A Poisson-type summation formula with automorphic weights

András Biró

Erdős Centennial, July 4, 2013

We will show a generalization of the classical Poisson formula, so we first state that formula:

We will show a generalization of the classical Poisson formula, so we first state that formula:

Let f be a "nice" even function on \mathbb{R}, let $w(n):=1$ for every n, then the sum

$$
\sum_{n=-\infty}^{\infty} w(n) f(n)
$$

is invariant to the change

$$
f \rightarrow g
$$

where g is the Fourier transform of f.

The main new features of the formula:

The main new features of the formula:

- The set \mathbb{R} is replaced by the set $\mathbb{R} \cup D^{+}$, where $D^{+}=\left\{i\left(\frac{1}{4}-n\right): n \geq 1\right.$ is an integer $\}$.

The main new features of the formula:

- The set \mathbb{R} is replaced by the set $\mathbb{R} \cup D^{+}$, where $D^{+}=\left\{i\left(\frac{1}{4}-n\right): n \geq 1\right.$ is an integer $\}$.
- The Fourier transform is replaced by the Wilson function transform of type II (Groenevelt, 2003), and:

The main new features of the formula:

- The set \mathbb{R} is replaced by the set $\mathbb{R} \cup D^{+}$, where $D^{+}=\left\{i\left(\frac{1}{4}-n\right): n \geq 1\right.$ is an integer $\}$.
- The Fourier transform is replaced by the Wilson function transform of type II (Groenevelt, 2003), and: it is its own inverse and it is an isometry on a Hilbert space.

The main new features of the formula:

- The set \mathbb{R} is replaced by the set $\mathbb{R} \cup D^{+}$, where $D^{+}=\left\{i\left(\frac{1}{4}-n\right): n \geq 1\right.$ is an integer $\}$.
- The Fourier transform is replaced by the Wilson function transform of type II (Groenevelt, 2003), and: it is its own inverse and it is an isometry on a Hilbert space.
- We have triple product integrals investigated very intensively in the theory of automorphic forms as weights (and the integers n are replaced by another discrete point set).

Notations:
H is the complex upper half plane,

Notations:

H is the complex upper half plane,
$\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbf{R})$ acts on H in this way: $\gamma z=\frac{a z+b}{c z+d}$,

Notations:

H is the complex upper half plane,

$$
\begin{aligned}
& \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbf{R}) \text { acts on } H \text { in this way: } \gamma z=\frac{a z+b}{c z+d}, \\
& \Gamma_{0}(4):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbf{Z}): c \equiv 0(\bmod 4)\right\},
\end{aligned}
$$

Notations:

H is the complex upper half plane,
$\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbf{R})$ acts on H in this way: $\gamma z=\frac{a z+b}{c z+d}$,
$\Gamma_{0}(4):=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbf{Z}): c \equiv 0(\bmod 4)\right\}$,
D_{4} is a fundamental domain of $\Gamma_{0}(4)$ in H,

Notations:

H is the complex upper half plane,
$\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbf{R})$ acts on H in this way: $\gamma z=\frac{a z+b}{c z+d}$,
$\Gamma_{0}(4):=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbf{Z}): c \equiv 0(\bmod 4)\right\}$,
D_{4} is a fundamental domain of $\Gamma_{0}(4)$ in H,
$d \mu_{z}=\frac{d x d y}{y^{2}}$ is the $S L(2, \mathbf{R})$-invariant measure on H,

Notations:

H is the complex upper half plane,
$\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbf{R})$ acts on H in this way: $\gamma z=\frac{a z+b}{c z+d}$,
$\Gamma_{0}(4):=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbf{Z}): c \equiv 0(\bmod 4)\right\}$,
D_{4} is a fundamental domain of $\Gamma_{0}(4)$ in H, $d \mu_{z}=\frac{d x d y}{y^{2}}$ is the $S L(2, \mathbf{R})$-invariant measure on H,
$\left(f_{1}, f_{2}\right):=\int_{D_{4}} f_{1}(z) \overline{f_{2}(z)} d \mu_{z}$.

