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Let f be a "nice" even function on R, let w(n) := 1 for every n,
then the sum

is invariant to the change
f—g,

where g is the Fourier transform of f.
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The main new features of the formula:

@ The set R is replaced by the set R U D™, where
Dt ={i(3—n): n>1isan integer}.

@ The Fourier transform is replaced by the Wilson function
transform of type Il (Groenevelt, 2003), and:
it is its own inverse and it is an isometry on a Hilbert space.

@ We have triple product integrals investigated very intensively
in the theory of automorphic forms as weights (and the
integers n are replaced by another discrete point set).
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Notations:
H is the complex upper half plane,

v = ( i 3 ) € SL(2,R) acts on H in this way: vz = iﬁif},

Mo(4) := {< i 3 > €5L(2,Z): c¢=0 (mod 4)},

D, is a fundamental domain of y(4) in H,

du, = d;‘ziy is the SL(2, R)-invariant measure on H,

(i, £) = [p, A(2)R(2)dpz.
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Let e(x) = e*™*, and for z € H let

Bo(z) = (Imz)4 6 (2).

The hyperbolic Laplace operator of weight / is:
2 2 o
A =y? (% + 88—}/2> — /Iy%.

For v = ( i 3 > € SL(2,R) let j,(z) == cz +d.

C () \ 12
Bo(12) = v(0) (245 ula) for + € ol




Maass forms and cusp forms of weight 2n:

Let / =2n, where n > 0 is an integer. A function f defined on H is
a Maass form of weight / for I = SL(2,Z) or ' = [y(4), if:



Maass forms and cusp forms of weight 2n:

Let / =2n, where n > 0 is an integer. A function f defined on H is
a Maass form of weight / for I = SL(2,Z) or ' = [y(4), if:

@ for every z € H and v € I we have

) = (245 )I f(2),

Uy (2)]




Maass forms and cusp forms of weight 2n:

Let / =2n, where n > 0 is an integer. A function f defined on H is
a Maass form of weight / for I = SL(2,Z) or ' = [y(4), if:

@ for every z € H and v € I we have

) = (245 )I f(2),

Uy (2)]

@ f is an eigenfunction of A/,



Maass forms and cusp forms of weight 2n:

Let / =2n, where n > 0 is an integer. A function f defined on H is
a Maass form of weight / for I = SL(2,Z) or ' = [y(4), if:

@ for every z € H and v € I we have

) = (245 )I f(2),

Uy (2)]

@ f is an eigenfunction of A/,

@ f grows at most polynomially at cusps.



Maass forms and cusp forms of weight 2n:

Let / =2n, where n > 0 is an integer. A function f defined on H is
a Maass form of weight / for I = SL(2,Z) or ' = [y(4), if:

@ for every z € H and v € I we have

) = (245 )I f(2),

Uy (2)]

@ f is an eigenfunction of A/,

@ f grows at most polynomially at cusps.

If £ decays exponentially at cusps, then f is called a cusp form.



Maass forms and cusp forms of weight % + 2n:

Let | = % + 2n, where n is a nonnegative integer. A function f
defined on H is a Maass form of weight / for [ = I5(4), if:



Maass forms and cusp forms of weight % + 2n:

Let | = % + 2n, where n is a nonnegative integer. A function f
defined on H is a Maass form of weight / for [ = I5(4), if:

@ for every z € H and v € I we have

o) =) (£ )I f(2).

U (2)]




Maass forms and cusp forms of weight % + 2n:

Let | = % + 2n, where n is a nonnegative integer. A function f
defined on H is a Maass form of weight / for [ = I5(4), if:

@ for every z € H and v € I we have

o) =) (£ )I f(2).

U (2)]

@ f is an eigenfunction of A/,



Maass forms and cusp forms of weight % + 2n:

Let | = % + 2n, where n is a nonnegative integer. A function f
defined on H is a Maass form of weight / for [ = I5(4), if:

@ for every z € H and v € I we have

o) =) (£ )I f(2).

|J'y(z)‘

@ f is an eigenfunction of A/,

@ f grows at most polynomially at cusps.



Maass forms and cusp forms of weight % + 2n:

Let | = % + 2n, where n is a nonnegative integer. A function f
defined on H is a Maass form of weight / for [ = I5(4), if:

@ for every z € H and v € I we have

o) =) (£ )I f(2).

|J'y(z)‘

@ f is an eigenfunction of A/,

@ f grows at most polynomially at cusps.

If £ decays exponentially at cusps, then f is called a cusp form.



