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A Goal.....

Given an elliptic curve E/Q, understand the set E(Z); i.e
bound the number and size of the integral points on a given
model of E. This number, via Siegel’s Theorem is always
finite, but it can be difficult to quantify such a statement.
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A less ambitious goal.....

Understand ED(Z) in a family of twists of a given curve E.
Here, there are a number of conjectures of Lang and of
Abramovich and Pacelli which predict that this set, for many
choices of E, is absolutely bounded.
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An even less ambitious goal

Understand EN (Z) for my favourite family of twists of a given
curve E, say

EN : y2 = x3 −N2x.

These are known as congruent number curves. Recall that a
positive integer N is a congruent number if there exists a right
triangle with rational sides and area N . It is a classical result
that N is congruent precisely when the elliptic curve EN has
infinitely many rational points.



Congruent
number curves

Michael
Bennett

Introduction

Results

Old stuff

New stuff

My goal

Understand EN (Z) for

EN : y2 = x3 −N2x,

where we will restrict N so that EN has as little bad reduction
as possible. Specifically, we will consider only N = 2apb.
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More precisely

In what follows, we will address the question of whether curves
of the shape EN possess integral points of infinite order,
provided we know they have rational points with this property.
We will concentrate on the case where N = 2apb for a and b
nonzero integers and p an odd prime. Since EN is rationally
isomorphic to Em2N for each nonzero integer m, and since
both E1 and E2 have rank 0 over Q, we may suppose, without
loss of generality, that b is odd.
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A second excuse

Draziotis and Poulakis (2005) present an algorithm for
computing EN (Z), when N = 2apb, for a, b and p fixed, using
Wildanger’s algorithm to solve unit equations of the shape
u+
√

2v = 1 in the field Q(
√

2,
√
p). They illustrate this by

showing that

E6(Z) = (0, 0), (±6, 0), (−3,±9), (−2,±8),

(12,±36, (18,±72), (294,±5040).

This computation first finds (via Magma) the 72 solutions to
the given unit equation.
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A third excuse

This question leads (perhaps unexpectedly) to the use of Frey
curves, including Q-curves, as pioneered by Darmon, Ellenberg
and Skinner, and Frey curves connected to Hilbert modular
forms.
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Primitive Solutions

From now on, we will fix p to be an odd prime number, and a
and b to be nonnegative integers. We are interested in
describing the integer solutions (x, y), with y > 0, say, to the
Diophantine equation.

y2 = x(x+ 2apb)(x− 2apb). (1)

A solution (x, y) (with y > 0) to (1) is called primitive if both

min{ν2(x), a} ≤ 1 and min{νp(x), b} ≤ 1.

Clearly it is enough to determine all primitive integer solutions.
These correspond to the S-integral points on Ep and E2p,
where S = {2, p,∞}.
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An aside

A general (and vague!) philosophical assertion is that, while it
is difficult to find uniform bounds on E(Z) for E ranging over
a family of cubic models, it is often much easier (and indeed
classical) to do so for certain quartic models. For example, the
equation

X4 −DY 2 = 1

has at most a single solution in positive integers X,Y , provided
D 6= 1785 (Cohn, Ljunggren). Cubic models with full rational
2-torsion are, in some sense, closest to quartic in that it is very
simple to describe the rational maps between them.
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Back to our regular programming

Recall that we were studying solutions to

y2 = x3 −N2x, N = 2apb.

Here are some primes p and values a where we have solutions;
in each case b = 1.

p a x p a x p a x

3 1 −3 3 3 25 7 3 −7
3 1 −2 5 0 −4 7 4 −63
3 1 12 5 0 45 11 1 2178
3 1 18 5 2 25 17 5 833
3 1 294 7 1 112 17 7 16337
29 0 284229 41 6 42025
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Some families of solutions

p = r4 + s4, a = 1,

p = r4 + 6r2s2 + s4, a = 0,

p = r4 + 12r2s2 + 4s4, a = 1,(
2a−1

)2 − ps2 = −1, a odd,

p2 − 2s2 = −1, a = 0,

p2r4 − 2s2 = 1, p ≡ 1 mod 8, a = 1,

ps2 = 22(a−2) + 3 · 2a−1 + 1, a ≥ 3,

and
p2 ± 6p+ 1 = 8s2, a = 1.
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The punchline

Theorem (B, 2013) : The primitive integers solutions to the
equation

y2 = x3 −N2x, N = 2apb

in nonzero integers (x, y), nonnegative integers a, b and prime
p correspond to those in the previous table and families.

Corollary : If N = 2apb where p ≡ ±3 mod 8 is prime,
p 6= 3, 5, 11, 29, then

EN (Z) = {(0, 0), (±N, 0)} .
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Note

According to Monsky, we have that p ≡ 5, 7 mod 8 are
congruent, while the same is true for 2p, when p ≡ 3, 7 mod 8.

This follows from Heegner and mock-Heegner point analysis.
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More results

Corollary 2 : Let p be an odd prime and S = {2, p,∞}. Then
the number of S-integral points on Ep is at most 9, while the
number of S-integral points on E2p is at most 19.