Notations:

Let $e(x)=e^{2 \pi i x}$, and for $z \in H$ let

$$
\theta(z)=\sum_{m=-\infty}^{\infty} e\left(m^{2} z\right)
$$

Notations:

Let $e(x)=e^{2 \pi i x}$, and for $z \in H$ let

$$
\theta(z)=\sum_{m=-\infty}^{\infty} e\left(m^{2} z\right)
$$

$$
B_{0}(z):=(\operatorname{Im} z)^{\frac{1}{4}} \theta(z) .
$$

Notations:

Let $e(x)=e^{2 \pi i x}$, and for $z \in H$ let

$$
\theta(z)=\sum_{m=-\infty}^{\infty} e\left(m^{2} z\right)
$$

$B_{0}(z):=(\operatorname{Im} z)^{\frac{1}{4}} \theta(z)$.
The hyperbolic Laplace operator of weight $/$ is:
$\Delta_{l}:=y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)$ - ily $\frac{\partial}{\partial x}$.

Notations:

Let $e(x)=e^{2 \pi i x}$, and for $z \in H$ let

$$
\theta(z)=\sum_{m=-\infty}^{\infty} e\left(m^{2} z\right)
$$

$B_{0}(z):=(\operatorname{Im} z)^{\frac{1}{4}} \theta(z)$.
The hyperbolic Laplace operator of weight I is:
$\Delta_{l}:=y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)$ - ily $\frac{\partial}{\partial x}$.
For $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbf{R})$ let $j_{\gamma}(z):=c z+d$.

Notations:

Let $e(x)=e^{2 \pi i x}$, and for $z \in H$ let

$$
\theta(z)=\sum_{m=-\infty}^{\infty} e\left(m^{2} z\right)
$$

$B_{0}(z):=(\operatorname{Im} z)^{\frac{1}{4}} \theta(z)$.
The hyperbolic Laplace operator of weight I is:
$\Delta_{l}:=y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)-i l y \frac{\partial}{\partial x}$.
For $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbf{R})$ let $j_{\gamma}(z):=c z+d$.

$$
B_{0}(\gamma z)=\nu(\gamma)\left(\frac{j_{\gamma}(z)}{\left|j_{\gamma}(z)\right|}\right)^{1 / 2} B_{0}(z) \text { for } \gamma \in \Gamma_{0}(4)
$$

Maass forms and cusp forms of weight $2 n$:

Let $I=2 n$, where $n \geq 0$ is an integer. A function f defined on H is a Mass form of weight $/$ for $\Gamma=S L(2, \mathbf{Z})$ or $\Gamma=\Gamma_{0}(4)$, if:

Maass forms and cusp forms of weight $2 n$:

Let $I=2 n$, where $n \geq 0$ is an integer. A function f defined on H is a Mass form of weight $/$ for $\Gamma=S L(2, \mathbf{Z})$ or $\Gamma=\Gamma_{0}(4)$, if:

- for every $z \in H$ and $\gamma \in \Gamma$ we have

$$
f(\gamma z)=\left(\frac{j_{\gamma}(z)}{\left|j_{\gamma}(z)\right|}\right)^{\prime} f(z)
$$

Maass forms and cusp forms of weight $2 n$:

Let $I=2 n$, where $n \geq 0$ is an integer. A function f defined on H is a Mass form of weight $/$ for $\Gamma=S L(2, \mathbf{Z})$ or $\Gamma=\Gamma_{0}(4)$, if:

- for every $z \in H$ and $\gamma \in \Gamma$ we have

$$
f(\gamma z)=\left(\frac{j_{\gamma}(z)}{\left|j_{\gamma}(z)\right|}\right)^{\prime} f(z)
$$