Three types of Maass forms of weight 3 + 2n for [o(4):



Three types of Maass forms of weight 3 + 2n for [o(4):

® Let uj1/5 (j > 0) be a maximal orthonormal system of square
integrable Maass forms of weight %



Three types of Maass forms of weight 3 + 2n for [o(4):

® Let uj1/5 (j > 0) be a maximal orthonormal system of square
integrable Maass forms of weight %

@ Non square integrable Maass forms of weight %:



Three types of Maass forms of weight 3 + 2n for [o(4):

® Let uj1/5 (j > 0) be a maximal orthonormal system of square
integrable Maass forms of weight %

@ Non square integrable Maass forms of weight %:

@ Mass forms of weight % + 2n coming from holomorphic forms:



Three types of Maass forms of weight 3 + 2n for [o(4):

® Let uj1/5 (j > 0) be a maximal orthonormal system of square
integrable Maass forms of weight %

up,1/2 = cobBo.

@ Non square integrable Maass forms of weight %:

@ Mass forms of weight % + 2n coming from holomorphic forms:



Three types of Maass forms of weight 3 + 2n for [o(4):

® Let uj1/5 (j > 0) be a maximal orthonormal system of square
integrable Maass forms of weight %

up,1/2 = cobBo.

@ Non square integrable Maass forms of weight %:

For cusps a = 0, 00 and for real numbers r let E, (z, % + ir)
be the Eisenstein series of weight % belonging to a and r.

@ Mass forms of weight % + 2n coming from holomorphic forms:



Three types of Maass forms of weight 3 + 2n for [o(4):

® Let uj1/5 (j > 0) be a maximal orthonormal system of square
integrable Maass forms of weight %

up,1/2 = cobBo.

@ Non square integrable Maass forms of weight %:

For cusps a = 0, 00 and for real numbers r let E, (z, % + ir)
be the Eisenstein series of weight % belonging to a and r.

@ Mass forms of weight % + 2n coming from holomorphic forms:
n

If g(z) is such a form, then g(z) (Im z)_%_ is holomorphic.
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Laplace-eigenvalues of Maass forms of weight % + 2n:

@ For j > 1 let

1
AyppUj1 = <_Z - Tf) Uji/2-
Here T; is real and tends to infinity.

@ As a function of z, the Eisenstein series E, (z7 % + ir) is a
A, j»-eigenfunction with eigenvalue (—% — r2).

o Ifn>1,let g1,8n2,--,8ns, be an orthonormal basis of
Maass cusp forms of weight 2n + % and A -eigenvalue

3+ (-3

2n+%
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@ Maass operators:

0
’}’8_ t+y

dy
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@ Maass operators:

.0 0
Ky = /ya—l—ya—y—l—k.

If f is a Maass form of weight k, then K />f is a Maass form
of weight k + 2.

o If uis a cusp form of weight 0 for SL(2,Z), and
Agu = s(s — 1)u, then for n > 0 define

 (Kn—1Kn—z - .. KiKou) (42)
(kn(u)) (2) == BROED) .

This is a cusp form of weight 2n for [5(4).
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Ca(f,r) = f(z)E, (z, E +ir, 1)duz.
by 2 '3

o [ (X £ Y) is the abbreviation of
rX+Y)r(x-y),
and similarly, [ (X £ Y &+ Z) is the abbreviation of

X+ Y4+2)TX+Y -2 T(X=-Y+2)I(X=-Y-2).
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We write (w), =T (w + n) /T (w), and we define the generalized
hypergeometric function in the usual way:

o ()

n=0

1 2
AOUJ' = <—Z — tj) Uj.

Then define the Wilson function ¢ (x) as the sum of

Forj=1,2let

%— ity + itp, % — ity — itr, 1 — 2ity
F(3—itntito) T (5 + ity +ix) T (54 ity £ i)

F(2it1)4F3< ot ity —ix, § — it N — it — QA ;1>

and the same expression with —t; in place of t;.
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Define the measure dh for functions F on RU D™, even on R as

/ Fx)dh(x) = /0 T FH()dx i Y Fx)Res,—cH(z).
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Then the Wilson function transform of type // is defined as

GFY ) = [ F(x)on (<) dh(x).
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Explicitly, we have

(B[)/{o (1), uj,%> = /D By (z) u1 (42) mduz.
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The right-hand side here is very closely related to

/SL(z Z)\H ()| (Shimu; 1 2) (2) dpz,

where Shimu; ; /» (the Shimura lift of u; ;) is a cusp form of
weight 0.
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Thank you for your attention!
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