These bounds are sharp for p = 5 and p = 17, respectively.
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Back to the families

For primes of the shape

p = r4 + s4,

we expect that

∑
p≤N

p=t4+s4

log p ∼ Γ (5/4)2√
π

C N1/2,

where

C =
∏

p≡1 mod 8

(
1− 3

p

) ∏
p≡3,5,7 mod 8

(
1 +

1

p

)
.
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Similarly

we believe that ∑
p≤N

p=r4+12r2s2+4s4

log p ∼ Γ (5/4)2√
π

C N1/2

and ∑
p≤N

p=r4+6r2s2+s4

log p ∼ Γ (5/4)2√
2π

C N1/2.
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The remaining families

If there exist odd a and s such that(
2a−1

)2 − ps2 = −1,

likely p ∈ {17, 257, 65537}. If we can find r and s with

p2r4 − 2s2 = 1, p ≡ 1 mod 8,

we suspect that p ∈ {17, 577, 665857}.
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The remaining families

The remaining families of primes p corresponding to the
equations

p2 − 2s2 = −1, a = 0,

ps2 = 22(a−2) + 3 · 2a−1 + 1, a ≥ 3,

and
p2 ± 6p+ 1 = 8s2, a = 1,

are each, in all likelihood, infinite.
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Counts

104 106 108 1010 1012 1014 1016

13 89 611 4915 40590 341872 2966902
8 64 453 3481 28525 242469 2097454
15 92 640 4949 40698 342349 2965304
2 3 3 3 3 3 3
3 3 4 4 5 5 5
2 3 3 3 3 3 3
6 7 10 10 11 11 11
6 7 8 8 8 9 9
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One case

Recall yet again that we are considering

y2 = x(x+ 2apb)(x− 2apb),

where x = 2αpβx1 with gcd(x1, 2p) = 1, and where

min{a, α} ≤ 1 and min{b, β} ≤ 1.

If we consider the case a = α = 0, b > β, then β = 0 and so

y21 = x1(x1 − pb)(x1 + pb),

for y1 ∈ Z. If x1 < 0, then we are led to

x1 = −c2, x1 − pb = −2d2 and x1 + pb = 2e2,

for positive coprime integers c, d and e.
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And so....

Adding the second and third equations, we find that
c2 + e2 = d2 and hence that there exist coprime positive
integers f and g such that

c = f2 − g2, d = f2 + g2 and e = 2fg.

Thus
f4 + 6f2g2 + g4 = pb.

Conversely, such a solution implies one to

y21 = x1(x1 − pb)(x1 + pb),

with x1 = −(f2 − g2)2.
This equation, in fact, has no solutions with b > 1. To see this,
note that

c4 + (2de)2 = p2b.
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Generally

We had the equations

r4 + s4 = pb, r4 + 6r2s2 + s4 = pb

and
r4 + 12r2s2 + 4s4 = pb.

The second of these implies that

A4 +B2 = p2b,

upon setting A = r2 − s2, B = 4rs(r2 + s2), while the third
becomes

A4 + 2B2 = p2b,

with A = r2 − 2s2, B = 4rs(r2 + 2s2).
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Q-curves

To a solution to A4 +B2 = Cq, we associate the curve

E1 : y2 = x3 + 2(1 + i)Ax2 + (B + iA2)x,

while, given a solution to A4 + 2B2 = Cq, we consider

E2 : y2 = x3 + 2
√
−2Ax2 − (A2 +

√
−2B)x.



Congruent
number curves

Michael
Bennett

Introduction

Results

Old stuff

New stuff

Relevant facts

These “correspond” to weight 2, level Ni cuspidal newforms,
where N1 = 256 and N2 = 64. Since all such forms have CM,
we can, following Ellenberg (and after much work), conclude
that q < 211 (here, q is prime). The small cases were
subsequently finished in joint work with Ellenberg and Ng
(IJNT 2010).
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The last case.

One possibility we encounter when we consider the equation

y2 = x(x+ 2apb)(x− 2apb),

is that a = 1 and

x = 2c2, x± 2pb = 4d2 and x∓ 2pb = 8e2.

This implies that

p2b ± 6pb + 1 = 8d2.
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The last case.
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The equation x2n + 6xn + 1 = 8y2

We can rewrite this as

(xn + 3)2 − 8 = 8y2,

whereby 4 | xn + 3 and

y2 − 2

(
xn + 3

4

)2

= −1.

Hence

y +

(
xn + 3

4

)√
2 = ±εk, (2)

where k is odd and ε = 1 +
√

2.
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The equation x2n + 6xn + 1 = 8y2

On the other hand, we can also rewrite this equation as(
xn + 1

2

)2

− 2y2 = −xn

and so (
xn + 1

2

)
+ y
√

2 = ε`αn, (3)

where Norm(α) = (−1)`+1x.
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We thus have

y +

(
xn + 3

4

)√
2 = ±εk

and (
xn + 1

2

)
+ y
√

2 = ε`αn,

whence

± εk
√

2− ε`αn = 1. (4)
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Linear forms in logarithms

Note that from

y +

(
xn + 3

4

)√
2 = ±εk,

we have
|xn + 3|

4
=
εk + ε−k

2
√

2
,

whence it follows that

|x|n√
2 εk
− 1

is small, whereby the same is true of the linear form

Λ = n log |x| − log
√

2− k log ε.
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Linear forms in logarithms (continued)

Lower bounds for linear forms in (three) complex logarithms
thus implies, with care, an upper bound upon n (of the shape
n < 108 or so).