- f is an eigenfunction of Δ_{l},

Maass forms and cusp forms of weight $2 n$:

Let $I=2 n$, where $n \geq 0$ is an integer. A function f defined on H is a Maass form of weight $/$ for $\Gamma=S L(2, \mathbf{Z})$ or $\Gamma=\Gamma_{0}(4)$, if:

- for every $z \in H$ and $\gamma \in \Gamma$ we have

$$
f(\gamma z)=\left(\frac{j_{\gamma}(z)}{\left|j_{\gamma}(z)\right|}\right)^{\prime} f(z)
$$

- f is an eigenfunction of Δ_{l},
- f grows at most polynomially at cusps.

Maass forms and cusp forms of weight $2 n$:

Let $I=2 n$, where $n \geq 0$ is an integer. A function f defined on H is a Mass form of weight $/$ for $\Gamma=S L(2, \mathbf{Z})$ or $\Gamma=\Gamma_{0}(4)$, if:

- for every $z \in H$ and $\gamma \in \Gamma$ we have

$$
f(\gamma z)=\left(\frac{j_{\gamma}(z)}{\left|j_{\gamma}(z)\right|}\right)^{\prime} f(z)
$$

- f is an eigenfunction of Δ_{l},
- f grows at most polynomially at cusps.

If f decays exponentially at cusps, then f is called a cusp form.

Maass forms and cusp forms of weight $\frac{1}{2}+2 n$:

Let $I=\frac{1}{2}+2 n$, where n is a nonnegative integer. A function f defined on H is a Maass form of weight I for $\Gamma=\Gamma_{0}(4)$, if:

Maass forms and cusp forms of weight $\frac{1}{2}+2 n$:

Let $I=\frac{1}{2}+2 n$, where n is a nonnegative integer. A function f defined on H is a Maass form of weight I for $\Gamma=\Gamma_{0}(4)$, if:

- for every $z \in H$ and $\gamma \in \Gamma$ we have

$$
f(\gamma z)=\nu(\gamma)\left(\frac{j_{\gamma}(z)}{\left|j_{\gamma}(z)\right|}\right)^{\prime} f(z)
$$

Maass forms and cusp forms of weight $\frac{1}{2}+2 n$:

Let $I=\frac{1}{2}+2 n$, where n is a nonnegative integer. A function f defined on H is a Maass form of weight I for $\Gamma=\Gamma_{0}(4)$, if:

- for every $z \in H$ and $\gamma \in \Gamma$ we have

$$
f(\gamma z)=\nu(\gamma)\left(\frac{j_{\gamma}(z)}{\left|j_{\gamma}(z)\right|}\right)^{\prime} f(z)
$$

- f is an eigenfunction of Δ_{l},

Maass forms and cusp forms of weight $\frac{1}{2}+2 n$:

Let $I=\frac{1}{2}+2 n$, where n is a nonnegative integer. A function f defined on H is a Maass form of weight I for $\Gamma=\Gamma_{0}(4)$, if:

- for every $z \in H$ and $\gamma \in \Gamma$ we have

$$
f(\gamma z)=\nu(\gamma)\left(\frac{j_{\gamma}(z)}{\left|j_{\gamma}(z)\right|}\right)^{\prime} f(z)
$$

- f is an eigenfunction of Δ_{l},
- f grows at most polynomially at cusps.

Maass forms and cusp forms of weight $\frac{1}{2}+2 n$:

Let $I=\frac{1}{2}+2 n$, where n is a nonnegative integer. A function f defined on H is a Maass form of weight I for $\Gamma=\Gamma_{0}(4)$, if:

- for every $z \in H$ and $\gamma \in \Gamma$ we have

$$
f(\gamma z)=\nu(\gamma)\left(\frac{j_{\gamma}(z)}{\left|j_{\gamma}(z)\right|}\right)^{\prime} f(z)
$$

- f is an eigenfunction of Δ_{l},
- f grows at most polynomially at cusps.

