergodic means

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(T^{n^2}(x))$$
(1)

converge almost everywhere. Bourgain also asked whether this result is true for p = 1, that is for L^1 functions.

Results of Bourgain imply that if $f \in L^p(\mu)$, for some p > 1, the ergodic means

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(T^{n^2}(x))$$
(1)

converge almost everywhere. Bourgain also asked whether this result is true for p = 1, that is for L^1 functions.

D.: A sequence $\{n_k\}_{k=1}^{\infty}$ is L¹-universally bad if for all aperiodic ergodic dynamical systems there is some $f \in L^1$ such that $\lim_{N\to\infty}\frac{1}{N}\sum_{k=1}^{N}f(T^{n_k}x)$ fails to exist for all x in a set of positive

D.: A sequence $\{n_k\}_{k=1}^{\infty}$ is L^1 -universally bad if for all aperiodic ergodic dynamical systems there is some $f \in L^1$ such that

 $\lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} f(T^{n_k} x) \text{ fails to exist for all } x \text{ in a set of positive measure.}$

By the Conze principle and the Banach principle of Sawyer a sequence $\{n_k\}_{k=1}^{\infty}$ is *not* L^1 -universally bad if and only if there exists a constant $C < \infty$ such that for all systems (X, Σ, μ, T) and all $f \in L^1(\mu)$ we have the following weak (1, 1) inequality for all t > 0

$$\mu\left(\left\{x:\sup_{N\geq 1}\left|\frac{1}{N}\sum_{k=1}^{N}f(T^{n_k}x)\right|>t\right\}\right)\leq \frac{C}{t}\int|f|d\mu.$$

By the Conze principle and the Banach principle of Sawyer a sequence $\{n_k\}_{k=1}^{\infty}$ is *not* L^1 -universally bad if and only if there exists a constant $C < \infty$ such that for all systems (X, Σ, μ, T) and all $f \in L^1(\mu)$ we have the following weak (1, 1) inequality for all t > 0

$$\mu\left(\left\{x:\sup_{N\geq 1}\left|\frac{1}{N}\sum_{k=1}^{N}f(T^{n_k}x)\right|>t\right\}\right)\leq \frac{C}{t}\int |f|d\mu.$$

T.: (**Z.B. & D. Mauldin**) The sequence $\{k^2\}_{k=1}^{\infty}$ is L^1 -universally bad.

This theorem is proved by showing that there is no constant C such that the above weak (1,1) inequality holds.

T.: (**Z.B. & D. Mauldin**) The sequence $\{k^2\}_{k=1}^{\infty}$ is L^1 -universally bad.

This theorem is proved by showing that there is no constant C such that the above weak (1,1) inequality holds.

The Div. squares result was generalized by P. LaVictoire:

T.: The sequence of powers (k^m) is L^1 -universally bad for $m \in \mathbb{N}$.

Some of the tools work only for sequences $c_m n^m + c_0$ but not for other polynomials. (Other sequences were also considered by P. LaVictoire.)

T.: (**Z.B.**) For any polynomial p(n) of degree two with integer coefficients the sequence p(n) is universally L^1 -bad.

The Div. squares result was generalized by **P. LaVictoire: T**.: The sequence of powers (k^m) is L^1 -universally bad for $m \in \mathbb{N}$.

Some of the tools work only for sequences $c_m n^m + c_0$ but not for other polynomials. (Other sequences were also considered by P. LaVictoire.)

T.: **(Z.B.)** For any polynomial p(n) of degree two with integer coefficients the sequence p(n) is universally L^1 -bad.

I learned from M. Keane that it was not known (in 2003) whether there exists a sequence (n_k) such that $n_{k+1} - n_k \to \infty$ and for any $f \in L^1(\mu)$

(*) $\lim_{N\to\infty} \frac{1}{N} \sum_{k=1}^{N} f(T^{n_k}x)$ conv. μ a.e.

A sequence satisfying $n_{k+1} - n_k \rightarrow \infty$ is of zero Banach density.

I learned from M. Keane that it was not known (in 2003) whether there exists a sequence (n_k) such that $n_{k+1} - n_k \to \infty$ and for any $f \in L^1(\mu)$

(*)
$$\lim_{N\to\infty} \frac{1}{N} \sum_{k=1}^{N} f(T^{n_k}x)$$
 conv. μ a.e.

A sequence satisfying $n_{k+1} - n_k \to \infty$ is of zero Banach density. J. Rosenblatt and M. Wierdl had the following conjecture: (†) **Conjecture.:** Suppose that the sequence (n_k) has zero Banach d. and let (X, Σ, μ, T) be an aperiodic dynamical system. Then for some $f \in L^1(\mu)$ the averages (*) do not conv. a.e.

T.: (Z.B.) There exist universally L^1 -good sequences (n_k) for which $n_{k+1} - n_k \to \infty$.

J. Rosenblatt and M. Wierdl had the following conjecture: (†) **Conjecture.:** Suppose that the sequence (n_k) has zero Banach d. and let (X, Σ, μ, T) be an aperiodic dynamical system. Then for some $f \in L^1(\mu)$ the averages (*) do not conv. a.e.