It follows that our original equation

x2n + 6xn + 1 = 8y2

has at most finitely many solutions in integers x, y and n ≥ 2.
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Linear forms in logarithms (continued)

Lower bounds for linear forms in (three) complex logarithms
thus implies, with care, an upper bound upon n (of the shape
n < 108 or so).

It follows that our original equation

x2n + 6xn + 1 = 8y2

has at most finitely many solutions in integers x, y and n ≥ 2.
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Handling the remaining cases

We associate to our solution (x, y, n) to

±εk
√

2− ε`αn = 1

the Frey curve,

Es,k : Y 2 = X(X + 1)(X + s · εk
√

2)

where the choice of sign s = ±1. By an easy application of
Tate’s algorithm we find that the curve Es,k has minimal
discriminant

∆min = 32ε2(k+`)α2n

and conductor
N = (

√
2)9 ·

∏
p|α

p.
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A little bit about representations

Let E = Es,k be our Frey curve, defined over the totally real
field K = Q(

√
2). Write GK = Gal(K/K) and ρE,n for the

representation

ρE,n : GK → Aut(E[n]) ∼= GL2(Fn).

Via an argument of Freitas, we may show that ρE,n is
absolutely irreducible for n ≥ 5.

From the fact that 3 is inert in K and E = Es,k has good
reduction at 3 · Z[

√
2], we know that E is modular.
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More about representations

Applying standard level-lowering techniques of Fujiwara, Jarvis
and Rajaei, we find that ρE,n ∼ ρf,n for some Hilbert newform

over K of level M = (
√

2)9 and prime ideal n | n. Using
MAGMA we find that the space of Hilbert newforms of level M
is 8-dimensional, and in fact decomposes into 8 rational
eigenforms.
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More on these eigenforms

Through a small search we found 8 elliptic curves over K of
conductor M. By computing their traces at small prime ideals,
we checked that they are in fact pairwise non-isogenous. It is
not too hard to show that these elliptic curves are also
modular. Hence they must correspond to the 8 Hilbert
newforms of level M. Thus ρE,n ∼ ρFi,n where F1, . . . , F8 are
the 8 elliptic curves.
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These curves are

F1 : Y 2 = X3 +
√

2X2 + (
√

2− 1)X,

F2 : Y 2 = X3 + (−
√

2 + 3)X2 + (−
√

2 + 2)X,

F3 : Y 2 = X3 + (2
√

2− 1)X2 + (−
√

2 + 2)X,

F4 : Y 2 = X3 + (
√

2− 2)X2 + (−
√

2 + 1)X,

F5 : Y 2 = X3 + (−
√

2 + 1)X2 −
√

2X,

F6 : Y 2 = X3 + (
√

2− 1)X2 −
√

2X,

F7 : Y 2 = X3 + (
√

2 + 3)X2 + (
√

2 + 2)X,

F8 : Y 2 = X3 −
√

2X2 + (−
√

2− 1)X.



Congruent
number curves

Michael
Bennett

Introduction

Results

Old stuff

New stuff

What we have

Let E = Es,k and let F be one of the eight elliptic curves
F1, . . . , F8. Suppose ρE,n ∼ ρF,n. Let q - 2 be a prime ideal of
K.

(i) If q - (sεk
√

2− 1) then aq(E) ≡ aq(F ) (mod n).

(ii) If q | (sεk
√

2− 1) then Norm(q) + 1 ≡ ±aq(F ) (mod n).

Note that Es,k has good reduction at q in case (i), and
multiplicative reduction in case (ii).
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A local sieve

tells us that the s = ±1 sign in

±εk
√

2− ε`αn = 1

is in fact +1. Moreover, either k ≡ −1 (mod 9240) and
ρE,p ∼ ρF2,n or k ≡ 1 (mod 9240) and ρE,p ∼ ρF7,n.

Note in fact that F2 is isomorphic to E1,−1 and F7 is
isomorphic to E1,1, where

F2 : Y 2 = X3 + (−
√

2 + 3)X2 + (−
√

2 + 2)X,

F7 : Y 2 = X3 + (
√

2 + 3)X2 + (
√

2 + 2)X.
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Further sieving

tell us that in
εk
√

2− ε`αn = 1

we necessarily have k ≡ ` ≡ 1 (mod n).

This observation enables us to reduce the above equation to a
Thue equation of the shape

Xn −
√

2Y n = 1−
√

2.

Applying lower bounds for linear forms in two logarithms then
lets us conclude that n < 1000.
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Yet more sieving

tells us that in
εk
√

2− ε`αn = 1

we have k ≡ 1 (mod M) for M > e10000.

This provides a lower bound of the shape X > ee
10000

for
X 6= 1 in

Xn −
√

2Y n = 1−
√

2,

which, after much work, leads to the desired contradiction.
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