If f decays exponentially at cusps, then f is called a cusp form.

Three types of Maass forms of weight $\frac{1}{2}+2 n$ for $\Gamma_{0}(4)$:

Three types of Maass forms of weight $\frac{1}{2}+2 n$ for $\Gamma_{0}(4)$:

- Let $u_{j, 1 / 2}(j \geq 0)$ be a maximal orthonormal system of square integrable Maass forms of weight $\frac{1}{2}$.

Three types of Maass forms of weight $\frac{1}{2}+2 n$ for $\Gamma_{0}(4)$:

- Let $u_{j, 1 / 2}(j \geq 0)$ be a maximal orthonormal system of square integrable Maass forms of weight $\frac{1}{2}$.
- Non square integrable Maass forms of weight $\frac{1}{2}$:

Three types of Maass forms of weight $\frac{1}{2}+2 n$ for $\Gamma_{0}(4)$:

- Let $u_{j, 1 / 2}(j \geq 0)$ be a maximal orthonormal system of square integrable Maass forms of weight $\frac{1}{2}$.
- Non square integrable Maass forms of weight $\frac{1}{2}$:
- Mass forms of weight $\frac{1}{2}+2 n$ coming from holomorphic forms:

Three types of Maass forms of weight $\frac{1}{2}+2 n$ for $\Gamma_{0}(4)$:

- Let $u_{j, 1 / 2}(j \geq 0)$ be a maximal orthonormal system of square integrable Maass forms of weight $\frac{1}{2}$.

$$
u_{0,1 / 2}=c_{0} B_{0} .
$$

- Non square integrable Maass forms of weight $\frac{1}{2}$:
- Mass forms of weight $\frac{1}{2}+2 n$ coming from holomorphic forms:

Three types of Maass forms of weight $\frac{1}{2}+2 n$ for $\Gamma_{0}(4)$:

- Let $u_{j, 1 / 2}(j \geq 0)$ be a maximal orthonormal system of square integrable Maass forms of weight $\frac{1}{2}$.

$$
u_{0,1 / 2}=c_{0} B_{0}
$$

- Non square integrable Maass forms of weight $\frac{1}{2}$:

For cusps $a=0, \infty$ and for real numbers r let $E_{a}\left(z, \frac{1}{2}+i r\right)$ be the Eisenstein series of weight $\frac{1}{2}$ belonging to a and r.

- Mass forms of weight $\frac{1}{2}+2 n$ coming from holomorphic forms:

Three types of Maass forms of weight $\frac{1}{2}+2 n$ for $\Gamma_{0}(4)$:

- Let $u_{j, 1 / 2}(j \geq 0)$ be a maximal orthonormal system of square integrable Maass forms of weight $\frac{1}{2}$.

$$
u_{0,1 / 2}=c_{0} B_{0}
$$

- Non square integrable Maass forms of weight $\frac{1}{2}$:

For cusps $a=0, \infty$ and for real numbers r let $E_{a}\left(z, \frac{1}{2}+i r\right)$ be the Eisenstein series of weight $\frac{1}{2}$ belonging to a and r.

- Mass forms of weight $\frac{1}{2}+2 n$ coming from holomorphic forms: If $g(z)$ is such a form, then $g(z)(\operatorname{Im} z)^{-\frac{1}{4}-n}$ is holomorphic.

Laplace-eigenvalues of Maass forms of weight $\frac{1}{2}+2 n$:

Laplace-eigenvalues of Maass forms of weight $\frac{1}{2}+2 n$:

- For $j \geq 1$ let

$$
\Delta_{1 / 2} u_{j, 1 / 2}=\left(-\frac{1}{4}-T_{j}^{2}\right) u_{j, 1 / 2}
$$

Here T_{j} is real and tends to infinity.