T.: (Z.B.) There exist universally L^1 -good sequences (n_k) for which $n_{k+1} - n_k \to \infty$.

A sequence is universally L^1 -good if (*) conv. μ a.e. for any ergodic dyn. sys. (X, Σ, μ, T) and $f \in L^1(\mu)$.

 \Rightarrow Conjecture (†) is false. This also provides an explanation why it was so difficult to obtain the result that $n_k = k^2$ is L^1 -universally bad.

T.: R. Urban and J. Zienkiewicz:

If $1 < \alpha < 1.001$ then $\lfloor k^{\alpha} \rfloor$ is universally L^1 good.

A sequence is universally L^1 -good if (*) conv. μ a.e. for any ergodic dyn. sys. (X, Σ, μ, T) and $f \in L^1(\mu)$.

 \Rightarrow Conjecture (†) is false. This also provides an explanation why it was so difficult to obtain the result that $n_k = k^2$ is L^1 -universally bad.

- T.: R. Urban and J. Zienkiewicz:
- If $1 < \alpha < 1.001$ then $\lfloor k^{\alpha} \rfloor$ is universally L^1 good.

An L^1 Counting Problem in Ergodic Theory

An L^1 Counting Problem in Ergodic Theory (X, \mathcal{B}, μ) probability measure space T an invertible meas. preserving transformation $f \in L^1_+(\mu)$.

Since
$$\frac{f(T^n x)}{n} \to 0$$
 a.e. $\mathbf{N}_n(f)(x) = \#\left\{k : \frac{f(T^k x)}{k} > \frac{1}{n}\right\}$ is

finite a.e..

 (X, \mathcal{B}, μ) probability measure space \mathcal{T} an invertible meas. preserving transformation $f \in L^1_+(\mu)$.

Since
$$\frac{f(T^n x)}{n} \to 0$$
 a.e. $\mathbf{N}_n(f)(x) = \#\left\{k : \frac{f(T^k x)}{k} > \frac{1}{n}\right\}$ is

finite a.e..

Counting Problem I. Given $f \in L^1_+(\mu)$ do we have $\sup_n \frac{N_n(f)(x)}{n} < \infty$, μ a.e.?

Counting Problem I. Given $f \in L^1_+(\mu)$ do we have $\sup_n \frac{N_n(f)(x)}{n} < \infty, \mu \text{ a.e.}?$ Assani [1997a, 1997b]: the maximal operator $\sup_n \frac{N_n(f)(x)}{n}$ is used to study the pointwise convergence of $\frac{N_n(f)(x)}{n}$. Assani [1997a, 1997b]: the maximal operator $\sup_n \frac{N_n(f)(x)}{n}$ is used to study the pointwise convergence of $\frac{N_n(f)(x)}{n}$. If $f \in L^p_+$ for p > 1, or $f \in L \log L$ and the transformation T is ergodic, then $\frac{N_n(f)(x)}{n}$ converges a.e to $\int fd\mu$. If T is not ergodic, then the limit is the conditional expectation of the function f with respect to the σ field of the invariant sets for T. If $f \in L^p_+$ for p > 1, or $f \in L \log L$ and the transformation T is ergodic, then $\frac{N_n(f)(x)}{n}$ converges a.e to $\int f d\mu$.

If T is not ergodic, then the limit is the conditional expectation of the function f with respect to the σ field of the invariant sets for T.

Hence, the limit is the same as the limit of the ergodic averages $\frac{1}{N} \sum_{n=1}^{N} f(T^n x)$.

It is natural to ask whether $\frac{N_n(f)(x)}{n}$ also converges a.e., when $f \in L^1(\mu)$.

The counting problem was afterwards discussed by R. Jones, J. Rosenblatt and M. Wierdl [1999].

Hence, the limit is the same as the limit of the ergodic averages $\frac{1}{N} \sum_{n=1}^{N} f(T^n x)$.

It is natural to ask whether $\frac{N_n(f)(x)}{n}$ also converges a.e., when $f \in L^1(\mu)$.

The counting problem was afterwards discussed by R. Jones, J. Rosenblatt and M. Wierdl [1999].

Counting Problem I. Given $f \in L^1_+(\mu)$ do we have

 $\sup_{n} \frac{\mathbf{N}_{n}(f)(x)}{n} < \infty, \ \mu \ a.e.?$

Counting Problem I. Given $f \in L^1_+(\mu)$ do we have $\sup_n \frac{N_n(f)(x)}{n} < \infty$, μ a.e.?