Laplace-eigenvalues of Maass forms of weight $\frac{1}{2}+2 n$:

- For $j \geq 1$ let

$$
\Delta_{1 / 2} u_{j, 1 / 2}=\left(-\frac{1}{4}-T_{j}^{2}\right) u_{j, 1 / 2}
$$

Here T_{j} is real and tends to infinity.

- As a function of z, the Eisenstein series $E_{a}\left(z, \frac{1}{2}+i r\right)$ is a $\Delta_{1 / 2}$-eigenfunction with eigenvalue $\left(-\frac{1}{4}-r^{2}\right)$.

Laplace-eigenvalues of Maass forms of weight $\frac{1}{2}+2 n$:

- For $j \geq 1$ let

$$
\Delta_{1 / 2} u_{j, 1 / 2}=\left(-\frac{1}{4}-T_{j}^{2}\right) u_{j, 1 / 2}
$$

Here T_{j} is real and tends to infinity.

- As a function of z, the Eisenstein series $E_{a}\left(z, \frac{1}{2}+i r\right)$ is a $\Delta_{1 / 2}$-eigenfunction with eigenvalue $\left(-\frac{1}{4}-r^{2}\right)$.
- If $n \geq 1$, let $g_{n, 1}, g_{n, 2}, \ldots, g_{n, s_{n}}$ be an orthonormal basis of Maass cusp forms of weight $2 n+\frac{1}{2}$ and $\Delta_{2 n+\frac{1}{2}}$-eigenvalue $-\frac{1}{4}+\left(n-\frac{1}{4}\right)^{2}$.
- Maass operators:

$$
K_{k}:=i y \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+k
$$

- Maass operators:

$$
K_{k}:=i y \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+k
$$

If f is a Maass form of weight k, then $K_{k / 2} f$ is a Maass form of weight $k+2$.

- Maass operators:

$$
K_{k}:=i y \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+k
$$

If f is a Maass form of weight k, then $K_{k / 2} f$ is a Maass form of weight $k+2$.

- If u is a cusp form of weight 0 for $S L(2, \mathbf{Z})$, and $\Delta_{0} u=s(s-1) u$, then for $n \geq 0$ define

$$
\left(\kappa_{n}(u)\right)(z):=\frac{\left(K_{n-1} K_{n-2} \ldots K_{1} K_{0} u\right)(4 z)}{(s)_{n}(1-s)_{n}}
$$

- Maass operators:

$$
K_{k}:=i y \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+k
$$

If f is a Maass form of weight k, then $K_{k / 2} f$ is a Maass form of weight $k+2$.

- If u is a cusp form of weight 0 for $S L(2, \mathbf{Z})$, and $\Delta_{0} u=s(s-1) u$, then for $n \geq 0$ define

$$
\left(\kappa_{n}(u)\right)(z):=\frac{\left(K_{n-1} K_{n-2} \ldots K_{1} K_{0} u\right)(4 z)}{(s)_{n}(1-s)_{n}}
$$

This is a cusp form of weight $2 n$ for $\Gamma_{0}(4)$.

0

$$
\zeta_{a}(f, r):=\int_{D_{4}} f(z) \overline{E_{a}\left(z, \frac{1}{2}+i r, \frac{1}{2}\right)} d \mu_{z} .
$$

-

$$
\zeta_{a}(f, r):=\int_{D_{4}} f(z) \overline{E_{a}\left(z, \frac{1}{2}+i r, \frac{1}{2}\right)} d \mu_{z} .
$$

- $\Gamma(X \pm Y)$ is the abbreviation of

$$
\Gamma(X+Y) \Gamma(X-Y),
$$

and similarly, $\Gamma(X \pm Y \pm Z)$ is the abbreviation of
$\Gamma(X+Y+Z) \Gamma(X+Y-Z) \Gamma(X-Y+Z) \Gamma(X-Y-Z)$.

Theorem (Biró, 2012)

Theorem (Biró, 2012)

Let $u_{1}(z), u_{2}(z)$ be two Masss cusp forms of weight 0 for $\operatorname{SL}(2, \mathbb{Z})$.

Theorem (Biró, 2012)

Let $u_{1}(z), u_{2}(z)$ be two Maass cusp forms of weight 0 for $\operatorname{SL}(2, \mathbb{Z})$. Let $D^{+}=\left\{i\left(\frac{1}{4}-n\right): n \geq 1\right.$ is an integer $\}$, and let f be a "nice" function on the set $\mathbb{R} \cup D^{+}$, even on \mathbb{R}.

Theorem (Biró, 2012)

Let $u_{1}(z), u_{2}(z)$ be two Maass cusp forms of weight 0 for $\operatorname{SL}(2, \mathbb{Z})$. Let $D^{+}=\left\{i\left(\frac{1}{4}-n\right): n \geq 1\right.$ is an integer $\}$, and let f be a "nice" function on the set $\mathbb{R} \cup D^{+}$, even on \mathbb{R}.
The sum below is invariant to the changes $u_{1} \rightarrow \overline{u_{2}}, u_{2} \rightarrow \overline{u_{1}}$, $f \rightarrow g$, where g is the type II Wilson function transform of f :

Theorem (Biró, 2012)

Let $u_{1}(z), u_{2}(z)$ be two Maass cusp forms of weight 0 for $\operatorname{SL}(2, \mathbb{Z})$. Let $D^{+}=\left\{i\left(\frac{1}{4}-n\right): n \geq 1\right.$ is an integer $\}$, and let f be a "nice" function on the set $\mathbb{R} \cup D^{+}$, even on \mathbb{R}.
The sum below is invariant to the changes $u_{1} \rightarrow \overline{u_{2}}, u_{2} \rightarrow \overline{u_{1}}$, $f \rightarrow g$, where g is the type II Wilson function transform of f :

$$
\sum_{j=1}^{\infty} f\left(T_{j}\right) \Gamma\left(\frac{3}{4} \pm i T_{j}\right)\left(B_{0} \kappa_{0}\left(u_{1}\right), u_{j, \frac{1}{2}}\right) \overline{\left(B_{0} \kappa_{0}\left(u_{2}\right), u_{j, \frac{1}{2}}\right)}
$$

Theorem (Biró, 2012)

Let $u_{1}(z), u_{2}(z)$ be two Maass cusp forms of weight 0 for $\operatorname{SL}(2, \mathbb{Z})$. Let $D^{+}=\left\{i\left(\frac{1}{4}-n\right): n \geq 1\right.$ is an integer $\}$, and let f be a "nice" function on the set $\mathbb{R} \cup D^{+}$, even on \mathbb{R}.
The sum below is invariant to the changes $u_{1} \rightarrow \overline{u_{2}}, u_{2} \rightarrow \overline{u_{1}}$, $f \rightarrow g$, where g is the type II Wilson function transform of f :

$$
\begin{gathered}
\sum_{j=1}^{\infty} f\left(T_{j}\right) \Gamma\left(\frac{3}{4} \pm i T_{j}\right)\left(B_{0} \kappa_{0}\left(u_{1}\right), u_{j, \frac{1}{2}}\right) \overline{\left(B_{0} \kappa_{0}\left(u_{2}\right), u_{j, \frac{1}{2}}\right)} \\
\frac{1}{4 \pi} \sum_{a=0, \infty} \int_{-\infty}^{\infty} f(r) \Gamma\left(\frac{3}{4} \pm i r\right) \zeta_{a}\left(B_{0} \kappa_{0}\left(u_{1}\right), r\right) \overline{\zeta_{a}\left(B_{0} \kappa_{0}\left(u_{2}\right), r\right)} d r
\end{gathered}
$$

Theorem (Biró, 2012)