By using a generalized version of the Stein-Sawyer result (Assani [1997]) one can state the following equivalent problem. **Counting Problem II.** Does there exist a finite positive constant C such that for all measure preserving systems and all $\lambda > 0$

$$\mu\left\{x: \sup_{n} \frac{\mathsf{N}_{n}(f)(x)}{n} > \lambda\right\} \leq \frac{C}{\lambda} \|f\|_{1}?$$

By using a generalized version of the Stein-Sawyer result (Assani [1997]) one can state the following equivalent problem. **Counting Problem II.** Does there exist a finite positive constant C such that for all measure preserving systems and all $\lambda > 0$

$$\mu\left\{x: \sup_{n} \frac{\mathsf{N}_{n}(f)(x)}{n} > \lambda\right\} \leq \frac{C}{\lambda} \|f\|_{1}?$$

T.: (I. Assani, Z. B. & D. Mauldin) In any nonatomic, invertible ergodic system (X, \mathcal{B}, μ, T) there exists $f \in L^1_+$ such that $\sup_n \frac{N_n(f)(x)}{n} = \infty$ almost everywhere. **T**.: (I. Assani, Z. B. & D. Mauldin) In any nonatomic, invertible ergodic system (X, \mathcal{B}, μ, T) there exists $f \in L^1_+$ such that $\sup_n \frac{N_n(f)(x)}{n} = \infty$ almost everywhere. Averages along the squares on the torus On \mathbb{T}^2 consider the erg. tr. $T(x, y) = (x + \alpha, y + 2x + \alpha)$ with $\alpha \notin \mathbb{Q}$. Suppose $f \in L^1(\mathbb{T})$ and $\tilde{f}(x, y) = f(y)$. Then $(\tilde{f} \circ T^n)(x, y) = \tilde{f}(x + n\alpha, y + 2nx + n^2\alpha) = f(y + 2nx + n^2\alpha)$ Averages along the squares on the torus On \mathbb{T}^2 consider the erg. tr. $T(x, y) = (x + \alpha, y + 2x + \alpha)$ with $\alpha \notin \mathbb{Q}$. Suppose $f \in L^1(\mathbb{T})$ and $\tilde{f}(x, y) = f(y)$. Then $(\tilde{f} \circ T^n)(x, y) = \tilde{f}(x + n\alpha, y + 2nx + n^2\alpha) = f(y + 2nx + n^2\alpha)$ By the Erg. Th. applied to \tilde{f} for Leb. a.e. (x, y) $\frac{1}{N} \sum_{i=1}^{N} (\tilde{f} \circ T^n)(x, y) = \frac{1}{N} \sum_{i=1}^{N} f(y + 2nx + n^2\alpha) \rightarrow \int_{\mathbb{T}^2} \tilde{f} = \int_{\mathbb{T}} f.$ By the Erg. Th. applied to \tilde{f} for Leb. a.e. (x, y)

$$\frac{1}{N}\sum_{n=1}^{N}(\widetilde{f}\circ T^{n})(x,y)=\frac{1}{N}\sum_{n=1}^{N}f(y+2nx+n^{2}\alpha)\rightarrow\int_{\mathbb{T}^{2}}\widetilde{f}=\int_{\mathbb{T}}f.$$

By the Div. Sq. Averages paper of Z.B. and D. Mauldin $\exists f \in L^1(\mathbb{T})$ such that for x = 0 the averages

$$\frac{1}{N}\sum_{n=1}^{N}f(y+n\cdot 0+n^2\alpha)$$
 do not conv. a.e.

By the Div. Sq. Averages paper of Z.B. and D. Mauldin $\exists f \in L^1(\mathbb{T})$ such that for x = 0 the averages

$$\frac{1}{N}\sum_{n=1}^{N}f(y+n\cdot 0+n^2\alpha)$$
 do not conv. a.e.

Question of J-P. Conze during the problem session of a Chapel Hill Ergodic Theory workshop:

What are the values x for which the averages

 $\frac{1}{N}\sum_{n=1}^{N}f(y+nx+n^{2}\alpha)$ diverge for a. e. y?

Question of J-P. Conze during the problem session of a Chapel Hill Ergodic Theory workshop:

What are the values x for which the averages

$$\frac{1}{N}\sum_{n=1}^{N}f(y+nx+n^{2}\alpha)$$
 diverge for a. e. y?

D.: Given $\alpha \in \mathbb{T}$ and $f \in L^1(\mathbb{T})$ let

N /

$$D_{\alpha,f} = \Big\{ x \in \mathbb{T} : \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(y + nx + n^2 \alpha) \text{ d. n. e. for a.e. } y \Big\}.$$

D.: Given $\alpha \in \mathbb{T}$ and $f \in L^1(\mathbb{T})$ let

$$D_{\alpha,f} = \Big\{ x \in \mathbb{T} : \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(y + nx + n^2 \alpha) \ d. \ n. \ e. \ for \ a.e. \ y \Big\}.$$

The Hausdorff dimension of a set A will be denoted by dim_H A. **T**.:For any irrational α there exists $f \in L^1(\mathbb{T})$ such that dim_H $D_{\alpha,f} = 1$.

The above theorem shows that though $D_{\alpha,f}$ for a fixed α is of zero Lebesgue measure it can be of Hausdorff dimension one.

The Hausdorff dimension of a set A will be denoted by dim_H A. **T**.:For any irrational α there exists $f \in L^1(\mathbb{T})$ such that dim_H $D_{\alpha,f} = 1$. The above theorem shows that though $D_{\alpha,f}$ for a fixed α is of

zero Lebesgue measure it can be of Hausdorff dimension one.