Let $u_{1}(z), u_{2}(z)$ be two Maass cusp forms of weight 0 for $\operatorname{SL}(2, \mathbb{Z})$. Let $D^{+}=\left\{i\left(\frac{1}{4}-n\right): n \geq 1\right.$ is an integer $\}$, and let f be a "nice" function on the set $\mathbb{R} \cup D^{+}$, even on \mathbb{R}.
The sum below is invariant to the changes $u_{1} \rightarrow \overline{u_{2}}, u_{2} \rightarrow \overline{u_{1}}$, $f \rightarrow g$, where g is the type II Wilson function transform of f :

$$
\begin{gathered}
\sum_{j=1}^{\infty} f\left(T_{j}\right) \Gamma\left(\frac{3}{4} \pm i T_{j}\right)\left(B_{0} \kappa_{0}\left(u_{1}\right), u_{j, \frac{1}{2}}\right) \overline{\left(B_{0} \kappa_{0}\left(u_{2}\right), u_{j, \frac{1}{2}}\right)} \\
\frac{1}{4 \pi} \sum_{a=0, \infty} \int_{-\infty}^{\infty} f(r) \Gamma\left(\frac{3}{4} \pm i r\right) \zeta_{a}\left(B_{0} \kappa_{0}\left(u_{1}\right), r\right) \overline{\zeta_{a}\left(B_{0} \kappa_{0}\left(u_{2}\right), r\right)} d r \\
\sum_{n=1}^{\infty} f\left(i\left(\frac{1}{4}-n\right)\right) \Gamma\left(2 n+\frac{1}{2}\right) \sum_{j=1}^{s_{n}}\left(B_{0} \kappa_{n}\left(u_{1}\right), g_{n, j}\right) \overline{\left(B_{0} \kappa_{n}\left(u_{2}\right), g_{n, j}\right)}
\end{gathered}
$$

We write $(w)_{n}=\Gamma(w+n) / \Gamma(w)$, and we define the generalized hypergeometric function in the usual way:

$$
{ }_{p} F_{q}\left(\begin{array}{l}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array} ; z\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \ldots\left(a_{p}\right)_{n}}{n!\left(b_{1}\right)_{n} \ldots\left(b_{q}\right)_{n}} z^{n} .
$$

We write $(w)_{n}=\Gamma(w+n) / \Gamma(w)$, and we define the generalized hypergeometric function in the usual way:

$$
{ }_{p} F_{q}\left(\begin{array}{l}
\left.a_{1}, \ldots, a_{p} ; z\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \ldots\left(a_{p}\right)_{n}}{b_{1}, \ldots, b_{q}} n\left(b_{1}\right)_{n} \ldots\left(b_{q}\right)_{n} \\
z^{n}
\end{array}\right.
$$

For $j=1,2$ let

$$
\Delta_{0} u_{j}=\left(-\frac{1}{4}-t_{j}^{2}\right) u_{j}
$$

We write $(w)_{n}=\Gamma(w+n) / \Gamma(w)$, and we define the generalized hypergeometric function in the usual way:

$$
{ }_{p} F_{q}\left(\begin{array}{l}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array} ; z\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \ldots\left(a_{p}\right)_{n}}{n!\left(b_{1}\right)_{n} \ldots\left(b_{q}\right)_{n}} z^{n} .
$$

For $j=1,2$ let

$$
\Delta_{0} u_{j}=\left(-\frac{1}{4}-t_{j}^{2}\right) u_{j}
$$

Then define the Wilson function $\phi_{\lambda}(x)$ as the sum of
$\frac{\Gamma\left(2 i t_{1}\right){ }_{4} F_{3}\left(\begin{array}{c}\frac{1}{4}-i t_{1}+i x, \frac{1}{4}-i t_{1}-i x, \frac{1}{4}-i t_{1}+i \lambda, \frac{1}{4}-i t_{1}-i \lambda \\ \frac{1}{2}-i t_{1}+i t_{2}, \frac{1}{2}-i t_{1}-i t_{2}, 1-2 i t_{1}\end{array} \quad 1\right)}{\Gamma\left(\frac{1}{2}-i t_{1} \pm i t_{2}\right) \Gamma\left(\frac{1}{4}+i t_{1} \pm i x\right) \Gamma\left(\frac{1}{4}+i t_{1} \pm i \lambda\right)}$
and the same expression with $-t_{1}$ in place of t_{1}.

Let

$$
H(x)=\frac{\Gamma\left(\frac{1}{4} \pm i t_{1} \pm i x\right) \Gamma\left(\frac{1}{4} \pm i t_{2} \pm i x\right) \Gamma\left(\frac{1}{4} \pm i x\right) \Gamma\left(\frac{3}{4} \pm i x\right)}{\Gamma\left(\frac{1}{2} \pm i t_{1}\right) \Gamma\left(\frac{1}{2} \pm i t_{2}\right) \Gamma(\pm 2 i x)} .
$$

Define the measure $d h$ for functions F on $\mathbf{R} \cup D^{+}$, even on \mathbf{R} as

$$
\int F(x) d h(x):=\frac{1}{2 \pi} \int_{0}^{\infty} F(x) H(x) d x+i \sum_{x \in D^{+}} F(x) \operatorname{Res}_{z=x} H(z)
$$

Let

$$
H(x)=\frac{\Gamma\left(\frac{1}{4} \pm i t_{1} \pm i x\right) \Gamma\left(\frac{1}{4} \pm i t_{2} \pm i x\right) \Gamma\left(\frac{1}{4} \pm i x\right) \Gamma\left(\frac{3}{4} \pm i x\right)}{\Gamma\left(\frac{1}{2} \pm i t_{1}\right) \Gamma\left(\frac{1}{2} \pm i t_{2}\right) \Gamma(\pm 2 i x)} .
$$

Define the measure $d h$ for functions F on $\mathbf{R} \cup D^{+}$, even on \mathbf{R} as

$$
\int F(x) d h(x):=\frac{1}{2 \pi} \int_{0}^{\infty} F(x) H(x) d x+i \sum_{x \in D^{+}} F(x) \operatorname{Res}_{z=x} H(z)
$$

Then the Wilson function transform of type $/ /$ is defined as

$$
(\mathcal{G} F)(\lambda)=\int F(x) \phi_{\lambda}(x) d h(x)
$$

Remarks on the automorphic weights:

Remarks on the automorphic weights:

Explicitly, we have

$$
\left(B_{0} \kappa_{0}\left(u_{1}\right), u_{j, \frac{1}{2}}\right)=\int_{D_{4}} B_{0}(z) u_{1}(4 z) \overline{u_{j, \frac{1}{2}}(z)} d \mu_{z}
$$

Remarks on the automorphic weights:

Explicitly, we have

$$
\left(B_{0} \kappa_{0}\left(u_{1}\right), u_{j, \frac{1}{2}}\right)=\int_{D_{4}} B_{0}(z) u_{1}(4 z) \overline{u_{j, \frac{1}{2}}(z)} d \mu_{z}
$$

The right-hand side here is very closely related to

$$
\int_{S L(2, \mathbf{z}) \backslash H}\left|u_{1}(z)\right|^{2}\left(\operatorname{Shim} u_{j, 1 / 2}\right)(z) d \mu_{z},
$$

where $\operatorname{Shim} u_{j, 1 / 2}$ (the Shimura lift of $u_{j, 1 / 2}$) is a cusp form of weight 0 .

References

References

A. Biró, A duality relation for certain triple products of automorphic forms, Israel J. of Math., 192 (2012), 587-636.

References

A. Biró, A duality relation for certain triple products of automorphic forms, Israel J. of Math., 192 (2012), 587-636.
A. Biró, A relation between triple products of weight 0 and weight $\frac{1}{2}$ cusp forms, Israel J. of Math., 182 (2011), 61-101.

Thank you for your attention!

